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We introduce a framework for proving lower bounds on computational problems over distributions against
algorithms that can be implemented using access to a statistical query oracle. For such algorithms, access to
the input distribution is limited to obtaining an estimate of the expectation of any given function on a sample
drawn randomly from the input distribution rather than directly accessing samples. Most natural algorithms
of interest in theory and in practice, for example, moments-based methods, local search, standard iterative
methods for convex optimization, MCMC, and simulated annealing, can be implemented in this framework.
Our framework is based on, and generalizes, the statistical query model in learning theory [Kearns 1998].

Our main application is a nearly optimal lower bound on the complexity of any statistical query algorithm
for detecting planted bipartite clique distributions (or planted dense subgraph distributions) when the
planted clique has size O(n1/2−δ) for any constant δ > 0. The assumed hardness of variants of these problems
has been used to prove hardness of several other problems and as a guarantee for security in cryptographic
applications. Our lower bounds provide concrete evidence of hardness, thus supporting these assumptions.
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1. INTRODUCTION

We study the complexity of problems where the input consists of independent samples
from an unknown distribution. Such problems are at the heart of machine learning
and statistics (and their numerous applications) and also occur in many other contexts
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such as compressed sensing and cryptography. While several methods have been
developed to estimate the sample complexity of such problems (e.g. VC dimension
[Vapnik and Chervonenkis 1971] and Rademacher complexity [Bartlett and Mendelson
2002]), proving lower bounds on the computational complexity of these problems has
been much more challenging. The traditional approach to proving lower bounds is via
reductions and by finding distributions that can generate instances of some problem
conjectured to be intractable (e.g., assuming NP �= RP).

Here we present a different approach. We show that algorithms that access the
unknown distribution only via a statistical query (SQ) oracle have high complexity, un-
conditionally. Most algorithmic approaches used in practice and in theory on a wide va-
riety of problems can be implemented using only access to such an oracle; these include
Expectation Maximization [Dempster et al. 1977], local search, MCMC optimization
[Tanner and Wong 1987; Gelfand and Smith 1990], simulated annealing [Kirkpatrick
et al. 1983; Černý 1985], first- and second-order methods for linear/convex optimization
[Dunagan and Vempala 2008; Belloni et al. 2009], k-means, Principal Component Anal-
ysis, Independent Component Analysis, Naı̈ve Bayes, Neural Networks, and many oth-
ers (see Chu et al. [2006] and Blum et al. [2005] for proofs and many other examples). In
fact, we are aware of only one algorithm that provably does not have a statistical query
counterpart: Gaussian elimination for solving linear equations over a field (e.g., mod 2).

Informally, a statistical query oracle provides an estimate of the expected value of any
given bounded real-valued function within some tolerance. Many popular algorithms
rely only on the average value of various functions over random samples (commonly
referred to as empirical averages). Standard Chernoff-Hoeffding bounds imply that the
average value of a bounded function on the independent samples will be highly concen-
trated around the expectation on the unknown distribution (and, indeed, in many cases
the empirical average is used precisely to obtain an estimate of the expectation). As a
result, such algorithms can often be equivalently analyzed in our oracle-based model.

Our approach also allows proving lower bounds against algorithms that rely on a
1-bit sampling oracle, referred to as 1-bit sampling algorithms. This oracle provides
the value of any Boolean function on a fresh random sample from the distribution.
Many existing algorithms require only such limited access to random samples. Others
can be implemented using such access to samples (possibly using a polynomially larger
number of samples). For brevity, we refer to algorithms that rely on either of these
types of oracles as statistical algorithms.

For example, many problems over distributions are solved using convex pro-
grams. Such a problem is typically formulated as finding an approximation to
minz∈K Ex∼D[ f (x, z)] for some convex set K and functions f (x, ·) that are convex in the
second parameter z. A standard approach (both in theory and practice) to solve such
a problem is to use a gradient descent-based technique. The gradient of the objective
function is

∇z E
x

[ f (x, z)] = E
x

[∇z f (x, z)]

and is usually estimated using the average value of ∇z f (x, z) on (some of) the given
random samples. However, standard analysis of gradient descent-based algorithms
implies that a sufficiently accurate estimate of each of the coordinates of Ex[∇z f (x, z)]
would also suffice. Hence, for an objective function of the form above, gradient de-
scent can be implemented using either of the above oracles (detailed analysis of such
implementations can be found in a subsequent work [Feldman et al. 2015]).

The key motivation for our framework is the empirical observation that almost all
algorithms that work on random samples are either already statistical in our sense or
have natural statistical counterparts. Thus, lower bounds for statistical algorithms can
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be directly translated into lower bounds against a large number of existing approaches.
We present the formal oracle-based definitions of statistical algorithms in Section 2.

Our model is based on the statistical query learning model [Kearns 1998] defined
as a restriction of Valiant’s [1984] Probably Approximately Correct (PAC) learning
model. The primary goal of the restriction was to simplify the design of noise-tolerant
learning algorithms. As was shown by Kearns and others in subsequent works, almost
all classes of functions that can be learned efficiently can also be efficiently learned
in the SQ model. A notable and so far unique exception is the algorithm for learning
parities, based on Gaussian elimination. As was already shown by Kearns [1998],
parities require exponentially many queries to learn in the SQ model. Further, Blum
et al. [1994] proved that the number of SQs required for weak learning (that is, for
obtaining a non-negligible advantage over the random guessing) of a class of functions
C over a fixed distribution D is characterized by a combinatorial parameter of C and
D, referred to as SQ-DIM(C, D), the SQ dimension.

We consider SQ algorithms in the broader context of arbitrary computational prob-
lems over distributions. We also define an SQ oracle that strengthens the oracle in-
troduced by Kearns [1998]. For any problem over distributions, we define a parameter
of the problem that lower bounds the complexity of solving the problem by any SQ
algorithm in the same way that SQ-DIM lower bounds the complexity of learning in
the SQ model. Our techniques for proving lower bounds are also based on methods de-
veloped for lower-bounding the complexity of SQ learning algorithms. However, as we
will describe later, they depart from the known techniques in a number of significant
ways that are necessary for our more general setting and our applications.

The 1-bit sampling oracle and its more general k-bit version was introduced by
Ben-David and Dichterman [1998]. They showed that it is equivalent (up to polynomial
factors) to the SQ oracle. Using our stronger SQ oracle we sharpen this equivalence.
This sharper relationship is crucial for obtaining meaningful lower bounds against
1-bit sampling algorithms in our applications.

We demonstrate our techniques by applying them to the problems of detecting
planted bipartite cliques and planted bipartite dense subgraphs. We now define these
problems precisely and give some background.

Detecting Planted Cliques. In the planted clique problem, we are given a graph G
whose edges are generated by starting with a random graph Gn,1/2, then “planting,”
that is, adding edges to form a clique on k randomly chosen vertices. Jerrum [1992] and
Kucera [1995] introduced the planted clique problem as a potentially easier variant
of the classical problem of finding the largest clique in a random graph [Karp 1979].
A random graph Gn,1/2 contains a clique of size 2 log n with high probability, and a
simple greedy algorithm can find one of size log n. Finding cliques of size (2 − ε) log n is
a hard problem for any ε > 0. Planting a larger clique should make it easier to find one.
The problem of finding the smallest k for which the planted clique can be detected in
polynomial time has attracted significant attention. For k ≥ c

√
n log n, simply picking

vertices of large degrees suffices [Kucera 1995]. Cliques of size k = �(
√

n) can be
found using spectral methods [Alon et al. 1998; McSherry 2001; Coja-Oghlan 2010],
via SDPs [Feige and Krauthgamer 2000], combinatorial methods [Feige and Ron 2010;
Dekel et al. 2011], nuclear norm minimization [Ames and Vavasis 2011], and belief
propagation [Deshpande and Montanari 2015a].

While there is no known polynomial-time algorithm that can detect cliques of size
below the threshold of �(

√
n), there is a quasipolynomial algorithm for any k ≥ 2 log n:

enumerate subsets of size 2 log n; for each subset that forms a clique, take all common
neighbors of the subset; one of these will be the planted clique. This is also the fastest
known algorithm for any k = O(n1/2−δ), where δ > 0.
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Some evidence of the hardness of the problem was shown by Jerrum [1992], who
proved that a specific approach using a Markov chain cannot be efficient for k = o(

√
n).

Additional evidence of hardness is given in Feige and Krauthgamer [2003], where it is
shown that Lovász-Schrijver SDP relaxations, which include the SDP used by Feige and
Krauthgamer [2000], cannot be used to efficiently find cliques of size k = o(

√
n). Most

recently, lower bounds against a constant level of the more powerful Sum-of-Squares
SDP hierarchy were shown by Meka et al. [2015] and Deshpande and Montanari
[2015b]. The problem has been used to generate cryptographic primitives [Juels and
Peinado 2000] and as a hardness assumption in a large number of works (e.g., [Alon
et al. 2007; Hazan and Krauthgamer 2011; Minder and Vilenchik 2009; Berthet and
Rigollet 2013; Dughmi 2014]).

We focus on the bipartite planted clique problem, where a (k × k)-biclique is planted
in a random bipartite graph. A densest-subgraph version of the bipartite planted clique
problem has been used as a hard problem for cryptographic applications [Applebaum
et al. 2010]. The bipartite version can be easily seen to be at least as hard as the original
version. At the same time, all known bounds and algorithms for the k-clique problem
can be easily adapted to the bipartite case (e.g., Ames and Vavasis [2011]). Therefore,
it is natural to expect that new upper bounds on the planted k-clique problem would
also yield new upper bounds for the bipartite case.

The starting point of our investigation for this problem is the property of the planted
k-biclique problem that it has an equivalent formulation as a problem over distributions
defined as follows.

PROBLEM 1.1. Fix an integer k, 1 ≤ k ≤ n, and a subset of k indices S ⊆ {1, 2, . . . , n}.
The input distribution DS on vectors x ∈ {0, 1}n is defined as follows: With probability
1 − (k/n), x is uniform over {0, 1}n; and with probability k/n, x is such that its k
coordinates from S are set to 1, and the remaining coordinates are uniform in {0, 1}.
For an integer t, the distributional planted k-biclique problem with t samples is the
problem of finding the unknown subset S using t samples drawn randomly from DS.

One can view samples x1, . . . , xt as adjacency vectors of the vertices of a bipartite
graph as follows: The bipartite graph has n vertices on the right (with k marked as
members of the clique) and t vertices on the left. Each of the t samples gives the
adjacency vector of the corresponding vertex on the left. It is not hard to see that for
t = n, conditioned on the event of getting exactly k samples with planted indices, we will
get a random bipartite graph with a planted (k× k)-biclique (we prove the equivalence
formally in Appendix A).

One interesting approach for finding the planted clique was proposed by Frieze and
Kannan [2008]. They gave a reduction from finding a planted clique in a random graph
to finding a direction that maximizes a second-order tensor norm; this was extended to
general rth order tensor norm by Brubaker and Vempala [2009]. Specifically, they show
that maximizing the rth moment (or the 2-norm of an rth order tensor) allows one to
recover planted cliques of size �̃(n1/r). A related approach is to maximize the third or
higher moment of the distribution given by the distributional planted clique problem.
For this approach, it is natural to consider the following type of optimization algorithm:
Start with some unit vector u, and then estimate the gradient at u (via samples), move
along that direction and return to the sphere; repeat to reach an approximate local
maximum. Unfortunately, over the unit sphere, the expected rth moment function can
have (exponentially) many local maxima even for simple distributions. A more sophis-
ticated approach [Kannan 2008] is through Markov chains or simulated annealing; it
attempts to sample unit vectors from a distribution on the sphere that is heavier on vec-
tors that induce a higher moment, for example, u is sampled with density proportional
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to e f (u), where f (u) is the expected rth moment along u. This could be implemented by
a Markov chain with a Metropolis filter [Metropolis et al. 1953; Hastings 1970] ensur-
ing a proportional steady-state distribution. If the Markov chain were to mix rapidly,
then that would give an efficient approximation algorithm, because sampling from the
steady state likely gives a vector of high moment. At each step, all one needs is to be
able to estimate f (u), which can be done by sampling from the input distribution.

As we will see presently, these approaches can be easily implemented in our frame-
work and will have provably high complexity. For the distributional planted biclique
problem, SQ algorithms need n�(log n) queries to detect planted bicliques of size k < n

1
2 −δ

for any δ > 0. Even stronger exponential bounds apply for the more general problem
of detecting planted dense subgraphs of the same size. These bounds match the known
upper bounds. To describe these results precisely and discuss exactly what they mean
for the complexity of these problems, we will need to define the models of statistical al-
gorithms, the complexity measures we use, and our main tool for proving lower bounds,
a notion of statistical dimension of a set of distributions. We do this in the next section.
In Section 3, we prove our general lower bound results and in Section 5 we estimate
the statistical dimension of detecting planted bicliques and dense subgraphs.

2. DEFINITIONS AND OVERVIEW

Here we formally define statistical algorithms and the key notion of statistical dimen-
sion, and then describe the resulting lower bounds in detail.

2.1. Problems over Distributions

We begin by formally defining the class of problems addressed by our framework.

Definition 2.1 (Search Problems Over Distributions). For a domain X, let D be a set
of distributions over X, and let F be a set called solutions and Z : D → 2F be a map
from a distribution D ∈ D to a subset of solutions Z(D) ⊆ F that are defined to be valid
solutions for D. The distributional search problem Z over D and F using t samples is to
find a valid solution f ∈ Z(D) given access (to an oracle or samples from) an unknown
D ∈ D.

In some settings, it is natural to parameterize the set of valid solutions by ad-
ditional parameters, such as accuracy. The extension of the definition to such set-
tings is immediate. An example of a distributional search problem is the distribu-
tional planted k-biclique we described in Definition 1.1. In this case, domain X is
{0, 1}n, the set of input distributions is all the distributions with a planted k-biclique
D = {DS | S ⊂ [n], |S| = k}, and the set of solutions is the set of all subsets of size k:
F = {S | S ⊂ [n], |S| = k}. For each DS, there is a single valid solution S. For a second
example, we point the reader to the distributional MAX-XOR-SAT problem in Section 4.

We note that this definition also captures decision problems by having F = {0, 1}.
A simple example of a decision problem over distributions that is relevant to our
discussion is that of distinguishing a planted biclique distribution from the uniform
distribution over {0, 1}n, which we denote by U . Here the set of input distributions
is D = {U } ∪ {DS | S ⊂ [n], |S| = k}. The only valid solution for a planted biclique
distribution DS is 1 and the only valid solution for U is 0. For a solution f ∈ F , we
denote by Z f the set of distributions in D for which f is a valid solution.

It is important to note that the number of available random samples t can have a
major influence on the complexity of the problem. First, for most problems, there is a
minimum t for which the problem is information-theoretically solvable. This value is
often referred to as the sample complexity of the problem. But even for t that is larger
than the sample complexity of the problem, having more samples can make the problem
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easier computationally. For example, in the context of attribute-efficient learning, there
is a problem that is intractable with few samples (under cryptographic assumptions)
but is easy to solve with a larger (but still polynomial) number of samples [Servedio
2000]. Our distributional planted biclique problem exhibits the same phenomenon.

2.2. Statistical Algorithms

The statistical query learning model of Kearns [1998] is a restriction of the PAC model
[Valiant 1984]. It introduces an oracle that allows a learning algorithm to obtain an
estimate of the expectation of any bounded function of an example. A query to such an
oracle is referred to as statistical query. Kearns showed that many known PAC learning
algorithms can be expressed as algorithms using statistical queries instead of random
examples themselves. The main goal of Kearns’ model was to give a simple way to design
algorithms tolerant to random classification noise. Since the introduction of the model
SQ algorithms have been given for many more learning tasks and the model itself
found applications in a number of other contexts such as differential privacy [Blum
et al. 2005; Kasiviswanathan et al. 2011], learning on massively parallel architectures
[Chu et al. 2006], and evolvability [Feldman 2008].

In the same spirit, for general search problems over a distribution, we define SQ
algorithms as algorithms that do not see samples from the distribution but instead
have access to a SQ oracle. The first SQ oracle we define is the natural generalization
of the oracle defined by Kearns [1998] to samples from an arbitrary distribution.

Definition 2.2 (STAT Oracle). Let D be the input distribution over domain X. For
a tolerance parameter τ > 0, STAT(τ ) oracle is the oracle that for any query function
h : X → [−1, 1], returns a value

v ∈
[

E
x∼D

[h(x)] − τ, E
x∼D

[h(x)] + τ

]
.

The general algorithmic techniques mentioned earlier can all be expressed as al-
gorithms using the STAT oracle instead of samples themselves, in most cases in a
straightforward way. We also note that in the PAC learning model some of the algo-
rithms, such as the Perceptron algorithm, did not initially appear to fall into the SQ
framework, but SQ analogues were later found for all known learning techniques ex-
cept Gaussian elimination (for specific examples, see Kearns [1998] and Blum et al.
[1998]). We expect the situation to be similar even in the broader context of search
problems over distributions.

The most natural realization of the STAT(τ ) oracle is one that computes h on O(1/τ 2)
random samples from D and returns their average. Chernoff ’s bound implies that the
estimate is within the desired tolerance (with constant probability). However, if h(x) is
very biased (e.g., equal to 0 with high probability), then it can be estimated with fewer
samples. Our primary application requires a tight bound on the number of samples
necessary to solve a problem over distributions. Therefore, we define a stronger version
of STAT oracle that tightly captures the accuracy of an estimate of the expectation
given by random samples. More formally, for a Boolean query function h : X → {0, 1},
VSTAT(t) can return any value v for which the Binomial distribution B(t, v) (sum of
t independent Bernoulli variables with bias v) is statistically close (for some constant
distance) to B(t, E[h]). See Section 3.3 for more details on this correspondence.

Definition 2.3 (VSTAT Oracle). Let D be the input distribution over domain X. For
a sample size parameter t > 0, the VSTAT(t) oracle is the oracle that for any query
function h : X → [0, 1] returns a value v ∈ [p − τ, p + τ ], where p = Ex∼D[h(x)] and

τ = max
{

1
t ,

√
p(1−p)

t

}
.
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Note that VSTAT(t) always returns the value of the expectation within 1/
√

t. There-
fore, it is no weaker than STAT(1/

√
t) and no stronger than STAT(1/t).

The STAT and VSTAT oracles we defined can return any value within the given tol-
erance and therefore can make adversarial choices. We also aim to prove lower bounds
against algorithms that use a more benign, 1-bit sampling oracle.1 The 1 bit sampling
oracle gives the algorithm the true value of a Boolean query function on a randomly
chosen sample. This oracle is a special case of the k-bit sampling oracle introduced
by Ben-David and Dichterman [1998], who refer to it as the weak Restricted Focus of
Attention model and is also equivalent to the Honest SQ oracle of Yang [2001]. Learn-
ing in this model has been studied in more recent work motivated by communication
constraints on data processing in a distributed computing system [Zhang et al. 2013;
Steinhardt and Duchi 2015; Steinhardt et al. 2016].

Definition 2.4 (1-STAT Oracle). Let D be the input distribution over domain X.
The 1-STAT oracle is the oracle that, given any function h : X → {0, 1}, takes an
independent random sample x from D and returns h(x).

Note that the 1-STAT oracle draws a fresh sample each time it is called. Without
re-sampling each time, the answers of the 1-STAT oracle could be easily used to recover
any sample bit by bit, making it equivalent to having access to random samples. Note
that the 1-STAT oracle can be used to simulate VSTAT (with high probability) by taking
the average of O(t) replies of 1-STAT for the same function h. While it might seem that
access to 1-STAT gives an algorithm more power than access to VSTAT, we will show
that t samples from 1-STAT can be simulated using access to VSTAT(O(t)). This will
allow us to translate our lower bounds on SQ algorithms with access to VSTAT to lower
bounds against 1-bit sampling algorithms.

2.3. Statistical Dimension

The main tool in our analysis is an information-theoretic bound on the complexity of
statistical algorithms. Our definitions originate from the SQ dimension [Blum et al.
1994] used to characterize SQ learning algorithms. Roughly speaking, the SQ dimen-
sion corresponds to the number of nearly uncorrelated labeling functions in a class (see
Section 6.1 for the details of the definition and the relationship to our bounds).

We introduce a natural generalization and strengthening of this approach to search
problems over arbitrary sets of distributions and prove lower bounds on the complexity
of statistical algorithms based on the generalized notion. Our definition departs from
SQ dimension in three aspects. (1) Our notion applies to any set of distributions; in
the learning setting all known definitions of statistical dimension require fixing the
distribution over the domain and only allow varying the labeling function. Such an
extension was not known even in the context of PAC learning. (2) Instead of relying
on a bound on pairwise correlations, our dimension relies on a bound on average
correlations in a large set of distributions. This weaker condition allows us to derive
tight bounds on the complexity of SQ algorithms for the planted k-biclique problem.
(3) We show that our notion of dimension also gives lower bounds for the stronger
VSTAT oracle (without incurring a quadratic loss in the parameter).

We now define our dimension formally. For two functions f, g : X → R and a distri-
bution D with probability density function D(x), the inner product of f and g over D is
defined as

〈 f, g〉D
.= E

x∼D
[ f (x)g(x)].

1In the STOC 2013 extended abstract, this oracle is also called the unbiased statistical oracle.
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The norm of f over D is ‖ f ‖D = √〈 f, f 〉D. We remark that, by convention, the integral
from the inner product is taken only over the support of D, that is, for x ∈ X such
that D(x) �= 0. Given a distribution D over X, let D(x) denote the probability density
function of D relative to some fixed underlying measure over X (for example, uniform
distribution for discrete X or Lebesgue measure over Rn). Our bound is based on the
inner products between functions of the following form: (D′(x) − D(x))/D(x), where D′
and D are distributions over X. For this to be well defined, we will only consider cases
where D(x) = 0 implies D′(x) = 0, in which case D′(x)/D(x) is treated as 1. To see why
such functions are relevant to our discussion, note that for every real-valued function
f over X,

E
x∼D′

[ f (x)] − E
x∼D

[ f (x)] = E
x∼D

[
D′(x)
D(x)

f (x)
]

− E
x∼D

[ f (x)] =
〈

D′ − D
D

, f
〉

D
.

This means that the inner product of any function f with (D′ − D)/D is equal to the
difference of expectations of f under the two distributions. Analyzing this quantity
for an arbitrary set of functions f was the high-level approach of statistical query
lower bounds for learning. Here we depart from this approach by defining a pairwise
correlation of two distributions, independent of any specific query function. For two
distributions D1, D2 and a reference distribution D, their pairwise correlation is defined
as

χD(D1, D2) =
∣∣∣∣
〈

D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
When D1 = D2, the quantity 〈 D1

D − 1, D1
D − 1〉D is known as the χ2(D1, D) distance and

is widely used for hypothesis testing in statistics [Pearson 1900].
A key notion for our statistical dimension is the average correlation of a set of dis-

tributions D′ relative to a distribution D. We denote it by ρ(D′, D) and define it as
follows:

ρ(D′, D) .= 1
|D′|2

∑
D1,D2∈D′

χD(D1, D2) = 1
|D′|2

∑
D1,D2∈D′

∣∣∣∣
〈

D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣ .
Bounds on pairwise correlations easily imply bounds on the average correlation (see

Lemma 3.10 for a proof). In Section 3.2, we describe a pairwise-correlation version of
our bounds. It is sufficient for some applications and generalizes the statistical query
dimension from learning theory (see Section 6.1 for the details). However, to obtain
our nearly tight lower bounds for planted biclique, we will need to bound the average
pairwise correlation directly and with significantly better bounds than what is possible
from pairwise correlations alone.

We are now ready to define the concept of statistical dimension. We first define the
statistical dimension with average correlation of a set of distributions relative to some
reference distribution. It captures the complexity of distinguishing distributions in D
from D.

Definition 2.5. For γ̄ > 0, domain X, a set of distributions D over X, and a reference
distribution D over X the statistical dimension of D relative to D with average
correlation γ̄ is defined to be the largest value d such that for any subset D′ ⊆ D, where
|D′| ≥ |D|/d, ρ(D′, D) ≤ γ̄ . We denote it by SDA(D, D, γ̄ ).

Intuitively, the definition says that any 1/d fraction of the set of distributions has
low pairwise correlation; the largest such d is the statistical dimension.
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For general search problems over distributions, we define the statistical dimension
by reducing it to the statistical dimension of some set of input distributions relative to
some reference distribution.

Definition 2.6. For γ̄ > 0, domain X, a search problem Z over a set of solutions
F , and a class of distributions D over X, let d be the largest value such that there
exists a reference distribution D over X and a finite set of distributions DD ⊆ D with
the following property: For any solution f ∈ F , the set D f = DD\Z f is non-empty and
SDA(D f , D, γ̄ ) ≥ d. We define the statistical dimension with average correlation γ̄
of Z to be d and denote it by SDA(Z, γ̄ ).

The statistical dimension with average correlation γ̄ of a search problem over distribu-
tions gives a lower bound on the complexity of any deterministic statistical algorithm
for the problem that uses queries to VSTAT(1/(3γ̄ )).

THEOREM 2.7. Let X be a domain and Z be a search problem over a set of solutions F
and a class of distributions D over X. For γ̄ > 0, let d = SDA(Z, γ̄ ). Any SQ algorithm
requires at least d calls to VSTAT(1/(3γ̄ )) oracle to solve Z.

In Section 3.1 we give a refinement of SDA by introducing a parameter that additionally
bounds the size of the set D f (and not just that it is non-empty). This refined notion
allows us to extend the lower bound to randomized SQ algorithms. In Section 3.3,
we use this refined notion of SDA to also show that (with high probability) one can
simulate t samples of 1-STAT using VSTAT(O(t)). This implies that lower bounds on
SDA imply lower bounds on the number of queries required by any 1-bit sampling
algorithm (Theorem 3.17).

In Section 6, we show that our bounds generalize and strengthen the known results
for SQ learning that are based on SQ-DIM [Blum et al. 1994; Yang 2005]. In the
statement below, the statistical dimension SDA(C, D′, γ̄ ) uses the average pairwise
correlation of Boolean functions from a set C relative to a distribution D′ over a domain
X′, that is, 〈 f1, f2〉D′ , where f1, f2 ∈ C (rather than distributions as in the definitions
above). It is formally defined in Section 6 and is always at least as large as the statistical
query dimension used in earlier work in learning theory.

THEOREM 2.8. Let C be a set of Boolean functions, D′ be a distribution over X′, and
d = SDA(C, D′, γ̄ ) for some γ̄ > 0. Then any SQ algorithm that, with probability at least
2/3, learns C over D′ with error ε < 1/2 −

√
1/(3γ̄ ) requires at least d/3 − 1 queries to

VSTAT(1/(3γ̄ )).

At a high level, our proof works as follows. The first step of the proof is a reduction
from a decision problem in which the algorithm only needs to distinguish all the
distributions in the set DD (except those in Z f for some f ) from the reference
distribution D. To distinguish between distributions, the algorithm needs to ask a
query g such that ED[g] cannot be used as a response of VSTAT(1/(3γ̄ )) for D′ ∈ D f . In
the key component of the proof, we show that if a query function g to VSTAT(1/(3γ̄ ))
distinguishes between a distribution D and any distribution D′ ∈ D′, then D′ must have
average correlation of at least γ̄ relative to D. The condition that for any |D′| ≥ |D f |/d,
ρ(D′, D) < γ̄ then immediately implies that at least d queries are required to
distinguish any distribution in D f from D. We remark that an immediate corollary
of this proof technique is that the decision problem in which the algorithm needs to
decide whether the input distribution is in D f or is equal to the reference distribution
D also has statistical dimension at least d. We elaborate on this in Theorem 3.7 where
we give a simplified version of our lower bound for decision problems of this type.
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2.4. Applications to the Planted Biclique Problem

We prove the following lower bound for the distributional planted biclique problem.

THEOREM 2.9. For any constant δ > 0, any k ≤ n1/2−δ, and r > 0, at least n�(log r)

queries to VSTAT(n2/(rk2)) are required to solve the distributional planted k-biclique
with probability at least 2/3. In particular, no polynomial-time statistical algorithm can
solve the problem using queries to VSTAT(o(n2/k2)), and any SQ algorithm requires
n�(log n) queries to VSTAT(n2−δ/k2). This lower bound also applies to the problem of
distinguishing any planted k-biclique distribution from the uniform distribution over
{0, 1}n (no planting).

This bound is essentially tight. For every index in the planted set S, the probability
that the corresponding bit of a randomly chosen point is set to 1 is 1/2 + k/(2n),
whereas for every index not in S, this probability is 1/2. Therefore, using n queries
to VSTAT(16n2/k2) (i.e., of tolerance k/4n), it is easy to recover S. Indeed, this can be
done by using the query functions hi(x) = xi, for each i ∈ [n]. So, the answers of the
VSTAT oracle represent the expected value of the ith bit over the sample.

There is also a SQ algorithm that uses nO(log n) queries to VSTAT(25n/k) (correspond-
ing to a significantly smaller number of samples) to find the planted set for any k ≥ log n.
In fact, the same algorithm can be used for the standard planted clique problem that
achieves complexity nO(log n). We enumerate over subsets T ⊆ [n] of log n indices and
query VSTAT(25n/k) with the function gT : {0, 1}n → {0, 1} defined as 1 if and only if
the point has ones in all coordinates in T . Therefore, if the set T is included in the
planted set, then

E
D

[gT ] = k
n

· 1 +
(

1 − k
n

)
2− log n ∈

[
k
n
,

k + 1
n

]
.

With this expectation, VSTAT(25n/k) has tolerance at most
√

k(k + 1)/25n2 ≤ (k +
1)/5n and will return at least k/n − (k + 1)/(5n) > 3k/(4n). If, on the other hand, at
least one element of T is not from the planted set, then ED[gT ] ≤ k/(2n) + 1/n, and
VSTAT(25n/k) will return at most (k + 2)/(2n) + (k + 2)/(5n) < 3k/(4n). Thus, we will
know all (log n)-sized subsets of the planted set and hence the entire planted set. We
remark that this algorithm demonstrates the difference between STAT and VSTAT
oracles. Implementing this algorithm using the STAT oracle would require tolerance
of �(k/n), which corresponds to O(n2/k2) samples. This is the same tolerance as the
polynomial-time degree-based algorithm needs (estimate degree of each vertex), so one
cannot hope to have a superpolynomial lower bound against STAT(k/n).

To summarize, n samples directly correspond to having access to VSTAT(O(n)). The
discussion above shows that the distributional planted biclique problem can be solved
in polynomial time when k = �(

√
n). At the same time, Theorem 2.9 implies that for

k ≤ n1/2−δ, any SQ algorithm will require n�(log n) queries to VSTAT(n1+δ).
We now turn to stating our bounds for 1-bit sampling algorithms.

THEOREM 2.10. For any constant δ > 0 and any k ≤ n1/2−δ, any 1-bit sampling algo-
rithm that with probability at least 2/3 can distinguish between the uniform distribution
and any planted k-biclique distribution requires �(n2/k2) queries to 1-STAT.

Each query of a 1-bit sampling algorithm uses a new sample from D. Therefore, this
bound implies that any algorithm that does not reuse samples will require �(n2/k2)
samples. To place this bound in context, we note that it is easy to detect whether
a biclique of size k has been planted using Õ(n2/k2) samples (as before, to detect if
a coordinate i is in the planted set, we can compute the average of xi on Õ(n2/k2)
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samples). Of course, finding all coordinates in the set would require reusing samples
(which 1-bit sampling algorithms cannot do). Note that n2/k2 ≤ n if and only if k ≥ √

n.
A closely related problem is the planted densest subgraph problem, where edges in

the planted subset appear with higher probability than in the remaining graph. This
is a variant of the densest k-subgraph problem, which itself is a natural generalization
of k-clique that asks to recover the densest k-vertex subgraph of a given n-vertex graph
[Feige 2002; Khot 2004; Bhaskara et al. 2010, 2012]. The conjectured hardness of its
average case variant, the planted densest subgraph problem, has been used in public
key encryption schemes [Applebaum et al. 2010] and in analyzing parameters specific
to financial markets [Arora et al. 2010]. We define the following distributional version
of this problem.

PROBLEM 2.11. Fix 0 < q < p ≤ 1. For 1 ≤ k ≤ n, let S ⊆ [n] be a set of k vertex indices
and DS be a distribution over {0, 1}n such that when x ∼ DS, with probability 1 − (k/n)
the entries of x are independently q-biased Bernoulli variables, and with probability k/n
the k coordinates in S are independently chosen p-biased Bernoulli variables, and the
rest are independently chosen q-biased Bernoulli variables. The distributional ( p, q)-
planted densest k-subgraph problem is to find the unknown subset S given access to
samples from DS.

Our approach and lower bounds extend in a straightforward manner to this problem. In
Section 5.2, we analyze this general setting and give lower bounds for all settings of p
and q. Here we describe a special case of our lower bounds when q = 1/2 and p = 1/2+α.
Our lower bound becomes exponential as α becomes (inverse polynomially) close to 0.
Specifically:

COROLLARY 2.12. For any constant δ > 0, any k ≤ n1/2−δ, α > 0, 
 ≤ min{k, 1/(4α2)},
at least n�(
) queries to VSTAT(n2/(48
α2k2)) are required to solve the distributional
(1/2 + α, 1/2)-planted densest k-subgraph with probability at least 2/3.

For example, consider the setting k = 
 = n1/3 and α = n−1/4. It is not hard to see
that for this setting the problem can be solved on a random bipartite graph with n
vertices on both sides (in exponential time). Our lower bound for this setting implies
that at least n�(n1/3) queries to VSTAT(n3/2) will be required. Additional corollaries for
the distributional (p, q)-planted densest k-subgraph can be found in Section 5.2.

Relation to the Planted k-biclique Problem. The upper and lower bounds we de-
scribed for statistical algorithms match the state of the art for the average-case planted
k-biclique and planted k-clique problems. Moreover, our lower bounds for the distribu-
tional versions of the planted k-biclique problem have implications for the hardness
of the average-case planted k-biclique problem. An instance of the latter problem is a
random n × n bipartite graph with a k × k biclique planted randomly. In Appendix A,
we show that the average-case planted k-biclique is equivalent to our distributional
planted k-biclique with n samples. Specifically, a single sample corresponds to the ad-
jacency list of a vertex on the left, and n samples correspond to the adjacency matrix
of the bipartite graph. By this equivalence, an algorithm that solves the average-case
planted bipartite k-clique problem will also solve the distributional planted k-biclique
with n samples. Our lower bounds for the distributional problem therefore imply that
the planted k-biclique problem would require a non-statistical approach, that is, one
for which there is no statistical analogue.

2.5. Subsequent Work

In subsequent work, Feldman, Perkins, and Vempala [2013] introduced a notion of
statistical dimension that is based on the spectral norm of the correlation matrix of
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large sets of distributions. It is always at least as large as the average correlation-
based dimension defined here and also leads to lower bounds on the complexity of
SQ algorithms using VSTAT. Using this dimension, they proved tight lower bounds
on the complexity of statistical algorithms for planted k-SAT and Goldreich’s pseudo-
random generator. In addition, they described statistical algorithms based on power
iteration with nearly matching upper bounds. Finally, they demonstrate that lower
bounds against SQ algorithms can be used to derive concrete lower bounds for convex
relaxations of the problem.

Feldman et al. [2013] have also extended the lower bounds against 1-STAT to lower
bounds against the k-bit version of 1-STAT at the expense of factor 2k blow-up in the
number of queries. Steinhardt et al. [2016] gave a more direct approach for proving
lower bounds against this oracle that is closely related to the techniques here and in
Feldman et al. [2013]. They have further showed that statistical queries can be used
to simulate the oracle that that extracts k bits from each sample in an interactive way
(rather than at once).

Building on our approach, Feldman [2016] described new notions of statistical di-
mension and proved that they tightly characterize the SQ complexity of solving general
search problems over distributions for both STAT and VSTAT oracle. He also simplified
the analysis of VSTAT(t) by showing that it is equivalent (up to constant factors) to
returning any value v such that |√v − √

ED[h]| ≤ 1/
√

t. Some additional recent appli-
cations of SQ lower bounds that are related to our work include learning of the Ising
model [Bresler et al. 2014], convex optimization [Feldman et al. 2015], and distribution-
independent PAC learning of lines over finite fields [Feldman 2016].

The distributional planted k-biclique problem introduced here is a simple and natural
problem that shows a remarkable property: Information-theoretically, it can be solved
with many fewer samples than is necessary for any known efficient algorithm (and
no efficient statistical algorithm exists). In particular, any algorithm that solves our
problem with fewer than n samples will also solve the average-case k-biclique problem
(that is at least as hard as the usual planted k-clique problem). In several more recent
works, reductions from the planted clique problem were used to demonstrate a similar
phenomenon in a number of important problems in statistics and machine learning
[Berthet and Rigollet 2013; Ma and Wu 2015; Hajek et al. 2015; Gao et al. 2014; Wang
et al. 2014; Cai et al. 2015].

3. LOWER BOUNDS FROM STATISTICAL DIMENSION

In this section, we prove the general lower bounds. In later sections, we will compute
the parameters in these bounds for specific problems of interest.

3.1. Lower Bounds for Statistical Query Algorithms

We start by proving Theorem 2.7, which is the basis of all our lower bounds. In fact,
we will prove a stronger version of this theorem, which also applies to randomized
algorithms. For this version, we need an additional parameter in the definition of SDA.

Definition 3.1. For γ̄ > 0, η > 0, domain X, a search problem Z over a set of solutions
F , and a class of distributions D over X, let d be the largest value such that there exists
a reference distribution D over X and a finite set of distributions DD ⊆ D with the
following property: For any solution f ∈ F , the set D f = DD\Z f has size at least
(1 − η) · |DD| and SDA(D f , D, γ̄ ) ≥ d. We define the statistical dimension with average
correlation γ̄ and solution set bound η of Z to be d and denote it by SDA(Z, γ̄ , η).

Note that for any η < 1, SDA(Z, γ̄ ) ≥ SDA(Z, γ̄ , η) and for η = 1 − 1/|DD|, we
get SDA(Z, γ̄ ) = SDA(Z, γ̄ , η), where DD is the set of distributions that maximizes
SDA(Z, γ̄ ).
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THEOREM 3.2. Let X be a domain and Z be a search problem over a set of solutions F
and a class of distributions D over X. For γ̄ > 0 and η ∈ (0, 1), let d = SDA(Z, γ̄ , η). Any
randomized SQ algorithm that solves Z with probability α > η requires at least α−η

1−η
d

calls to VSTAT(1/(3γ̄ )).

Theorem 2.7 is obtained from Theorem 3.2 by setting α = 1 and using any 1−1/|DD| ≤
η < 1. Further, for any η < 1, SDA(Z, γ̄ ) ≥ SDA(Z, γ̄ , η), and, therefore, for any η < 1,
a bound on SDA(Z, γ̄ , η) can be used in Theorem 2.7 in place of a bound on SDA(Z, γ̄ ).
We now prove Theorem 3.2.

PROOF OF THEOREM 3.2. We prove our lower bound by exhibiting a distribution over
inputs (which are distributions over X) for which every deterministic SQ algorithm that
solves Z with probability α (over the choice of input) requires at least (α − η) · d/(1 − η)
calls to VSTAT(1/(3γ̄ )). The claim of the theorem will then follow by Yao’s minimax
principle [Yao 1977].

Using the notation of Definition 3.1, let D be the reference distribution and DD be
a set of distributions for which the value d is achieved. Let A be a deterministic SQ
algorithm that uses q queries to VSTAT(1/(3γ̄ )) to solve Z with probability α over
the random and uniform choice of a distribution from DD. Consider the execution of
A in which to each query h of A, the oracle returns exactly ED[h], and let f denote
the output. Let the set D+

D ⊆ DD be the set of distributions on which A is successful
for all valid responses of VSTAT(1/(3γ̄ )). Let D+ = D f ∩ D+

D (recall that we defined
D f = DD\Z f ). We observe that D+ = D+

D\(DD\D f ) and, therefore,

|D+| ≥ |D+
D| − |DD\D f | ≥ α|DD| − |DD\D f | = α|DD| − |DD\D f |

|DD| − |DD\D f | |D f | ≥ α − η

1 − η
|D f |. (1)

By the definition of SDA(Z, γ̄ ), it holds that SDA(D f , D, γ̄ ) ≥ d. In Lemma 3.3, we
will show that under the conditions of this proof, SDA(D f , D, γ̄ ) ≥ d implies that A
must use at least q ≥ d|D+|/|D f | queries. By inequality (1), q ≥ α−η

1−η
· d giving the

desired lower bound.

The proof of Theorem 3.2 relies on the following lemma that translates a lower bound
on SDA(D f , D, γ̄ ) into a lower bound on the number of queries that A needs to use. Its
proof is based on ideas of Szörényi [2009] and Feldman [2012].

LEMMA 3.3. Let X be a domain and Z be a search problem over a set of solutions F
and a class of distributions D over X. Let A be a (deterministic) SQ algorithm for Z that
uses at most q queries to VSTAT(1/(3γ̄ )). For a distribution D, consider the execution of
A on D in which to each query h of A, the oracle returns exactly ED[h], and let f denote
the output. For a set of distributions D f ⊆ D\Z f and γ̄ > 0, let d = SDA(D f , D, γ̄ ). Let
D+ be the set of all distributions in D f for which A successfully solves Z for all valid
responses of VSTAT(1/(3γ̄ )). Then q ≥ d · |D+|/|D f |.

PROOF. Let h1, h2, . . . , hq be the queries asked by A when executed on D with the
exact responses of the oracle. Let m = |D+|, and we denote the distributions in D+ by
{D1, D2, . . . , Dm}. For every k ≤ q, let Ak be the set of all distributions Di such that∣∣∣∣E

D
[hk(x)] − E

Di

[hk(x)]
∣∣∣∣ > τi,k

.= max

{
1
t
,

√
pi,k(1 − pi,k)

t

}
,

where we use t to denote 1/(3γ̄ ) and pi,k to denote EDi [hk(x)]. To prove the desired
bound, we first prove the following two claims:
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(1)
∑

k≤q |Ak| ≥ m;
(2) for every k ≤ q, |Ak| ≤ |D f |/d.

Combining these two implies that q|D f |/d ≥ m or, equivalently, q ≥ d|D+|/|D f |.
In the rest of the proof, for conciseness we drop the subscript D from inner products

and norms. To prove the first claim, we assume, for the sake of contradiction, that
there exists Di �∈ ∪k≤q Ak. Then, for every k ≤ q, | ED[hk(x)] − EDi [hk(x)]| ≤ τi,k. This
implies that ED[hk(x)] are within τi,k of EDi [hk(x)]. By the definition of VSTAT(t), this
implies that the responses we used in our execution of A on D are also valid responses
of VSTAT(t) when A is executed on Di. The output of this execution is f , and hence it
must be a valid solution for Di. This contradicts the definition of D+, since it is a subset
of D f ⊆ D\Z f .

To prove the second claim, suppose that for some k ∈ [d], |Ak| > |D f |/d. Let pk =
ED[hk(x)] and assume that pk ≤ 1/2 (when pk > 1/2 we just replace hk by 1 − hk in the
analysis below). First we note that:

E
Di

[hk(x)] − E
D

[hk(x)] = E
D

[
Di(x)
D(x)

hk(x)
]

− E
D

[hk(x)] =
〈
hk,

Di

D
− 1

〉
= pi,k − pk.

Let D̂i(x) = Di (x)
D(x) − 1 (where the convention is that D̂i(x) = 0 if D(x) = 0). We will next

show upper and lower bounds on the following quantity:

� =
〈

hk,
∑

Di∈Ak

D̂i · sign〈hk, D̂i〉
〉

.

By Cauchy-Schwartz, we have that

�2 =
〈

hk,
∑

Di∈Ak

D̂i · sign〈hk, D̂i〉
〉2

≤ ‖hk‖2 ·
∥∥∥∥∥∥
∑

Di∈Ak

D̂i · sign〈hk, D̂i〉
∥∥∥∥∥∥

2

≤ ‖hk‖2 ·
⎛
⎝ ∑

Di ,Dj∈Ak

∣∣∣〈D̂i, D̂j〉
∣∣∣
⎞
⎠

≤ ‖hk‖2 · ρ(Ak, D) · |Ak|2. (2)

We also have that

�2 =
〈

hk,
∑

Di∈Ak

D̂i · sign〈hk, D̂i〉
〉2

=
⎛
⎝∑

Di∈Ak

〈hk, D̂i〉 · sign〈hk, D̂i〉
⎞
⎠

2

≥
⎛
⎝∑

Di∈Ak

|pi,k − pk|
⎞
⎠

2

. (3)

To evaluate the last term of this inequality, we use the fact that

|pi,k − pk| ≥ τi,k = max
{
1/t,

√
pi,k(1 − pi,k)/t

}
.

Next we use a simple fact (to be proved in Lemma 3.5), namely that |pi,k − pk| ≥
max{1/t,

√
pi,k(1 − pi,k)/t} implies that |pk − pi,k| ≥

√
min{pk,1−pk}

3t to obtain: For every
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Di ∈ Ak,

|pk − pi,k| ≥
√

min{pk, 1 − pk}
3t

=
√

pk

3t
. (4)

By substituting Equation (4) into Equation (3), we get that �2 ≥ pk
3t · |Ak|2.

We note that hk is a [0, 1]-valued function and therefore ‖hk‖2 ≤ pk. Substituting
this into Equation (2), we get that �2 ≤ pk · ρ(Ak, D) · |Ak|2. By combining these two
bounds on �2, we obtain that ρ(Ak, D) ≥ 1/(3t) = γ̄ , which contradicts the definition of
SDA.

Remark 3.4. We remark that for algorithms using the STAT oracle, the proof can be
simplified somewhat. For τ = √

γ̄ ,

�2 ≥
⎛
⎝∑

Di∈Ak

|pi,k − pk|
⎞
⎠

2

≥ τ 2|Ak|2,

and the proof could be obtained by directly combining Equations (2) and (3) to get a
contradiction. This also eliminates the factor of 3 in the bound and the assumption
that queries are [0, 1]-valued can be relaxed to [−1, 1]-valued queries, since it suffices
that ‖hk‖2 ≤ 1. This leads to an identical lower bound on the number of queries for
STAT(

√
γ̄ ) in place of VSTAT(1/(3γ̄ )).

We now prove a bound on the distance between any p ∈ [0, 1] and p′ that is returned
by VSTAT(t) on a query with expectation p in terms of p′ that we used in the proof of
Lemma 3.3.

LEMMA 3.5. For an integer t and any p ∈ [0, 1], let p′ ∈ [0, 1] be such that |p′ − p| ≥
τ = max{ 1

t ,

√
p(1−p)

t }. Then |p′ − p| ≥
√

min{p′,1−p′}
3t .

PROOF. First note that our conditions and bounds do not change if we replace both p
and p′ with 1 − p and 1 − p′, respectively. Therefore, it is sufficient to prove the bound
when p ≤ 1/2. We know that |p′ − p| ≥ τ = max{1/t,

√
p(1 − p)/t}. If p ≥ 2p′/3, then

certainly

|p′ − p| ≥
√

p(1 − p)
t

≥
√

2
3 p′ · 1

2

t
=
√

p′

3t
.

Otherwise (when p < 2p′/3), p′ − p ≥ p′ − 2p′/3 = p′/3. We also know that |p − p′| ≥
τ ≥ 1/t and, therefore, |p − p′| ≥

√
p′
3t .

3.1.1. Decision Problems. For decision problems, our dimension and lower bounds can
be simplified. We denote by B(D, D) a decision problem in which the input distribution
D′ either equals D or belongs to D and the goal of the algorithm is to identify whether
D′ = D or D′ ∈ D. For example, for the distributional planted k-biclique problem, the
decision version is to determine whether the given input distribution corresponds to a
planted k-biclique or to one with no planting (uniform distribution on {0, 1}n.

For the decision problem B(D, D), our notion of dimension simplifies to the following.

Definition 3.6. For γ̄ > 0, domain X, and a decision problem B(D, D), let
SDA(B(D, D), γ̄ ) be defined as the largest value d such that there exists a finite set
of distributions DD ⊆ D such that SDA(DD, D, γ̄ ) = d.
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Our technique gives the following lower bound for decision problems:

THEOREM 3.7. Let D be a distribution and D be a set of distributions over a domain
X such that for some γ̄ , SDA(B(D, D), γ̄ ) = d. Any (randomized) SQ algorithm that
solves B(D, D) with success probability α > 1/2 requires at least (2α − 1)d queries to
VSTAT(1/(3γ̄ )).

PROOF. As before, we exhibit a hard distribution over input distributions for
which every deterministic SQ algorithm that solves B(D, D) with probability α
(over the choice of input) requires at least (2α − 1)d queries to VSTAT(1/(3γ̄ )).
Let DD be the set of distributions that witnesses the statistical dimension, namely
SDA(DD, D, γ̄ ) = d. Consider the following distribution over the input distribution D′:
D′ equals D with probability 1/2 and D′ equals a random uniform element of DD with
probability 1/2.

A has success probability α > 1/2 and, therefore, when executed on D with exact
responses to queries, it must correctly identify D (say, it outputs 0 in this case). We
then define D+ ⊆ DD as the set of distributions on which A is successful (that is,
outputs 1). The probability of success of A implies that |D+| ≥ (2α − 1)|DD|. Now, the
set DD is included in the set of distributions D for which 0 is not a valid solution.
Therefore, we can apply Lemma 3.3 with D f = DD to obtain that the number of queries
to VSTAT(1/(3γ̄ )) is q ≥ (2α − 1)d.

3.2. Statistical Dimension Based on Pairwise Correlations

In addition to SDA that is based on average correlation, we introduce a simpler notion
based on pairwise correlations. It is sufficient for some applications and is easy to relate
to SQ-DIM used in learning (as we do in Section 6).

Definition 3.8. We say that a set of m distributions D = {D1, . . . , Dm} over X is
(γ, β)-correlated relative to a distribution D over X if

∣∣∣∣
〈

Di

D
− 1,

Dj

D
− 1

〉
D

∣∣∣∣ ≤
{

β for i = j ∈ [m]
γ for i �= j ∈ [m].

Definition 3.9. For γ, β > 0, domain X, a search problem Z over a set of solutions F ,
and a class of distributions D over X, let m be the largest integer such that there exists
a reference distribution D over X and a finite set of distributions DD ⊆ D such that for
any solution f ∈ F , D f = DD\Z f is (γ, β)-correlated relative to D and |D f | ≥ m. We
define the statistical dimension with pairwise correlations (γ, β) of Z to be m and
denote it by SD(Z, γ, β).

For decision problems, SD(B(D, D), γ, β) is defined as the largest integer m such that
there exists a set of distributions DD ⊆ D of size m that is (γ, β)-correlated relative
to D.

It is easy to bound SDA of any (γ, β)-correlated set of distributions.

LEMMA 3.10. Let D = {D1, D2, . . . , Dm} be a (γ, β)-correlated set of distributions
relative to a distribution D. Then, for every γ ′ > 0, SDA(D, D, γ + γ ′) ≥ mγ ′

β−γ
.

PROOF. Take d = mγ ′/(β − γ ); we will prove that SDA(D, D, γ + γ ′) ≥ d. Consider a
set of distributions D′ ⊆ D, where |D′| ≥ |D|/d ≥ m/d = (β − γ )/γ ′:
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ρ(D′, D) = 1
|D′|2

∑
D1,D2∈D′

∣∣∣∣
〈

D1

D
− 1,

D2

D
− 1

〉
D

∣∣∣∣
≤ 1

|D′|2
(|D′|β + (|D′|2 − |D′|)γ )

≤ γ + β − γ

|D′|
≤ γ + γ ′.

As an immediate corollary, we obtain a bound on SDA of a search or decision problem
from a bound on SD.

COROLLARY 3.11. Let X be a domain and Z be a search or decision problem over a set
of solutions F and a class of distributions D over X. For γ, β > 0, let m = SD(Z, γ, β).
Then, for every γ ′ > 0, SDA(Z, γ + γ ′) ≥ mγ ′

β−γ
.

We now apply Theorem 2.7 to obtain the following lower bound on SQ algorithms in
terms of SD.

COROLLARY 3.12. Let X be a domain and Z be a search or decision problem over a set of
solutions F and a class of distributions D over X. For γ, β > 0, let m = SD(Z, γ, β). For
any γ ′ > 0, any SQ algorithm requires at least mγ ′/(β −γ ) queries to the STAT(

√
γ + γ ′)

or VSTAT(1/(3(γ + γ ′))) oracle to solve Z.

In this corollary, if, for example, SD(Z, γ = m−2/3

2 , β = 1) ≥ m, then at least m1/3/2
queries to VSTAT(m2/3/3) or STAT(m−1/3) oracle are required to solve the problem.

3.3. Lower Bounds for 1-bit Sampling Algorithms

Next we address lower bounds on algorithms that use the 1-STAT oracle. We recall
that the 1-STAT oracle returns the value of a function on a single randomly chosen
point. To estimate the expectation of a function, an algorithm can simply query this
oracle multiple times with the same function and average the results.

We note that responses of 1-STAT do not have the room for the possibly adversarial
deviation afforded by the tolerance of the STAT and VSTAT oracles. The ability to
use these slight deviations in a coordinated way is used crucially in our lower bounds
against VSTAT and in all known lower bounds for SQ learning algorithms. While it
is possible to derive lower bounds against 1-bit sampling algorithms using m queries
from lower bounds against algorithms that use O(m) queries to STAT(1/m) [Ben-David
and Dichterman 1998], such a lower bound will not suffice for our main application. It
would only imply the trivial lower bound of �(n/k) queries to 1-STAT for the planted
k-biclique problem. Proving tighter lower bounds against 1-bit sampling algorithms
directly is harder and indeed lower bounds for the equivalent Honest SQ learning
model required a substantially more involved argument than lower bounds for the
regular SQ model [Yang 2005].

Our lower bounds for 1-bit sampling algorithms rely on a direct simulation of the
1-STAT oracle using the VSTAT oracle. This simulation allows us to derive lower
bounds against 1-bit sampling algorithms from Theorem 3.2. We also provide a reverse
simulation of VSTAT oracle using 1-STAT oracle.

THEOREM 3.13. Let Z be a search problem and let A be a (possibly randomized) 1-bit
sampling algorithm that solves Z with probability at least α using m samples from
1-STAT. For any δ ∈ (0, 1/4], there exists a SQ algorithm A′ that uses at most m queries
to VSTAT(m/δ2) and solves Z with probability at least α − δ.
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Our proof relies on a simple simulation. Given query h1 : X → {0, 1} from A to 1-STAT,
we make the same query h1 to VSTAT(t) for t = m/δ2. Let p′

1 be the response. We flip a
coin with bias p′

1 (that is one that outputs 1 with probability p′
1 and 0 with probability

1 − p′
1) and return it to the algorithm. We do the same for the remaining m− 1 queries,

which we denote by h2, h3, . . . , hm. We then prove that the true m samples of 1-STAT
and our simulated coin flips are statistically close by upper bounding the expected ratio
of their density functions (which is equal to the χ2 divergence plus 1). This implies that
the success probability of the simulated algorithm is not much worse than that of the
1-bit sampling algorithm.

In our proof, we will, for simplicity and without loss of generality, assume that
VSTAT(t) always outputs a value in the interval [1/t, 1 − 1/t]. We can always replace a
value v returned by VSTAT(t) by v′, which is the closest value to v in the above interval.
It is easy to see that if v is a valid answer of VSTAT(t), then so is v′.

We will need the following lemmas for our proof. The first one bounds the total vari-
ation distance between two distributions in terms of the expected ratio of probability
density functions.

LEMMA 3.14. Let D1 and D2 be two distribution over a domain X of finite2 size such
that D2(x) is non-vanishing. Denote the total variation distance between D1 and D2 by
�T V (D1, D2). Then �T V (D1, D2) ≤ √

ρ/2, where ρ = ED1

[ D1(x)
D2(x)

]− 1.

PROOF. The key observation is that the χ2-divergence between D1 and D2 is exactly
the expected ratio minus 1.

ρ = E
D1

[
D1(x)
D2(x)

]
− 1 = E

D2

[
D2

1(x)
D2

2(x)

]
− 1 = E

D2

[
D2

1(x)
D2

2(x)
− 2

D1(x)
D2(x)

+ 1

]
= E

D2

[(
D1(x)
D2(x)

− 1
)2
]

.

By Jensen’s inequality this implies that

E
D2

[∣∣∣∣D1(x)
D2(x)

− 1
∣∣∣∣
]

≤
√√√√E

D2

[(
D1(x)
D2(x)

− 1
)2
]

= √
ρ.

Finally,

�T V (D1, D2) = 1
2

∑
x∈X

|D1(x) − D2(x)| = 1
2 E

D2

[∣∣∣∣D1(x)
D2(x)

− 1
∣∣∣∣
]

≤
√

ρ

2
.

The second lemma is that if p′ is an answer of VSTAT(t) for a query h, such that
ED[h] = p, then the expected ratio of density functions of Bernoulli random variables
with biases p and p′, denoted B(p) and B(p′), is small.

LEMMA 3.15. For an integer t and p ∈ [0, 1] let p′ ∈ [1/t, 1 − 1/t] such that |p′ − p| ≤
max{ 1

t ,

√
p(1−p)

t }. Then

E
b∼B(p)

(
Pr[B(p) = b]
Pr[B(p′) = b]

)
≤ 1 + 3

t
.

PROOF. If b = 1, then the ratio is p/p′ and when b = 0, then it is (1 − p)/(1 − p′).
Thus, the expected ratio is

p2

p′ + (1 − p)2

1 − p′ = 1 + (p − p′)2

p′(1 − p′)
.

We can assume without loss of generality that p′ ≤ 1/2.

2This assumption is simply for convenience of notation. It holds in our applications.
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Now if p ≤ 3p′, then p(1 − p) ≤ 3p′(1 − p′). Otherwise (when, p > 3p′), we know that
p ≥ 3p′ ≥ 3/t. This implies that p − p′ ≥ 2p/3 ≥ 2/t. This means that

2p
3

≤ p − p′ ≤
√

p(1 − p)
t

≤
√

p
t
.

This can only be true when p ≤ (3/2)2/t = 9/(4t), contradicting our assumption that
p ≥ 3/t. This implies that

max

{
1
t
,

√
p(1 − p)

t

}
≤ max

{
1
t
,

√
3p′(1 − p′)

t

}
≤
√

3p′(1 − p′)
t

.

By using this bound in the ratio equation, we get that

1 + (p − p′)2

p′(1 − p′)
≤ 1 +

3p′(1−p′)
t

p′(1 − p′)
≤ 1 + 3

t
.

We can now complete the proof of Theorem 3.13.

PROOF OF THEOREM 3.13. We simulate A using VSTAT(t) as described above. We now
prove that for any algorithm the total variation distance between the true answers of
1-STAT and the simulated distribution is at most δ. Formally, let R denote the set of
all outcomes of A’s random bits and for r ∈ R, let Ar denote the execution of A when its
random bits are set to r. let �A denote the distribution over the m bits obtained by the
algorithm A when it is run with 1-STAT oracle. Similarly, let �′

A denote the distribution
over {0, 1}m obtained by running the algorithm A simulated using VSTAT(t) as above.
By definition, �A = Er∈R �Ar and, similarly, �′

A = Er∈R �′
Ar . This implies that

�T V (�A,�′
A) ≤ E

r∈R

[
�T V (�Ar ,�′

Ar )
] ≤ max

r∈R
�T V (�Ar ,�′

Ar ).

The algorithm Ar is deterministic, and it is therefore sufficient to prove the bound
on total variation distance for deterministic algorithms. For conciseness, we assume
henceforth that A is deterministic.

For any i ∈ [m], let �Ai denote the probability distribution on the first i samples of
A executed with 1-STAT. For j ≤ i, let zj denote the first j bits of z. Let �Ai (z | zi−1)
denote the probability that the first i samples of A executed with 1-STAT oracle are
equal to z conditioned on the probability that the first i − 1 samples are equal to zi−1.
We define �′

Ai
(z) and �′

Ai
(z | zi−1) analogously. We also denote by hz the query that A

asks after getting z as the response to first i samples and let pz = ED[hz]. Let p′
z denote

the response of VSTAT(t) on hz.
For i ∈ [m] and any z ∈ {0, 1}i, �Ai (z | zi−1) = Pr[B(pzi−1 ) = zi] and hence �Ai (z) =

�Ai−1 (z
i−1) Pr[B(pzi−1 ) = zi]. Similarly, �′

Ai
(z | zi−1) = Pr[B(p′

zi−1 ) = zi] and

�′
Ai

(z) = �′
Ai−1

(zi−1) Pr[B(p′
zi−1 ) = zi].

This implies that

E
z∼�Ai

[
�Ai (z)
�′

Ai
(z)

]
= E

z∼�Ai

[
�Ai−1 (z

i−1) Pr[B(pzi−1 ) = zi]
�′

Ai−1
(zi−1) Pr[B(p′

zi−1 ) = zi]

]

= E
y∼�Ai−1

[
�Ai−1(y)

�′
Ai−1(y)

· E
b∼B(py)

[
Pr[B(py) = b]
Pr[B(p′

y) = b]

]]
.
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Now, by Lemma 3.15, this implies that for any z of length i ∈ [m],

E
z∼�Ai

[
�Ai (z)
�′

Ai
(z)

]
≤ E

y∼�Ai−1

[
�Ai−1(y)

�′
Ai−1(y)

]
·
(

1 + 2
t

)
.

Applying this iteratively, we obtain that

E
z∼�A

[
�A(z)
�′

A(z)

]
≤
(

1 + 3
t

)m

≤ e3m/t.

By our definition, t = m/δ2 ≥ 16m. Therefore, 3m/t ≤ 1/5, and hence e3m/t ≤ 1+4m/t.
By Lemma 3.14, we get that �T V (�A,�′

A) ≤
√

(1 + 4m/t − 1)/2 = √
m/t = δ. This

implies that the success probability of A using the simulated oracle is at least α − δ.

We now combine Theorems 3.7 and 3.13 to obtain the following lower bound for
decision problems.

THEOREM 3.16. Let X be a domain and D be a distribution over X and D be a set of
distributions over X. For γ̄ > 0, let d = SDA(B(D, D), γ̄ ). Any 1-bit sampling algorithm
that solves B(D, D) with probability α requires at least m queries to 1-STAT for

m = min
{

d(2α − 1)
2

,
(2α + 1)2

48γ̄

}
.

In particular, any algorithm with success probability of at least 2/3 requires at least
min{d/6, 1/(432γ̄ )} queries to 1-STAT.

PROOF. Assuming the existence of a 1-bit sampling algorithm using fewer than m
queries, we apply Theorem 3.13 for δ = (2α − 1)/4 to simulate the algorithm using
VSTAT. The bound on m ensures that the resulting algorithm usesfewer than d(2α −
1)/2 queries to VSTAT( 1

3γ̄
) and has success probability of at least α − δ = (2α + 1)/4.

By substituting these parameters into Theorem 3.7, we obtain a contradiction.

For general search problems, this leads to the following lower bound.

THEOREM 3.17. Let X be a domain and Z be a search problem over a set of solutions
F and a class of distributions D over X. For γ̄ > 0 and η ∈ (0, 1), let d = SDA(Z, γ̄ , η).
Any (possibly randomized) 1-bit sampling algorithm that solves Z with probability α
requires at least m calls to 1-STAT for

m = min
{

d(α − η)
2(1 − η)

,
(α − η)2

12γ̄

}
.

In particular, if η ≤ 1/6, then any algorithm with success probability of at least 2/3
requires at least min{d/4, 1/(48γ̄ )} queries to 1-STAT.

To conclude, we formally state a simple reduction in the other direction, namely
that VSTAT(t) oracle can be simulated using the 1-STAT oracle. It has been observed
that, given a Boolean query function h, one can obtain an estimate of ED[h] using
t = O(log(1/δ)/τ 2) 1-bit samples that with probability at least 1 − δ will be within τ of
ED[h] [Ben-David and Dichterman 1998]. Using the multiplicative Chernoff bound, it
is not hard to see that O(t log(1/δ)) samples are sufficient to estimate p = ED[h] within
tolerance guaranteed by VSTAT(t). In addition, we will show how to use the 1-STAT
oracle to estimate the expectation of real-valued queries.

THEOREM 3.18. Let t, q > 0 be any integers and δ > 0. There exists an algorithm A′
that for any input distribution D and any algorithm A that asks at most q queries to
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VSTAT, with probability at least 1 − δ, provides valid for VSTAT(t) answers to all the
queries of A. A′ uses O(qt · log(q/δ)) queries to 1-STAT for the same input distribution D.

PROOF. For every query h : X → [0, 1] of A, the algorithm A′ estimates p = ED[h],
as follows. To generate a random Bernoulli variable with bias p, B draws θ ∈ [0, 1]
randomly and uniformly and defines hθ (x) = 1 if h(x) ≤ θ and hθ (x) = 0 otherwise. It
then makes the query hθ to 1-STAT. Observe that

Pr
θ,x∼D

[hθ (x) = 1] = E
x∼D

[Pr
θ

[hθ (x) = 1]] = E
x∼D

[h(x)] = p.

The algorithm B repeats this m times (each time choosing a new random θ ) and then
answers the query h with the mean of the obtained samples (for m to be defined later).
We denote the mean by v.

Assuming that p ≤ 1/2, multiplicative Chernoff bounds imply that

Pr
[
|v − p| ≥

√
p(1 − p)/t

]
≤ 2e−3mp/(p(1−p)t) ≤ 2e−6m/t.

The bound in the case of p > 1/2 follows from the symmetric argument.
Choosing m = 6t · ln(2q/δ) ensures that Pr[|v − p| ≥

√
p(1 − p)/t] ≤ δ/q. This implies

that q arbitrary queries for VSTAT(t) can be answered correctly with probability at
least 1 − δ using 6qt · ln(2q/δ) queries to 1-STAT.

4. WARM-UP: MAX-XOR-SAT

In this section, we demonstrate our techniques on a warm-up problem, MAX-XOR-
SAT. For this problem, it is sufficient to use pairwise correlations rather than average
correlations.

For ε ≥ 0, the ε-approximate MAX-XOR-SAT problem is defined as follows. Given
samples from some unknown distribution D over XOR clauses on n variables, find an
assignment that maximizes up to additive error ε the probability a random clause
drawn from D is satisfied.

In the worst case, it is known that MAX-XOR-SAT is NP-hard to approximate to
within 1/2 − δ for any constant δ [Håstad 2001]. In practice, local search algorithms
such as WalkSat [Selman et al. 1995] are commonly applied as heuristics for maxi-
mum satisfiability problems. We give strong evidence that the distributional version
of MAX-XOR-SAT is hard for algorithms that locally seek to improve an assignment
by flipping variables to satisfy more clauses, giving some theoretical justification for
the observations of Selman et al. [1995]. Moreover, our proof even applies to the case
when there exists an assignment that satisfies all the clauses generated by the target
distribution.

The bound we obtain can be viewed as a restatement of the known lower bound for
learning parities using statistical query algorithms (indeed, the problem of learning
parities is a special case of our distributional MAX-XOR-SAT).

To formalize the search problem, we will denote by C = {0, 1}n the set of XOR clauses
in n variables such that for c ∈ C, if for i ∈ [n] we have ci = 1, then the ith variable
appears in c, and otherwise it does not; for simplicity, no variables are negated in the
clauses. Let A = {0, 1}n denote the set of possible assignments to the variables. We will
say that the assignment a ∈ A satisfies the clause c ∈ C if a · c = 1 (where a · c denotes
the inner product modulo 2).

Let D be the set of distributions over clauses in C. For a distribution D ∈ D and an
assignment a ∈ A, let fD(a) = Ec∼D[a · c] be the fraction of clauses that a satisfies under
D. For D ∈ D, let MD = maxa∈A fD(a). The MAX-XOR-SAT problem asks to find a ∈ A
that maximizes fD(a), given samples from an unknown distribution D.
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We are now ready to formalize the search problem that we are interested in, using
the notation above and that of Definition 2.1.

PROBLEM 4.1 (ε-APPROXIMATE MAX-XOR-SAT). Let X = C = {0, 1}n (the set of clauses),
D be the set of distributions over X, F = A = {0, 1}n (the set of assignments). Let
Z : D → 2F be defined as Z(D) = {a ∈ A | fD(a) ≥ MD − ε}.

THEOREM 4.2. For any δ > 0, any SQ algorithm requires at least 2n/3 − 1 queries to
STAT(2−n/3) to solve

( 1
2 − δ

)
-approximate MAX-XOR-SAT.

We will first determine the statistical dimension of our search problem. This will
immediately imply Theorem 4.2 using Corollary 3.11 (by choosing γ ′ = 2−n/3).

LEMMA 4.3. For a δ > 0, let Z denote the (1/2 − δ)-approximate MAX-XOR-SAT. Then
the statistical dimension of Z with pairwise correlation (γ, β) = (0, 1) is SD(Z, 0, 1) ≥
2n − 1.

PROOF. We verify the properties of Definition 3.9.
Let the reference distribution D = UC , the uniform distribution over C = {0, 1}n.

For a ∈ A = {0, 1}n = F , let Da ∈ D be the uniform distribution over c ∈ C such that
a · c = 1. Let DD = {Da | a ∈ A}, so |DD| = 2n.

For a, b ∈ A, we have

fDa(b) = E
c∼Da

[b · c] = 1
2n−1

⎛
⎝ ∑

c∈C | a·c=1,b·c=1

1

⎞
⎠ .

Note that if b = a, then fDa(b) = 1, and if b �= a, fDa(b) = 1/2 (indeed, |{c ∈ C | a · c =
1, b · c = 1}| = 2n/4, since it is the size of two intersecting affine subspaces in {0, 1}n).

Therefore, for a ∈ A and ε = 1/2 − δ > 0, the set of solutions is

Z(Da) = {b ∈ A | fDa(b) ≥ 1/2 + δ} = {a},
and so Za = {Da}.

To conclude the proof, we will show that for any assignment a ∈ F = A the set
Da = DD\{Da} of distributions is (0, 1) correlated (see Definition 3.8).

Note that for a ∈ A and c ∈ C,(
Da

D
− 1

)
(c) =

{ −1 if c · a = 0
1 if c · a = 1.

In other words, ( Da
D − 1)(c) = −(−1)a·c. A well-known (and easy-to-verify) property

of {−1, 1}-valued parity functions is that they are (0, 1) correlated over the uniform
distribution. That is, for a, b ∈ A,∣∣∣∣

〈
Da

D
− 1,

Db

D
− 1

〉
D

∣∣∣∣ ≤
{

0 for a = b
1 for a �= b.

5. PLANTED BICLIQUE AND DENSEST SUBGRAPH

5.1. Statistical Dimension of Planted Biclique

We now prove the lower bound claimed in Theorem 2.9 on the problem of detecting a
planted k-biclique in the given distribution on vectors from {0, 1}n as defined above.

Throughout this section, we will use the following notation. For a subset S ⊆ [n],
let DS be the distribution over {0, 1}n with a planted set S. Let Sk denote the set of all
( n

k) subsets of [n] of size k and m = ( n
k). We index the elements of Sk in some arbitrary

order as S1, . . . , Sm. For i ∈ [m], we use Di to denote DSi . We will also assume, whenever
necessary, that k and n are larger than some fixed constant.
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The reference distribution in our lower bounds will be the uniform distribution over
{0, 1}n and let D̂S denote DS/D − 1. In order to apply our lower bounds based on sta-
tistical dimension with average correlation we now prove that for the planted biclique
problem average correlations of large sets of distributions must be small. We start with
a lemma that bounds the correlation of two planted biclique distributions relative to
the reference distribution D as a function of the overlap between the planted sets:

LEMMA 5.1. For i, j ∈ [m],

ρD(Di, Dj) = ∣∣〈D̂i, D̂j〉D
∣∣ ≤ 2λk2

n2 ,

where λ = |Si ∩ Sj |.
PROOF. For the distribution Di, we consider the probability Di(x) of generating the

vector x. Then,

Di(x) =
{

( n−k
n ) 1

2n + ( k
n) 1

2n−k if ∀s ∈ Si, xs = 1

( n−k
n ) 1

2n otherwise.

Now we compute the vector D̂i = Di
D − 1:

Di

D
− 1 =

{
k2k

n − k
n if ∀s ∈ Si, xs = 1

− k
n otherwise.

We then bound the inner product:

〈D̂i, D̂j〉D ≤ 2n−2k+λ

2n

(
k2k

n
− k

n

)2

+ 2
(

2n−k

2n − 2n−2k+λ

2n

)(
k2k

n
− k

n

)(
−k

n

)
+
(

−k
n

)2

≤ 2λk2

n2 ,

which holds when k ≥ 3. We also note that 〈D̂i, D̂j〉D ≥ 0.

We now give a bound on the average correlation of any D̂S with a large number of
distinct biclique distributions.

LEMMA 5.2. Let δ ≥ 1/ log n and k ≤ n1/2−δ. For any integer 
 ≤ k, S ∈ Sk and any set
A ⊆ Sk, where |A| ≥ 3(m− 1)/n2
δ,

1
|A|

∑
Si∈A

|〈D̂S, D̂i〉| < 2
+1 k2

n2 .

PROOF. In this proof, we first show that if the total number of sets in A is large, then
most of sets in A have a small overlap with S. We then use the bound on the overlap
of most sets to obtain a bound on the average correlation of DS with distributions for
sets in A.

Formally, we let α = k2

n2 and using Lemma 5.1 get the bound |〈D̂i, D̂j〉| ≤ 2|Si∩Sj |α.
Summing over Si ∈ A, ∑

Si∈A

|〈D̂S, D̂i〉| ≤
∑
Si∈A

2|S∩Si |α.

For any set A ⊆ Sk of size t, this bound is maximized when the sets of A include S, then
all sets that intersect S in k − 1 indices, then all sets that intersect S in k − 2 indices,
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and so on, until the size bound t is exhausted. We can therefore assume without loss of
generality that A is defined in precisely this way.

Let Tλ = {Si | |S ∩ Si| = λ} denote the subset of all k-subsets that intersect with S
in exactly λ indices. Let λ0 be the smallest λ for which A ∩ Tλ is non-empty. We first
observe that for any 1 ≤ j ≤ k − 1,

|Tj |
|Tj+1| =

(k
j

)(n−k
k− j

)
( k

j+1

)( n−k
k− j−1

) = ( j + 1)(n − 2k + j + 1)
(k − j)2 ≥ ( j + 1)(n − 2k)

(k − j)2 ≥

≥ ( j + 1)(n − 2n1/2−δ)
n1−2δ

≥ ( j + 1)(1 − 2n−1/2−δ)
n−2δ

≥ ( j + 1)n2δ

2
. (5)

By applying this equation inductively we obtain,

|Tj | ≤ 2 j · |T0|
j! · n2δ j <

2 j · (m− 1)
j! · n2δ j ,

where the last inequality holds, since |T0| ≤ m− 2 whenever n ≥ 2k + 1. For n larger
than some fixed constant,

∑
k≥λ≥ j

|Tλ| <
∑

k≥λ≥ j

2λ · (m− 1)
λ! · n2δλ

≤ m− 1
n2δ j

∑
k≥λ≥ j

2λ

λ! · n2δ(λ− j)
≤ 3(m− 1)

n2δ j .

By definition of λ0, |A| ≤ ∑
j≥λ0

|Tj | < 3(m−1)/n2δλ0 . In particular, if |A| ≥ 3(m−1)/n2
δ,
then n2δλ0 < n2
δ or λ0 < 
. Now we can conclude that

∑
Si∈A

|〈D̂S, D̂i〉| ≤
k∑

j=λ0

2 j |Tj ∩ A|α

≤
⎛
⎝2λ0 |Tλ0 ∩ A| +

k∑
j=λ0+1

2 j |Tj |
⎞
⎠α

≤ (
2λ0 |Tλ0 ∩ A| + 2 · 2λ0+1|Tλ0+1|

)
α

< 2λ0+2|A|α ≤ 2
+1|A|α.

To derive the second-to-last inequality, we need to note that for every j ≥ 0, 2 j |Tj | >

2(2 j+1|Tj+1|) whenever n2δ ≥ 4. We can therefore telescope the sum.

We can now bound the statistical dimension (with average correlation) of the planted
k-biclique problem.

THEOREM 5.3. For δ ≥ 1/ log n and k ≤ n1/2−δ, let Z the distributional planted k-
biclique problem. Then, for any 
 ≤ k, SDA(Z, 2
+1k2/n2, 1/( n

k)) ≥ n2
δ/3. In addition,
let D be the uniform distribution and denote the set of all planted distributions by D.
Then, SDA(D, D, 2
+1k2/n2) ≥ n2
δ/3.

PROOF. For every solution S ∈ F , ZS = {DS}, and let DS = D\{DS}. Note that
|DS| = ( n

k) − 1 and, therefore, |DS| ≥ (1 − 1/( n
k))|D|. This means that we can use 1/( n

k)
as the solution set bound.
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Let D′ be a set of distributions D′ ⊆ DS such that |D′| ≥ 3(m − 1)/n2
δ. Then, by
Lemma 5.2, for every Si ∈ D′,

1
|D′|

∑
Sj∈D′

∣∣∣〈D̂i, D̂j〉
∣∣∣ < 2
+1 k2

n2 .

In particular, ρ(D′, D) < 2
+1 k2

n2 . By the definition of SDA (Definition 3.1), this means
that SDA(Z, 2
+1k2/n2, 1/( n

k)) ≥ n2
δ/3.
The second claim holds by exactly the same argument, since |D′| ≥ m/d implies

|D′| ≥ (m− 1)/d.

For a positive r, we choose 
 = log r−1. Our lower bound for the planted biclique prob-
lem stated in Theorem 2.9 follows from substituting the bound SDA(Z, rk2/n2, 1/( n

k)) ≥
n2(log(r)−1)δ/3 into Theorem 3.2 (with η = 1/( n

k) and δ = 2/3). In addition, by Theorem 3.7
used with α = 1/2 + 1/t, we obtain hardness of the decision version of the problem for
randomized SQ algorithms, which also implies Theorem 2.9.

THEOREM 5.4. For any constant δ > 0, any k ≤ n1/2−δ and r > 0, let D be the uniform
distribution over {0, 1}n and D be the set of all planted k-biclique distributions. For some
t = n�(log r), any randomized SQ algorithm that solves the decision problem B(D, D) with
probability 1/2 + 1/t requires t queries to VSTAT(n2/(rk2)).

Theorem 3.13 used with δ = 1/9 implies that an algorithm that uses m queries to
1-STAT and has success probability 2/3 gives an algorithm that uses m queries to
VSTAT(81m) and has success probability 2/3 − 1/9 = 5/9. For some m = �(n2/k2),
Theorem 5.4 applied with r = �(1) implies that such algorithm cannot exist. This
implies the lower bound for 1-bit sampling algorithms stated in Theorem 2.10.

5.2. Generalized Planted Densest Subgraph

We will now show lower bounds on detecting a (p, q)-planted densest subgraph, a gen-
eralization of the distributional planted biclique problem we defined in Definition 2.11.
Note that p = 1, q = 1/2 is precisely the distributional planted k-biclique problem.
For this generalized problem, we will take D, the reference distribution, to be that of
n-independent Bernoulli variables with bias q.

Before we give our results for this problem, we have to fix some further notation: For
x ∈ {0, 1}n, we define ‖x‖1 = ∑

xi (i.e., the number of 1’s in x) and, similarly, ‖x‖1 =∑
1 − xi (the number of 0’s in x). We will denote the restriction of a set by subscripting

so xS is x restricted to the subset S ⊆ [n]. We use S̄ to denote the complement of S in
the current ground set.

First, we give a computation of the correlation. This is a generalized version of
Lemma 5.1.

LEMMA 5.5. Fix 0 < q ≤ p ≤ 1 and let �pq = 1 + (p−q)2

q(1−q) . For i, j ∈ [m],

〈D̂i, D̂j〉D = (
�λ

pq − 1
) k2

n2 ,

where λ = |Si ∩ Sj |.
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PROOF. For any x, we have D(x) = q‖x‖1 (1 − q)‖x‖1 . For Di(x):

Di(x) = Pr[x|planted] Pr[planted] + Pr[x|not planted] Pr[not planted]

= k
n

p‖xSi ‖1 (1 − p)‖xSi ‖1q‖xS̄i
‖1 (1 − q)‖xS̄i

‖1 +
(

1 − k
n

)
q‖x‖1 (1 − q)‖x‖1 .

For Di(x)/D(x) − 1, we have

Di(x)
D(x)

− 1 = k
n

· p‖xSi ‖1 (1 − p)‖xSi ‖1q‖xS̄i
‖1 (1 − q)‖xS̄i

‖1

q‖x‖1 (1 − q)‖x‖1
− k

n

= k
n

(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1

− k
n
.

Now, for Sj , where |Si ∩ Sj | = λ, we want to compute:

〈D̂i, D̂j〉D =
(

k
n

)2 ∑
x∈{0,1}n

q‖x‖1 (1 − q)‖x‖1

[(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1

− 1

]
·

·
[(

p
q

)‖xSj ‖1
(

1 − p
1 − q

)‖xSj ‖1

− 1

]
.

There are three types of terms in the product in the summand. We deal with all these
terms by repeated applications of the Binomial theorem. The first term illustrates this
approach as follows: ∑

x∈{0,1}n

q‖x‖1 (1 − q)‖x‖1 = (q + (1 − q))n = 1.

The second type of term is given by

∑
x∈{0,1}n

q‖x‖1 (1 − q)‖x‖1

(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1

=
∑

x∈{0,1}n

q‖xS̄i
‖1 (1 − q)‖xS̄i

‖1 p‖xSi ‖1 (1 − p)‖xSi ‖1

=
∑

y∈{0,1}|Si |
p‖y‖1 (1 − p)‖y‖1

∑
z∈{0,1}|S̄i |

p‖z‖1 (1 − p)‖z‖1

= 1.

The third type of term is more complicated—using the above trick, we can restrict x to
sets T = Si ∪ Sj , because the sum taken over the remaining xi yields 1,

∑
x∈{0,1}n

q‖x‖1 (1 − q)‖x‖1

[(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1
][(

p
q

)‖xSj ‖1
(

1 − p
1 − q

)‖xSj ‖1
]

=
∑

x∈{0,1}|T |
q‖x‖1 (1 − q)‖x‖1

[(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1
][(

p
q

)‖xSj ‖1
(

1 − p
1 − q

)‖xSj ‖1
]

.
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Similarly, we can sum x over coordinates in Si\Sj and Sj\Si. Hence, the sum simplifies
as follows:

∑
x∈{0,1}n

q‖x‖1 (1 − q)‖x‖1

[(
p
q

)‖xSi ‖1
(

1 − p
1 − q

)‖xSi ‖1
][(

p
q

)‖xSj ‖1
(

1 − p
1 − q

)‖xSj ‖1
]

=
∑

x∈{0,1}|Si∩Sj|
q‖x‖1 (1 − q)‖x‖1

[(
p
q

)‖x‖1
(

1 − p
1 − q

)‖x‖1
]2

=
∑

x∈{0,1}|Si∩Sj|

(
p2

q

)‖x‖1 ( (1 − p)2

1 − q

)‖x‖1

=
(

p2

q
+ (1 − p)2

1 − q

)λ

= �λ
pq.

Combining these three calculations yields the following:

〈D̂i, D̂j〉D =
(

k
n

)2 (
�λ

pq − 1
)
.

Next, in analogy with Lemma 5.2, we give a bound on average correlation for sufficiently
many distributions.

LEMMA 5.6. Fix 0 < q < p ≤ 1 and let �pq = 1 + (p−q)2

q(1−q) . For δ > 0 and k ≤ n1/2−δ, if
n2δ ≥ 8�pq, then for any integer 
 ≤ k, S ∈ Sk, and A ⊆ Sk of size at least 2(m− 1)/n2
δ,

1
|A|

∑
Si∈A

|〈D̂S, D̂i〉| <
2k2

n2

(
�


pq − 1
)
.

PROOF. We proceed as in the proof of Lemma 5.2. Recall that Tλ = {Si | |S ∩ Si| = λ}
denotes the subset of all k-subsets that intersect with S in exactly λ indices. Let λ0 be
the smallest λ for which A∩ Tλ is non-empty. As before, we obtain that λ0 < 
.

We now bound the average correlation with D̂S as follows:

∑
Si∈A

|〈D̂S, D̂i〉| ≤
k∑

j=λ0

k2

n2 · (� j
pq − 1

) |Tj ∩ A|

≤ k2

n2 ·
⎛
⎝|Tλ0 ∩ A| (�λ0

pq − 1
)+

k∑
j=λ0+1

|Tj |
(
� j

pq − 1
)⎞⎠ .

To bound the sum
k∑

j=λ0+1

(
� j

pq − 1
)|Tj |,

it suffices to show that it is geometrically decreasing as follows:(
� j

pq − 1
)|Tj | ≥ 2 · (� j+1

pq − 1
)|Tj+1|.
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We first note that �pq > 1 and, therefore, for j ≥ 1,

�
j+1
pq − 1

�
j
pq − 1

≤ �pq + 1 < 2�pq.

From Equation (5) in the proof of Lemma 5.2 and our assumption on �pq, we obtain
the necessary property

|Tj |
|Tj+1| ≥ ( j + 1)n2δ

2
≥ 4 · �pq >

2
(
�

j+1
pq − 1

)
�

j
pq − 1

.

To conclude,

∑
Si∈A

|〈D̂S, D̂i〉| ≤ k2

n2 ·
⎛
⎝|Tλ0 ∩ A| (�λ0

pq − 1
)+

k∑
j=λ0+1

|Tj |
(
� j

pq − 1
)⎞⎠

≤ k2

n2 · (|Tλ0 ∩ A| (�λ0
pq − 1

)+ 2 · |Tλ0+1|
(
�λ0+1

pq − 1
))

≤ 2 · k2

n2 · |A| (�λ0+1
pq − 1

)
≤ 2 · k2

n2 · |A| (�

pq − 1

)
.

From here, the bound on statistical dimension SDA of detecting the (p, q)-planted
densest subgraph now follows in the same way as in Theorem 5.3.

THEOREM 5.7. Fix 0 < q < p ≤ 1. For δ > 0 and k ≤ n1/2−δ, let Z be the distributional
(p, q)-planted densest k-subgraph problem. Then, for any 
 ≤ k,

SDA

(
Z,

2k2

n2

(
�


pq − 1
)
,

1(n
k

)
)

≥ n2
δ/2,

provided that n2δ ≥ 8�pq.

This SDA bound yields lower bounds for the VSTAT oracle:

COROLLARY 5.8. Fix 0 < q < p ≤ 1, and let �pq = 1 + (p−q)2

q(1−q) . For any constant δ > 0,
any k ≤ n1/2−δ, 
 ≤ k, at least n�(
) queries to VSTAT(n2/(6k2(�


pq − 1))) are required to
solve the distributional (p, q)-planted densest k-subgraph problem with probability at
least 2/3 provided that n2δ ≥ 8�pq.

Similarly, by Theorem 3.7, the same lower bound applies to the decision version of
the problem.

One is often interested in the case when q = 1/2 and p = 1/2 + α (the classical
planted densest k-subgraph problem). In this setting, �pq = 1 + 4α2 and �


pq − 1 ≤
e4α2
 − 1 ≤ 8α2
 whenever 
 ≤ 1/(4α2). This gives a lower bound of n�(
) against
VSTAT(n2/(48
α2k2)), as stated in Corollary 2.12.

Finally, we give an example of a corollary for the 1-STAT oracle.

COROLLARY 5.9. For constants c, δ > 0, density p = 1/2 + 1/nc, and k ≤ n1/2−δ, let D
be the uniform distribution over {0, 1}n and D be the set of all (p, 1/2)-planted densest
k-subgraph distributions. Any (randomized) 1-bit sampling algorithm that solves the
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decision problem B(D, D) with probability at least 2/3 requires �((n2+2c)/k2) queries to
1-STAT.

PROOF. By the argument above with α = 1/nc, SDA(B(D, D), 16k2
/n2+2c) ≥ n2
δ/2.
For 
 = 4/2δ, we obtain that SDA(B(D, D), 64k2/n2+2c) ≥ n4/2. By applying Theo-
rem 3.16 for success probability 2/3, we obtain a lower bound of

m = min
{

d/3
2

,
(4/3 + 1)2

48γ̄

}
= min

{
n4

12
,

49/9
48

· n2+2c

64k2

}
= �

(
n2+2c

k2

)

samples to 1-STAT.

6. APPLICATIONS TO STATISTICAL QUERY LEARNING

We will now use Corollary 3.12 to demonstrate that our results generalize the notion of
statistical query dimension in learning theory and the statistical query lower bounds
based on SQ-DIM. We then show that our lower bounds imply stronger and more
general lower bounds in the context of learning.

We start with a few relevant definitions. In an instance of a PAC learning problem, the
learner has access to random examples of an unknown Boolean function c : X′ → {−1, 1}
from a set of Boolean functions C. A random example is a pair including a point and
its label (x′, c(x′)) such that x′ is drawn randomly from a distribution D′, which might
or might not be known to the learning algorithm (whenever necessary, we use ′ to
distinguish variables from the identically named ones in the context of general search
problems). Specifically, for a target function c ∈ C and distribution D′ over X′, we denote
by Dc over X = X′ × {−1, 1}, where Dc(x′, c(x′)) = D′(x′) and Dc(x′,−c(x′)) = 0.

For ε > 0, the goal of an ε-accurate learning algorithm is to find, with high probability,
a Boolean hypothesis h for which Prx′∼D′[h(x′) �= c(x′)] ≤ ε. A statistical query learning
algorithm [Kearns 1998] has access to the STAT oracle for the input distribution Dc in
place of random examples.

6.1. Relationship to SQ-DIM

Blum et al. [1994] defined the statistical query dimension or SQ-DIM of a set of functions
C and distribution D′ over X′ as follows (we present a simplification and strengthening
due to Yang [2005]).

Definition 6.1 (Blum et al. [1994]). For a concept class C and distribution D′,
SQ-DIM(C, D′) = d′ if d′ is the largest value for which there exist d′ functions
c1, c2, . . . , cd′ ∈ C such that for every i �= j, |〈ci, c j〉D′ | ≤ 1/d′.

We first observe that correlations of Boolean functions relative to a distribution D′
are equivalent to correlations of corresponding distributions over examples relative to
some reference distribution. Namely, let the reference distribution D be the distribution
for which for every (x′, 
) ∈ X, D(x′, 
) = D′(x′)/2. This is the distribution in which points
are distributed according to D′ and labels are random unbiased coin flips. We denote it
by D′ × {1/2, 1/2}.

LEMMA 6.2. For a distribution D′ and any Boolean functions c, c1, and c2, For all
x′ ∈ X′, Dc(x′,
)

D(x′,
) − 1 = 
 · c(x′) and〈
Dc1

D
− 1,

Dc2

D
− 1

〉
D

= 〈c1, c2〉D′ .

PROOF. We first note that the definition of D ensures that D(x′, 
) is non-vanishing
only when D′(x′) is non-vanishing and hence the function ( Dc

D − 1) is well defined for
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any Boolean c ∈ C. For every c ∈ C, we have

Dc(x′, c(x′))
D(x′, c(x′))

− 1 = 2 − 1 = 1 and
Dc(x′,−c(x′))
D(x′,−c(x′))

− 1 = 0 − 1 = −1.

Therefore, Dc(x′,
)
D(x′,
) − 1 = 
 · c(x′). This implies that for any c1, c2 ∈ C,〈

Dc1

D
− 1,

Dc2

D
− 1

〉
D

= E
(x′,
)∼D

[
 · c1(x′) · 
 · c2(x′)] = E
D′

[c1(x′) · c2(x′)] = 〈c1, c2〉D′ .

The direct implication of this is that if SQ-DIM(C, D′) = d′, then there exist d′
distributions over examples that are (1/d′, 1)-correlated relative to D. In particular, the
decision problem of distinguishing example distributions from D has large statistical
dimension with pairwise correlations. We state this formally.

THEOREM 6.3. For a concept class C and distribution D′ over X, let d′ = SQ-DIM(C, D′).
Then, for DC = {Dc | c ∈ C} and D = D′ × {1/2, 1/2}, SD(B(DC, D), 1/d′, 1) ≥ d′.

Blum et al. [1994] proved that if a class of functions is learnable using only a polyno-
mial number of statistical queries of inverse polynomial tolerance, then its statistical
query dimension is polynomial. Yang [2005] strengthened their result and proved the
following bound (see Szörényi [2009] for a simpler proof).

THEOREM 6.4 (YANG [2005]). Let C be a class of functions and D′ be a distribution
over X′ and let d′ = SQ-DIM(C, D′). Any SQ algorithm that learns C over D′ with error
ε < 1/2 − 1/(2d′1/3) requires at least d′1/3/2 − 1 queries to STAT(1/d′1/3).

In this result, the distribution D′ is fixed and known to the learner (such learning is
referred to as distribution-specific) and it can be used to lower bound the complexity
of learning C even in a weak sense. Specifically, when the learning algorithm is only
required to output a hypothesis h′ such that Prx′∼D′ [h′(x′) �= c(x′)] ≤ 1/2 − γ ′ for some
inverse polynomial γ ′. It is well known that weak learning of functions from C implies
ability to distinguish examples of any function in C from points labeled randomly. This
implies that we can apply our lower bound for decision problems to obtain a lower
bound for weak learning that is essentially the same as the result of Yang [2005].

COROLLARY 6.5. Let C be a class of functions and D′ be a distribution over X′ and let
d′ = SQ-DIM(C, D′). Any SQ algorithm that learns C over D′ with error ε < 1/2−1/d′1/3

requires at least 2d′1/3 − 1 queries to STAT(1/d′1/3).

PROOF. Let DC = {Dc | c ∈ C} and D = D′ × {1/2, 1/2}. We convert the weak learning
algorithm into the algorithm for B(DC, D) as follows. Run the weak learning algorithm.
Given hypothesis h, estimate the prediction error within d′−1/3/2 by using the query
φ(x′, 
) = h(x′) · 
 with tolerance d′−1/3. If the answer to the query is > d′−1/3, then
output 1 (meaning the input distribution is in DC), and otherwise output 0 (meaning
that the input distribution is D). Note that ED[φ] = 0, and therefore this algorithm will
always output 0 on D. Further, if the input distribution is Dc and PrD′[h(x′) �= c(x′)] <
1/2 − 1/d′1/3, then

E
(x′,
)∼Dc

[φ(x′, 
)] = E
(x′,
)∼Dc

[h(x′) · 
] = E
x′∼D′

[h(x′) · c(x′)] = 1 − 2 Pr
x′∼D′

[h(x′) �= c(x′)] > 2/d′1/3.

Therefore, in this case, the answer to the query will be > 2/d′1/3 −1/d′1/3 = 1/d′1/3, and
the algorithm will output 1.

By Theorem 6.3, SD(B(DC, D), 1/d′, 1) ≥ d′. We can now apply the lower bound in
Corollary 3.12 with γ ′ = d′−2/3/2 to obtain that our algorithm must use 2d′1/3 queries
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to STAT(d′−1/3) to solve the problem. Our algorithm used one more query than the
learning algorithm (of the same tolerance), which gives the stated lower bound.

This corollary implies that lower bounds based on SQ-DIM are a special case of our
lower bounds. One can also similarly show that the lower bounds based on the statistical
query dimension of Feldman [2012] that characterizes learning to high accuracy are
also a special case of our lower bounds.

6.2. Lower Bounds for 1-Bit Sampling Oracle

We now show how our results can be used to obtain lower bounds against 1-bit sampling
algorithms based on SQ-DIM. Such lower bounds have been previously proved by Yang
[2005], who referred to his model as the Honest SQ model (apparently unaware of
the connection to the model of Ben-David and Dichterman [1998]). In the Honest SQ
model, the learner has access to an HSQ oracle. A query to HSQ oracle is a function
φ : X′ × {−1, 1} → {−1, 1} and a sample size t > 0. The oracle draws x′

1, . . . , x′
t ∼ D′ and

returns the value 1
t

∑t
i=1 φ(x′, c(x′)). The total sample complexity of an algorithm is the

sum of the sample sizes it passes to HSQ.
We note that using 1-STAT is equivalent to a call to HSQ with sample size 1. Also,

1-STAT can simulate estimation of queries from a larger number of samples in a
straightforward way while obtaining the same total sample complexity. Therefore,
HSQ is equivalent to the 1-STAT oracle.

Using Lemma 3.10 with γ ′ = 1/
√

d′ to convert a bound on pairwise correlations to
a bound on average correlation, we can obtain that SDA(B(DC, D), 1/

√
d′ + 1/d′, 1) ≥√

d′/(1−1/d′). Plugging this bound into Theorem 3.16, we can derive sample complexity
bounds on 1-bit sampling algorithms for learning in the same way as in the proof of
Corollary 6.5.

COROLLARY 6.6. Let C be a class of functions, D′ be a distribution over X′, d′ =
SQ-DIM(C, D′), and ε = 1/2 − 1/d′1/4. Then any 1-bit sampling algorithm that, with
probability at least 2/3, ε-accurately learns C over D′ requires �(

√
d′) queries to 1-STAT.

This lower bound is similar to the result of Yang [2005], who shows a bound of
�(d′/ log d′) using a stronger 1/d′3 upper bound on correlations (and a substantially
more involved proof). Note that the inverse of the maximum pairwise correlation is
usually much lower than the number of functions. Therefore, our result will give a
stronger lower bound in most cases.

6.3. New Lower Bound for Learning

We now briefly describe a version of our lower bound for weak distribution-specific
learning. It is stronger than known SQ-DIM-based bounds in several ways. First, it
explicitly decouples the tolerance (or number of samples) from the number of queries.
This is particularly relevant for attribute-efficient learning, that is, learning when the
dimension is high but the target function depends on few variables (see Feldman [2014]
for more details on SQ learning in this setting). Second, it captures sample complexity
in a tighter way by going to average correlations and proving lower bounds against
VSTAT. Lower bounds against VSTAT also imply tighter lower bounds for 1-STAT
and, via the reductions of Feldman et al. [2013], against stronger oracles.

We now give versions of our main definitions specialized to the case of distribution-
specific PAC learning. Although the target distribution is fixed, by varying the concept
by which examples are labeled, we effectively generate a large set of different distribu-
tions as before. The average correlation can be defined directly for a set of functions C ′
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relative to a distribution D′,

ρ(C ′, D′) .= 1
|C ′|2

∑
c1,c2∈C′

|〈c1, c2〉D′ | .

Definition 6.7. For γ̄ > 0, a distribution D′ over domain X′ and a set of Boolean
functions C over X′ the statistical dimension of C over D′ with average correlation
γ̄ is defined to be the largest integer d for which there exists a finite set of functions
Cγ̄ ⊆ C such that for any subset C ′ ⊆ Cγ̄ , where |C ′| ≥ Cγ̄ /d, ρ(C ′, D′) ≤ γ̄ . We denote it
by SDA(C, D′, γ̄ ).

Using Theorem 3.7 and the reduction in Corollary 6.5, imply Theorem 2.8.

APPENDIX

A. AVERAGE-CASE VS DISTRIBUTIONAL PLANTED BIPARTITE CLIQUE

In this section, we show the equivalence between the average-case planted biclique
problem (where a single graph is chosen randomly) and the distributional biclique
problem (where a bipartite graph is obtained from independent samples over {0, 1}n).
The primary issue is that in the distributional biclique problem, the biclique does not
necessarily have the same size on the left side of vertices as it does on the right side.
We show that this is easy to fix by producing planted bicliques of smaller size on one of
the sides. We do this by replacing vertices of the graph with randomly connected ones.
We now describe the reductions more formally.

Definition A.1 [Average-case planted biclique APBC(n, k1, k2)]. Given integers 1 ≤
k1, k2 ≤ n, consider the following distribution Gavg(n, k1, k2) on bipartite graphs on [n] ×
[n] vertices. Pick two random sets of k1 and k2 vertices each from left and right side,
respectively, say, S1 and S2. Plant a bipartite clique on S1 ×S2 and add an edge between
all other pairs of vertices with probability 1/2. The problem is to recover S1 and S2
given a random graph sampled from Gavg(n, k1, k2).

We will refer to the distributional planted biclique problem with n samples as
DPBC(n, k). Recall that in this problem, we are given n random and independent sam-
ples from distribution DS over {0, 1}n for some unknown S ⊂ [n] of size k (see Definition
1.1). The goal is to recover S.

THEOREM A.2. Suppose that there is an algorithm that solves APBC(n, k′, k′) in time
T ′(n, k′) and outputs the correct answer with probability p′(n, k′). Then there exists an
algorithm that solves DPBC(n, k) in time T (n, k) = O(nkT ′(n, k/2)) and outputs the
correct answer with probability p(n, k) = p′(n, k/2) − n2−�(k).

PROOF. We will think of the distribution Gavg(n, k′, k′) on graphs as a distribution on
their respective adjacency matrices from {0, 1}n×n. Let A(n, k′) be the algorithm that
solves an instance of APBC(n, k′, k′). Given k and n, and access to n samples from DS
for some set S of size k, we will design an algorithm that finds S by making O(nk) calls
to the algorithm A(n, k′) that solves an instance of APBC(n, k′, k′).

Let M be the n × n binary matrix whose rows are the n samples from DS. First
apply a random permutation π : [n] → [n] to the columns of M to obtain M′ (this will
ensure that the planted set is uniformly distributed among the n coordinates, which is
necessary in order to obtain instances distributed according to Gavg(n, k′, k′)).

In what follows, we will denote by k′ × k a biclique with k′ vertices on the left and
k vertices on the right. Note that M′ has a k′ × k planted biclique for some k′ that is
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distributed according to the binomial distribution B(n, k/n). We denote the vertices on
the left side of this biclique by L. By a multiplicative Chernoff bound, Pr[k/2 ≤ k′ ≤
2k] ≥ 1 − 2e−k/8. From now on, we will condition on this event occurring.

We first suppose that k ≤ k′ ≤ 2k. We aim at obtaining instances of APBC(n, k, k) but
recall that the left side of the planted bliclique has size k′ ≥ k. To reduce the size of the
left side of the planted biclique to k, we will be replacing the vertices on the left side by
randomly connected ones, one-by-one in a random order. That is, start with M′

0 = M′.
To obtain M′

t+1, we choose a random and uniform row of M′
t that was not previously

picked and replace it with a random and uniform {0, 1}n vector. This gives a sequence
of random matrices: M′

1, M′
2, . . . , M′

n. Clearly, M′
0 has a planted biclique of size k′ × k

and M′
n does not have a planted biclique (or, equivalently, has a 0× k biclique). A single

step reduces the size of the left side of the biclique by at most 1. Therefore, for some
i∗, M′

i∗ has a k × k biclique. We denote the left side of this biclique by L∗. It is also easy
to see that for every step i, conditioned on M′

i containing k′′ out of vertices in L, M′
i is

distributed exactly according to Gavg(n, k′′, k). We now condition on the event that for
all i, M′

i does not contain a k× k biclique such that its right side differs from π (S). It is
not hard to see that this event happens with probability at least 1 − n2−�(k).

To recover S, we run A(n, k) on all the matrices M′
i . Let Li × Si be the biclique that

A outputs on M′
i . We verify that Li × Si is a k × k biclique in M′

i . If so, then we output
π−1(Si). Note that when executed on M′

i∗ , with probability p′(n, k) this procedure will
return L∗ × π (S). In this case, we will return exactly S. Further, by our conditioning, if
the output of A is a k × k biclique, then its right side must be π (S).

We can now assume that k/2 ≤ k′ < k. We aim at obtaining instances of
APBC(n, k′, k′). To achieve this, we reduce the size of the right side of the planted
biclique to k′ in the same way as we reduced the size of the left side above: We will be
replacing the vertices on the right side by randomly connected ones, one-by-one in a
random order. As before, we start with M′

0 = M′. To obtain M′
t+1, we choose a random

and uniform column of M′
t that was not previously picked and replace it with a random

and uniform {0, 1}n vector. This gives a sequence of random matrices: M′
1, M′

2, . . . , M′
n.

We know that for some i∗, M′
i∗ has a k′ × k′ biclique. We denote the right side of this

biclique by S∗. We now condition on the event that for all i, M′
i does not contain a

k′ × k′ biclique such that its left side differs from L. It is not hard to see that this event
happens with probability at least 1 − n2−�(k′) = 1 − n2−�(k).

Assume for now that we know k′. To recover S, we run A(n, k′) on all the matrices M′
i .

Let Li ×Si be the biclique that A outputs on M′
i . We verify that Li ×Si is a k′×k′ biclique

in M′
i . If so, then we let S′ be the set of all vertices on the right side connected to each

vertex in Li (in the original graph after the permutation). If |S′| = k, then we output
π−1(S′). Note that when executed on M′

i∗, with probability p′(n, k′), this procedure will
return L× S∗. Further, by our conditioning, if the output of A is a k′ × k′ biclique, then
its left side must be L. All vertices in π (S) are connected to L. The probability that any
other vertex on the right side of M′ is connected to all vertices in L is at most n · 2−k.
Hence, conditioned on this event not occurring, we will recover exactly S.

To address the fact that k′ is not known, for each value of k1 = k−1, k−2, . . . , k/2, we
run the algorithm under the assumption that k′ = k1 and stop once the algorithm has
found a k′ × k′ biclique. If k1 > k′, then, by our conditioning on none of M′

i containing a
k′ × k′ biclique such that its left side differs from L, there cannot exist a k1 × k1 biclique
in the graph. Therefore, the algorithm will not output anything until k1 = k′, at which
point our analysis above applies.

To analyze the success probability and running time, we can assume for simplicity
that it is harder to find smaller planted bicliques than larger ones, and so for k1 ∈
[k/2, k], T ′(n, k1) ≤ T ′(n, k/2) and p′(n, k′) ≤ p′(n, k/2). Therefore, the running time
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of our algorithm is T (n, k) = O(nkT ′(n, k/2)), and its success probability is p(n, k) =
p′(n, k/2) − n2−�(k).

We now prove the converse of Theorem A.2.

THEOREM A.3. Suppose that there is an algorithm that solves DPBC(n, k) that runs in
time T (n, k) and outputs the correct answer with probability p(n, k). Then there exists
an algorithm that solves APBC(n, k′, k′) in time T ′(n, k′) = O(nk′T (n, k′/2)) and outputs
the planted biclique with probability p′(n, k′) ≥ p(n, k′/2) − n2�(−k′).

PROOF. Let A(n, k) denote the algorithm for solving DPBC(n, k), which, for any S ⊆ [n]
of size k, takes n samples chosen according to DS and outputs the planted set S with
probability p(n, k). We will construct an algorithm for APBC(n, k′, k′) that takes as input
an adjacency matrix M chosen randomly according to Gavg(n, k′, k′) (as in Definition A.1)
and outputs a biclique S1 × S2 of size k′ ×k′. Note that, with probability 1−n2−�(k′), the
set S1 × S2 is the unique k′ × k′ biclique in M and we will condition on this event.

We first observe that an instance of DPBC(n, k) can be equivalently thought of as
follows: First, pick an arbitrary set S of k vertices on the right side of the graph; then
pick 
 according to B(n, k/n); pick a random subset S′ of 
 vertices on the left side of
the graph; make S′ × S a biclique and connect all the other pairs of vertices randomly
and independently with probability 1/2. The probability that 
 ∈ [5k/6, 6k/5] is at least
1 − 2−�(k), and therefore the probability that A(n, k) succeeds conditioned on this event
is at least p(n, k) − 2−�(k). This implies that there exists 
k ∈ [5k/6, 6k/5] such that,
conditioned on 
 = 
k, the probability that A(n, k) succeeds is at least p(n, k) − 2−�(k)

(we note that 
k might depend on S).
Let M be the adjacency matrix of the given instance of APBC(n, k′, k′). For each

column of M (corresponding to a vertex on the right side), with probability 3/4, we
replace it with a random and uniform vector from {0, 1}n and let M′ denote the obtained
adjacency matrix. We denote by S the subset of S2 containing vertices that were not
replaced by randomly connected vertices. Let k = |S|. With probability at least 1−2−�(k),
k ∈ [3k′/5, 5k′/6] and we will condition on this event.

We aim at obtaining an instance of DPBC(n, k) in which exactly 
k vertices on the
left are connected to all vertices in the planted set S. By the argument above, we know
that we can assume that 
k ∈ [5k/6, 6k/5] ⊆ [k′/2, k′] and A succeeds with probability
at least p(n, k) − 2−�(k) given an instance in which exactly 
k vertices on the left are
connected to all vertices in S.

M′ has a k′ × k biclique, so to reduce the size of the left side of the planted biclique
to 
k, we will be replacing the vertices on the left side by randomly connected ones,
one-by-one in a random order, as in the proof of Theorem A.2. This gives a sequence
of random matrices: M′ = M′

0, M′
1, M′

2, . . . , M′
n. For every i, let S′

i denote the subset of
vertices in S1 that were not replaced by a randomly connected vertex in M′

i . It is also
easy to see that for every i, conditioned on |S′

i| = k′′, M′
i is distributed exactly as n

samples from DS in which k′′ samples were chosen to be connected to all vertices in S.
To recover S1 and S2, we run A(n, k) on all the matrices M′

i (where, we assume for
now, that k is known). Let Li × Ri be the biclique that A outputs on M′

i . Let S∗
1 be the set

of all (left-side) vertices connected in the original input graph to all vertices in Ri and S∗
2

be the set of all (right-side) vertices in the input graph connected to all vertices in S∗
1. If

|S∗
1 | = |S∗

2| = k′, then we output the biclique S∗
1 × S∗

2. Otherwise, we go to the next step
(if none of the steps produces a biclique, then the algorithm fails). We first note that,
unless the algorithm fails, it outputs a k′ × k′ biclique in the input graph, which, by our
conditioning, can only be the true planted biclique. Further, there exists i∗ such that
|S′

i∗ | = 
k. M′
i∗ is distributed as n samples from DS in which 
k samples were chosen
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to be connected to all vertices in S. Therefore, by our conditioning, with probability
at least p(n, k) − 2−�(k), A(n, k) will output S. The vertices in S1 are connected to all
vertices in S, and, with probability at least 1 − n2−k, no other vertex in the original
graph is. The vertices in S2 are connected to all vertices in S1, and, by our conditioning,
no other vertex is. Therefore, with probability at least p(n, k) − n2−�(k), the algorithm
will produce the true k′ × k′ biclique.

To address the fact that k is not known, for each value of k1 = �5k′/6�, . . . , �2k′/3�,
we run the algorithm under the assumption that k = k1 and stop once the algorithm
has found a k′ × k′ biclique. The algorithm can only output the true planted biclique,
and therefore this will not reduce the success probability.

As before, to analyze the success probability and running time, we assume for
simplicity that it is harder to find smaller planted sets than larger ones, and so for
k1 ∈ [�2k′/3�, �5k′/6�], T (n, k1) ≤ T (n, k′/2) and p(n, k) ≤ p(n, k′/2). Therefore, the run-
ning time of our algorithm is T ′(n, k′) = O(nk′T (n, k′/2)), and its success probability is
p′(n, k′) ≥ p(n, k′/2) − n2−�(k′).
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