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Abstract
In the problem of learning with label proportions
(also known as the problem of estimating class ra-
tios), the training data is unlabeled, and only the
proportions of examples receiving each label are
given. The goal is to learn a hypothesis that predicts
the proportions of labels on the distribution under-
lying the sample. This model of learning is useful
in a wide variety of settings, including predicting
the number of votes for candidates in political elec-
tions from polls.
In this paper, we resolve foundational questions re-
garding the computational complexity of learning
in this setting. We formalize a simple version of the
setting, and we compare the computational com-
plexity of learning in this model to classical PAC
learning. Perhaps surprisingly, we show that what
can be learned efficiently in this model is a strict
subset of what may be leaned efficiently in PAC,
under standard complexity assumptions. We give
a characterization in terms of VC dimension, and
we show that there are non-trivial problems in this
model that can be efficiently learned. We also give
an algorithm that demonstrates the feasibility of
learning under well-behaved distributions.

1 Introduction
In this paper, we investigate the complexity of the learning
problem of estimating the proportion of labels for a given set
of instances. For example, this problem appears when pre-
dicting the proportion of votes for a given candidate [de Fre-
itas and Kück, 2005]; correctly predicting how each individ-
ual votes is not required, only which candidate will win. Vari-
ants of this problem also appear in many other domains, in-
cluding in consumer marketing [Chen et al., 2006], medicine
and other health domains [Hernández-González et al., 2013;
Wojtusiak et al., 2011], image processing [de Freitas and
Kück, 2005], physical processes [Musicant et al., 2007],
fraud detection [Rüping, 2010], manufacturing [Stolpe and
Morik, 2011], and voting networks [Fish et al., 2016].

In classical PAC learning, we are given labeled data in-
stances from a distribution, and in the idealized case, must

find a function that labels all of the data consistent with the
observations. In less constrained settings, the goal is to find a
function of low error, or at least of error as low as possible on
the data presented to the algorithm. There is substantial litera-
ture on classical PAC learning outside the scope of this work;
see e.g. [Shalev-Shwartz and Ben-David, 2014] for a survey.
Once the classifier is found, it is easy to find the proportion of
instances with a given label by invoking the classifier on the
instances. Algorithms for estimating the proportion of labels
with labeled data have been introduced before, for example
by Iyer et al. [2014].

However, getting instances with attached labels, as as-
sumed in classical PAC learning, is often difficult. Sometimes
this is due to limits on the measurement process [Hernández-
González et al., 2013; de Freitas and Kück, 2005; Musicant
et al., 2007; Stolpe and Morik, 2011]. At other times, be-
fore datasets are released, labels are purposely detached from
their instances in order to maintain privacy [Chen et al., 2006;
Rüping, 2010; Wojtusiak et al., 2011]. Instead, only the pro-
portion of labels are given for a group of sample instances.
For example, in estimating who will win an election, pre-
election polls only release the percentage of people planning
to vote for a given candidate. Quadrianto et al. [2009] give
several other examples where the only data available is of this
form.

The goal is then to learn a classifier from a hypothesis
class that is able to correctly predict the proportions of la-
bels from a hidden distribution using a training set which
consists of a set of instances and the proportions of labels
of that set of instances. This is the learning-theoretic prob-
lem we formalize and tackle in this paper. The proportion
of labels may be inferred by first finding a classifier that
predicts the labels for each instance [Patrini et al., 2014;
Quadrianto et al., 2009; Rüping, 2010; Yu et al., 2013]. Al-
ternatively, Iyer et al. [2016] propose inferring the proportion
of labels directly.

A related setting is Multiple Instance Learning [Dietterich
et al., 1997], where the goal is to classify bags of examples
with unobserved labels, where the bag is labeled positively by
a boolean ‘or’ function: if any example in the bag is labeled
positively, the bag is as well. The goal in Multiple Instance
Learning is to label new bags with whether any example in
the bag is labeled positively. This is distinct from the problem
we tackle in this paper because in our problem we know the

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

1675



proportion of labels instead.
Yu et al. [2014] introduce a version of a model for learning

from label proportions. In their model, each bag of exam-
ples comes with the proportions of each label in that bag, and
each bag is drawn i.i.d. from a distribution over bags. They
give some of the first sample complexity guarantees. Another
other approach is where the examples are drawn i.i.d., but
the bags may be an arbitrary partition of the examples, as
in [Rüping, 2010; Stolpe and Morik, 2011]. Compared to
these ‘bag’ models, our model of learning from label propor-
tions corresponds to the ‘one-bag case’ with binary labels,
where each example is drawn i.i.d. from an arbitrary distri-
bution. However, as we demonstrate, this model is already
interesting to study. We formalize this as a PAC-like learning
model, which allows us to compare the difficult of learning
a hypothesis class in classical PAC learning to learning a hy-
pothesis class in this model.

In particular, we give the following results, including the
first computational hardness results for learning label propor-
tions. After formally defining the model in Section 2, we
show in Section 3 that under standard complexity assump-
tions, classes of high VC dimension are not efficiently learn-
able from label proportions. We also give examples of classes
with lower VC dimension that are not efficiently learnable
from label proportions, using stronger complexity assump-
tions. Then, in Section 4 we show that the classes of functions
that are learnable from label proportions are a strict subset of
the classes that are PAC learnable. Finally, in Section 5 we
give some positive results indicating cases where it is possi-
ble to PAC learn from label proportions. We also show that
n-dimensional half-spaces over the boolean cube are learn-
able from label proportions under the uniform distribution.

2 Model and Sample Complexity
For a distributionD over the domain of a function c, call c(D)
the resulting distribution over the range of c. For c a function
{0, 1}n → {0, 1}, we will call pc the percentage of positive
labels in this distribution, i.e. c(D)(1). For a given sample,
we call the percentage labeled positively as p̂c. Where clear,
we will abbreviate these as p and p̂ respectively.

In this setting, each example x drawn from D has a hid-
den label c(x), but the learning algorithm does not get to see
examples with labels. Instead, the algorithm only gets to see
the set of unlabeled examples S and p̂, the percentage of S
labeled positively by c. The goal is to find a function h in a
hypothesis class H such that pc should be close to ph with
high probability.
Definition 1. A class of functions H is PAC learnable
from label proportions if there is an efficient algorithm A
such that for every target function c in H , any distribu-
tion D over {0, 1}n, and for any ε, δ > 0, given m ≥
poly(1/ε, 1/δ, n, size(c)) examples drawn i.i.d. from D and
p̂, returns a hypothesis h in H such that

P[|pc − ph| ≤ ε] ≥ 1− δ.
We call this form of learning “PAC learning from label

proportions.” In general, we may consider agnostic or im-
proper versions of this PAC model. However, improper learn-
ing from the class of all functions here is very easy: We can

efficiently learn with a sample complexity that only depends
on ε and δ:
Observation 1. The sample complexity for improper PAC
learning from label proportions is O

(
ln(1/δ)
ε2

)
.

Proof outline. In improper learning, it is easy to find a func-
tion h∗ so that not only does p̂h∗ = p̂, but also ph∗ = p̂:
e.g. h∗ may be a randomized function that on any input re-
turns 1 with probability p̂ and 0 otherwise. Then ph∗ = p̂ and
a Chernoff bound implies that p̂ is close to p.

For example, if the task is to predict the proportion of votes
for a given candidate using only a single poll, improper learn-
ing in this model is easy simply by virtue of the fact that p̂
is an unbiased estimator for p. However, the hypothesis h∗
described above will not be a realistic model of voting. So
proper learning corresponds to finding a realistic model of
voting, one which describes a relationship between examples
and labels, that also predicts the proportion of votes correctly.
For this reason, for the remainder of this paper, we will only
consider proper PAC learning from label proportions.

Definition 1 is a distribution-free setting, but when the dis-
tribution is known, sample complexity also may be indepen-
dent of the VC-dimension.
Observation 2. Let D be a known distribution. Let

β = inf
h,h′∈H:
h 6=h′

|ph − ph′ |.

Then the sample complexity for PAC learning from label pro-
portions the hypothesis class H is O

(
ln(1/δ)
β2

)
.

Proof outline. Here, we can use another Chernoff bound to
get that with high probability, p̂ is within β/2 of pc, for c the
target hypothesis. But the definition of β implies that there is
exactly one value pc∗ in {pc : c ∈ H} such that p̂ is closer
to pc∗ than any other value in {pc : c ∈ H}. Then with high
probability pc = pc∗ . Thus an algorithm may output any h
such that ph = pc∗ .

This analysis of the distribution-free setting only consid-
ers sample complexity and not computational complexity. In
Section 5, we will give an example where we can efficiently
PAC learn from label proportions under the uniform distribu-
tion.

We may still wish to bound the sample complexity of PAC
learning from label proportions in the setting where the distri-
bution is arbitrary. The same bounds that hold in PAC learn-
ing under an arbitrary loss function [Shalev-Shwartz and Ben-
David, 2014] (or the absolute value of an arbitrary loss func-
tion) also hold here. Namely, we can use the VC dimension
of a hypothesis class H to bound generalization error. We
denote this quantity by VC(H). In particular, we have:
Theorem 3 (Occam’s razor). For target function c ∈ H , with
probability at least 1− δ, for all h ∈ H ,

|pc − ph| ≤ |p̂c − p̂h|+O

(
1

δ

√
log(m/VC(H))

m/VC(H)

)
.
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3 Hardness of Learning from Label
Proportions

We start by showing it is NP-hard to learn when the VC di-
mension is sufficiently large. To do this, we start by defining
the consistency problem of a hypothesis class. For a hypoth-
esis class C, the consistency problem for PAC learning from
label proportions is the following: Given a set X = {xi} of
points, for each point xi an integer ai, and a proportion p,
is there a hypothesis c ∈ C such that

∑
i∈I ai∑
i ai

= p, where
I = {i : c(i) = 1}? If there is such a c, we will say that c is
consistent with X .
Proposition 4. Let C be a hypothesis class such that
VC(C) ≥ nγ for some constant γ > 0. The consistency
problem for C is NP-hard.

Proof. We reduce from SUBSET SUM, which asks, without
loss of generality, given a set S = {a1, . . . , am} of positive
integers and a positive integer b, if there is a subset S′ ⊆ S
such that

∑
a∈S′ = b. Let n = m1/γ . Then VC(C) ≥ m,

so C shatters some m points, call them x1, . . . , xm. We now
construct the following instance of the consistency problem:

Define X = {x1, . . . , xm}, each associated integer to be
ai, and the percent p of positive labels to be b∑

i ai
.

We now show that X is consistent with a hypothesis c ∈ C
if and only if the given subset sum instance has a solution. If
X is consistent with a hypothesis c, then p =

∑
i∈I ai∑
i ai

. This
immediately implies∑

i∈I ai∑
i ai

=
b∑
i ai

,

i.e. b =
∑
i∈I ai. Then the subset {ai : i ∈ I} is the solution

for the subset sum instance. In the other direction,let S′ ⊆ S
be the set of integers such that

∑
a∈S′ a = b. SinceC shatters

x1, . . . , xm, there is a hypothesis c that labels positively all
and only the points xi for i such that ai ∈ S′. That is,∑

a∈S′
a =

∑
i∈I

ai, where I = {i : c(i) = 1}.

Thus X is consistent, witnessed by this hypothesis:

p =
b∑
i ai

=

∑
a∈S′ a∑
i ai

=

∑
i∈I ai∑
i ai

.

We now show that PAC learning from label proportions is
hard whenever the VC-dimension is a fractional power. We
reduce from the consistency problem to the learning problem,
which is a slightly more involved reduction than in the clas-
sical PAC setting.
Theorem 5. Let C be a hypothesis class such that VC(C) ≥
nγ for some constant γ > 0. There is no efficient algorithm
for PAC learning C from label proportions unless NP = RP.

Proof. It suffices to reduce from the consistency problem,
above. Indeed, using an oracle to an efficient PAC learner
for C from label proportions, we merely need to solve the

consistency problem with high probability. Given an instance
of the consistency problem with input set X = {xi}, integers
ai, and proportion p. Define a distribution D that outputs xi
with probability proportional to ai.

Set
ε =

1

2
∑
i ai

.

For δ > 0, we will query the oracle with inputs δ, ε, and an
i.i.d. sample from D of size m = f(1/δ, 1/ε), where f is the
polynomial sample bound for the oracle. Since the sample
from D may not be exactly ai copies of xi, we do not know
p̂ to give to the oracle. So instead, we will invoke the ora-
cle m + 1 times, setting the input proportion to be each of
0, 1/m, . . . , 1, and then check the resulting output hypothesis
to see if it is consistent with X . If so, accept, and if no such
hypothesis is ever found, reject1.

Certainly, if we accept, there is a consistent hypothesis by
definition: we accept if an oracle outputs a consistent hypoth-
esis. Conversely, if the consistency problem is solvable, then
we will accept: Let c be the consistent hypothesis. Since it is
consistent, by the definition of D, pc = p. Now consider the
invocation of the oracle with the true proportion p̂. This in-
vocation will output some hypothesis h that will, except with
probability at most δ, satisfy

|pc − ph| =
∣∣∣∣p−

∑
xi∈S ai∑
i ai

∣∣∣∣ ≤ 1

2
∑
i ai

,

where S is the set of points h labels positively. Since each

ai is an integer, this implies that p =
∑
xi∈S′

ai∑
i ai

, i.e. that h is
consistent with X and therefore we will accept with proba-
bility at least 1− δ.

Setting δ to go to 0 in the size of the input of the consis-
tency problem completes the proof.

A natural question to ask is if there are classes with VC
dimension smaller than nγ that are still hard to learn. We
now show that this is the case for parity functions on the first
k bits of the input.

Recall in (white-label) noisy PAC learning, each label in
the training data is flipped with unknown rate η. We assume
the algorithm is given as input some η′, where η ≤ η′ < 1/2
and must only take time polynomial in 1

1−2η′ . Noisy PAC
learning parity functions under the uniform distribution is
presumed to be hard. Blum et al. [2003] give an 2O(n/logn))
algorithm, which is the best-current bound.

We now find a specific distribution where PAC learning
from label proportions is hard in this sense for parities:
Theorem 6. For a hypothesis c, LetDc be the the distribution
over {0, 1}n that places η

2n−1 weight on the examples labeled
0 and 1−η

2n−1 weight on examples labeled 1.
PAC learning parities from label proportions under Dc is

as least as hard as PAC learning unknown parity c with η
white-label noise under the uniform distribution.

1The oracle’s behavior is undefined if the value input as the pro-
portion of positive labels is not the true value p̂. We may assume,
however, that the oracle rejects whenever this is the case because the
time the oracle takes is polynomially-bounded so we can just wait
for that amount of time to see if the oracle returns a hypothesis.
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Proof. We use an oracle for PAC learning parities from label
proportions under Dc to noisy-PAC learn parities. We get
as input η′, parameters ε and δ, and some m examples xi,
with m to be determined later, with noisy labels ˜̀

i. When
˜̀
i = 1, with probability η, the true label `i = 0 and otherwise
`i = 1. We may assume that the unknown parity c is non-
trivial. Then under the uniform distribution over {0, 1}n, for
any such parity function, there are 2n−1 points labeled 1 and
2n−1 points labeled 0. For any point labeled 0, the probability
that it was drawn from the uniform distribution is 1

2n−1 and
the probability that its label was flipped to 1 was η. Then
the probability that an example had ˜̀

i = 1 but `i = 0 is
η

2n−1 and similarly if `i = 1 the probability is 1−η
2n−1 . Note

that this is exactly the distribution Dc. So if the oracle for
PAC learning parities from label proportions is given just the
examples where ˜̀

i = 1, the oracle will receive i.i.d. samples
from Dc. We will also give to the oracle ε′ = 1/2−η′

2 and
δ′ = δ/3. The expected proportion of these examples given
to the oracle is 1 − η, but we do not know the true labels
nor do we know η. So instead, we will invoke this oracle
M+1 times, with the proportion given to the oracle as each of
0, 1/M, . . . , 1, where M =

∑
i

˜̀
i, i.e. the number of training

examples with noisy label ˜̀
i = 1 2.

If the oracle returns the correct parity c, then it should agree
in expectation with the noisy labels ˜̀

i on all but η of the ex-
amples. For an incorrect parity c′, by the orthonormality of
the parity functions, the expected disagreement is 1/2. For
h the output of the oracle, if smaller than an η′+1/2

2 fraction
of the noisy labels ˜̀

i disagree with the corresponding label
h(xi), then we return the hypothesis. Otherwise, we repeat
with the next invocation of the oracle.

Let f be the polynomial sample bound for the oracle for
PAC learning from label proportions . First, we need to
make sure that the oracle receives at least f(1/ε′, 1/δ′) ex-
amples except with probability at most δ/3. In expectation,
m/2 of the examples xi will have ˜̀

i = 1. Using a Cher-
noff bound, P

[∣∣∣∑i
˜̀
i −m/2

∣∣∣ > m/4
]
≤ 2e−m/8. So the

oracle will receive at least 1
4m examples (and no more than

3
4m examples) except with probability no more than δ/3 so
long as m > 8 log(6/δ). This then means that we require
m > 4 · f(1/ε′, 1/δ′) so that M ≥ f(1/ε′, 1/δ′).

Now we need to verify that when the proportion given to
the oracle is the correct proportion p̂c, the oracle will return c
except with probability at most δ/3. The oracle is guaranteed
to return a parity h such that except with probability δ′ = δ/3,

|ph − pc| ≤ ε′ =
1/2− η′

2
.

Using the definition of Dc, pc = 1 − η. If h 6= c, then
ph = 1/2 again by orthonormality. But then

|ph − pc| = |1/2− η| >
1/2− η′

2
,

2As in the proof of Theorem 5, the oracle is undefined when the
proportion of positive labels is not the true value p̂. And similar to
before, we may assume that the oracle returns an arbitrary hypothe-
sis.

so it must be the case that h = c. Thus at least one of the
invocations of the oracle will return the correct parity.

So it remains to show that we will succeed at returning this
parity. If the oracle returns an incorrect parity h, again using
a Chernoff bound,

P

[∣∣∣∣∣
∑
i 1h(xi)6=˜̀

i

m
− 1/2

∣∣∣∣∣ ≥ 1/2− η′

2

]
≤ 2e−

m(1/2−η′)2
2

<
1

M + 1
· δ

3

when

m = Ω

(
log(Mδ )

(1/2− η′)2

)
= Ω

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2


because M ≤ 3

4m, where 1A is the indicator function that
is 1 if A is true and 0 otherwise. This implies that for an in-
correct hypothesis, whose expected fraction of disagreements
with the noisy labels is 1/2, the empirical fraction is at least
η′+1/2

2 , the threshold we had set. Similarly, for the correct
hypothesis, where the expected fraction of disagreements is
η < η′, the empirical fraction of disagreements is no more
than η′+1/2

2 except with probability at most 1
M+1 ·

δ
3 . This

means that all of the tests of the hypothesis succeeds except
with probability at most δ/3. Then setting

m = Ω

max

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2

 , 4 · f(1/ε′, 1/δ′)


suffices so that, with the union bound, the total probability of
failure is no more than δ, as required.

Consider parity functions on the first k bits, which have
VC dimension equal to k. There is no known algorithm for
noisy PAC learning parity functions on the first k bits when
k = ω(log n log log n). It is conjectured that there is no
efficient algorithm for PAC-learning noisy parity that runs
in time o(2

√
n), which would imply hardness of noisy PAC

learning parities on the first k bits for k = ω(log2 n). Calling
this the ‘parity hardness assumption,’ Theorem 6 implies the
following:
Corollary 7. Under the parity hardness assumption, there is
no efficient algorithm for PAC learning label proportions of
parities on the first k bits for k = ω(log2 n).

This means there are hypothesis classes with VC dimen-
sion ω(log2 n) that aren’t PAC learnable from label pro-
portions. However, under a stronger assumption than, say,
NP6=RP, we can find a hypothesis class hard to learn with
even smaller VC dimension.

Consider the hypothesis class where each hypothesis labels
exactly k points positively, say for k ≤ n/2:

Hk = {h : X → {0, 1} : |{x : h(x) = 1}| = k}.
We show that in order to find a consistent hypothesis, we

will need to solve the k-SUM problem, which we may assume
asks when given integers a1, . . . , am, is there a set S of size
k whose sum is input b:
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Observation 8. The consistency problem for Hk is as least
as hard as k-SUM.

Proof. Using the notation above, given integers a1, . . . , am,
let X = {1, . . . ,m}, let the associated integer to i be ai,
and let p = b∑

i ai
. If there is a set S of ai’s whose sum is

b, then X is consistent, witnessed by the hypothesis h that
labels h(i) = 1 if and only if i is in S, and vice versa if there
is a consistent hypothesis h for X , then the set S of size k
where h(i) = 1 will sum to b.

k-SUM has a well-known mk/2 algorithm. On the
other hand, this is also a lower bound: Patrascu and
Williams [2010] show that k-SUM requires mΩ(k) time
assuming the exponential time hypothesis. Ailon and
Chazelle [2005] also give a lower bound of mk/2 for linear
decision trees. If k = log n, then Hk is hard to lean effi-
ciently in either of these settings. This follows from the same
proof as in Theorem 5.

4 Comparing Our Model to Classical PAC
The definition of PAC learning from label proportions makes
it harder to learn a class on one hand (by unlinking input from
label) but easier on the other hand (by making the loss func-
tion easier to satisfy). So it may not be obvious what the
relationship with PAC is.

In this section, we show that the hypothesis classes that
may be efficiently learned in PAC from label proportions is a
subset of the classes that may be efficiently learned in PAC.
Theorem 5 then implies it is a strict subset.

Theorem 9. Suppose NP 6= RP . Then if a hypothesis class
H is efficiently learnable from label proportions, it is also
efficiently (proper) PAC learnable.

Proof. Let H be learnable from label proportions by some
efficient oracle A, and f the polynomial sample size re-
quired by this oracle. We now give an efficient algorithm
for PAC learning H . Given ε, δ > 0, draw m samples from
the unknown distribution D, with m to be determined later.
Call the set S of unique inputs x1, . . . , xm and their labels
c(x1), . . . , c(xm) for hidden target function c. Let k be the
number of positive labels

∑
j c(x

′
j). Define a new distribu-

tion D′ as the following:

D′(x) =


m

km+m−k if x ∈ S and c(x) = 1

1
km+m−k if x ∈ S and c(x) = 0

0 otherwise


.

Let ε′ = 1/(2m2) and δ′ = δ. Draw m′ = f(1/ε′, 1/δ′)
samples x′j from D′ and label each as c(x′j). We give to the
oracle as input ε′, δ′, and the examples x′j , along with the
proportion of positive labels p̂ = k

m′ . Then with probability
at least 1− δ the oracle returns a hypothesis c∗ such that

|pc∗ − pc| <
1

2m2
.

The smallest non-zero probability mass in D′, however, is

1

km+m− k
≥ 1

m2
,

minimized when k = m. Thus pc∗ = pc.
We now show that c∗ = c when restricted to the points

x1, . . . , xm. Suppose there is a point xi such that c∗(xi) 6=
c(xi) where c(xi) = 1. Then in order to have pc∗ = pc
while c∗(xi) = 0, at least m points labeled 0 by c must be
labeled positively by c∗, since D′ places (proportional to) m
weight on positively labeled points and only unit weight on
negative points. This is a contradiction, as there are only m
total points. Similarly, if c(xi) = 0 and c∗(xi) = 1, there
must be m points labeled 0 by c∗ that are labeled 1 by c, but
again there are only m distinct points. Thus c and c∗ must
agree on all m points, i.e. c∗ has zero empirical error.

All that remains is to check that the VC dimension of H is
sufficiently small so that Occam’s razor implies sufficiently
small distributional error. But if VC(H) were, say, super-
exponential, (indeed, merely polynomial), then by Corol-
lary 5, it wouldn’t be learnable from label proportions, con-
trary to our assumption that it is. (This only prevents the VC
dimension ofH from being too large as a function of n. How-
ever, a similar proof to Corollary 5 implies that it is hard to
learn H if VC(H) were exponential in, say, the maximum
representation size of a hypothesis in H instead.)

5 Classes PAC Learnable from Label
Proportions

Call d the VC dimension of a given hypothesis class H . In
Section 3, we showed that if d is a fractional power, H is
hard to learn. We also gave examples with d as small as log n
that are hard to learn, under stronger complexity assumptions.
On the other hand, as long as labelings in a given hypothesis
class are efficiently enumerable, then finite classes H are cer-
tainly PAC learnable from label proportions in time |H|. Or
instead, by enumerating only distinct hypotheses on the sam-
ple, assuming that this is efficient, learning can be achieved in
md time using Sauer’s lemma. This immediately implies that
all such classes with constant d are learnable from label pro-
portions. We now show that not all classes with d = Ω(log n)
are hard to learn.

Consider the following variation of Hk which only allows
hypotheses whose positive labels are close to each other:

H ′k = {h : {1, . . . , 2n} → {0, 1} : max
h(i)=h(j)=1

|i− j| ≤ k}.

There are still exponentially many functions and
V C(H ′k) = k. Hk was shown to be hard in Section 3.
However, for H ′k, this is not the case:

Observation 10. PAC learning H ′k from label proportions
has an O(2km) time algorithm.

Order the m examples in {1, . . . , 2n}, and for each length
k subset, of which there are m − k + 1 of them, check all
2k possible labelings. Now when k = O(log n), this is a
polynomial-time algorithm for learning H ′k from label pro-
portions even though the VC dimension is not constant.
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In the classical PAC setting, when it is hard to learn under
an arbitrary distribution, it is often still valuable to show that
learning can still be done in special cases, such as the uniform
distribution. We now give an example, namely half-spaces,
where it is hard to learn from label proportions under arbitrary
distributions (Theorem 5) but easy to learn under the uniform
distribution. In other words, when the distribution is well-
behaved, learning becomes much easier.

The idea to find a half-space that classifies the given pro-
portion p̂ positively is to take a random half-space through the
origin, and then move it in the direction of its normal vector,
and stop when the half-space classifies the input p proportion
of the sample positively. With high probability, this will be
possible because no two points in the sample will be projected
to the same point on the normal vector.

Proposition 11. The class of half-spaces in n dimensions is
learnable from label proportions under the uniform distribu-
tion over {0, 1}n.

Proof. Since the VC-dimension of half-spaces is linear in n
by Radon’s theorem [Mohri et al., 2012], using Theorem 3
it certainly suffices to be able to efficiently find a half-space
h such that p̂h = p with high probability. Consider a hyper-
plane P of dimension n−1 through the origin and v a normal
vector defining P .

First, we show that for a randomly chosen vector v, no
two points in {0, 1}n project more than exponentially close
to each other (in terms of n) on v. This allows us to use
only a polynomial number of bits to represent each projected
point. Consider an arbitrary pair of points x and y in {0, 1}n
and consider the line ` that passes through these two points.
If v and ` are perpendicular, then x and y will project onto
the same point on v. More generally, we can find the maxi-
mum obtuse angle between v and ` such that the two points
so that the points project exponentially close together on v.
Any closer, and we will not have enough bits to distinguish
between the projection of x and y. Namely, for a pair of
points distance d apart, using the Taylor approximation for
sin(x), the difference between π/2 and this maximum angle
is no more than O

(
1

d2ω(nc)

)
for constant c. Since the points

come from {0, 1}n, d ≥ 1, and there are O(2n
2

) such pairs
of points, so the total angle from which a uniformly-random

vector v may not be chosen is at most O
(

2n
2

2ω(nc)

)
, an ex-

ponentially small probability. Thus, with high probability, no
two points in {0, 1}n project to the same point on v, or project
more than exponentially close to each other on v.

Givenm examples, settingm to be polynomial in n insures
with high probability that all examples are distinct, and there-
fore no two examples project more than exponentially lose to
each other on v. Since p̂c = i/m for some i ∈ {0, 1, . . . ,m},
we need to find a plane parallel to P such that the correspond-
ing linear threshold function classifies i of the sample points
positively. For each pair of consecutive projected points cv
and c′v on v for real number c and c′, consider the half-space
given by the plane defined by the points p ∈ Rn satisfying
v
(
p−

(
c+c′

2

)
v
)

= 0, so that these two points are classified
differently by the half-space. Thus one of these half-spaces

(or the half-spaces classifying all points positively or nega-
tively) will have p̂h = i/m since no two points in the sample
project onto the same point on v.

While we have shown that it is strictly harder to PAC learn
from label proportions than to PAC learn, introducing noise
to the models changes the relationship between these two
models. For example, PAC learning parities with unknown
η white-label noise is hard under the uniform distribution, as
discussed above, but PAC learning parities from label pro-
portions with white-label noise is easy under the uniform
distribution. In our model, that means each label is flipped
i.i.d. with probability some unknown η, and the proportion of
noisy positive labels p̂η is given as input instead, but other-
wise the learning requirement remains stays the same.
Observation 12. The class of parities is learnable from label
proportions under the uniform distribution and unknown η
white-label noise.

Proof. Let pηc be the proportion of positive labels under η
noise and parity c. Note pηc is always

(1− η)pc + η(1− pc) = pc(1− 2η) + η,

but for any non-trivial parity c, pc = 1/2, so pηc = 1/2. Then
Observation 2 implies that we may distinguish efficiently the
trivial parity from the non-trivial parities and in the case that
pηc = 1/2 we may return any non-trivial parity.

6 Conclusion
In this paper we formalized a model for learning a hypothesis
class by only examples drawn from a distribution and the pro-
portion of them receiving each label, with the goal of finding
a hypothesis that matches these statistics on the underlying
distribution, and we focused on the binary label setting.

While this task may seem easier than PAC learning, we
prove that it is actually no easier, and sometimes harder –
namely, we show that everything that is efficiently learn-
able in our model is also efficiently properly PAC learnable.
Moreover, we show that classes of polynomially large VC-
dimension are NP-hard to learn in our model, and we give
some even stronger lower bounds for specific classes. We
give examples where it is possible to efficiently PAC learn
from label proportions, which may be surprising given that
this is a low-information setting, including half-spaces under
the uniform distribution.

These results are for the binary setting and only for the
‘one bag’ version of the problem. We leave for future work
the analysis of the case where there is more than one bag of
examples and each bag’s proportion of labels is given. For
that case, and in other similar settings where the learner is
given more information, we expect there to be more positive
algorithmic results.
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