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Abstract

In the problem of learning a class ratio from unlabeled data, which we call CR learning,
the training data is unlabeled, and only the ratios, or proportions, of examples receiving
each label are given. The goal is to learn a hypothesis that predicts the proportions of
labels on the distribution underlying the sample. This model of learning is applicable to a
wide variety of settings, including predicting the number of votes for candidates in political
elections from polls.

In this paper, we formally define this class and resolve foundational questions regarding
the computational complexity of CR learning and characterize its relationship to PAC
learning. Among our results, we show, perhaps surprisingly, that for finite VC classes what
can be efficiently CR learned is a strict subset of what can be learned efficiently in PAC,
under standard complexity assumptions. We also show that there exist classes of functions
whose CR learnability is independent of ZFC, the standard set theoretic axioms. This
implies that CR learning cannot be easily characterized (like PAC by VC dimension).

1. Introduction

In this paper, we investigate the complexity of the learning problem of estimating the pro-
portion of labels for a given set of instances. For example, this problem appears when
predicting the proportion of votes for a given candidate (de Freitas & Kück, 2005); cor-
rectly predicting how each individual votes is not required, only which candidate will win.
Variants of this problem also appear in many other domains, including in consumer mar-
keting (Chen et al., 2006), medicine and other health domains (Hernández-González et al.,
2013; Wojtusiak et al., 2011), image processing (de Freitas & Kück, 2005), physical pro-
cesses (Musicant et al., 2007), fraud detection (Rüping, 2010), manufacturing (Stolpe &
Morik, 2011), and voting networks (Fish et al., 2016). This problem may also arise when
attempting to correct for differences between training and testing distributions (Du Plessis
& Sugiyama, 2014; Saerens et al., 2002).

In classical Probably Approximately Correct (PAC) learning (Valiant, 1984), we are
given labeled data instances from a distribution, and in the idealized case, must find a
function that labels all of the data consistent with the observations. In less constrained
settings, the goal is to find a function of low error, or at least of error as low as possible
on the data presented to the algorithm. There is substantial literature on classical PAC
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learning outside the scope of this work; see, e.g., Shalev-Shwartz and Ben-David (2014) for
a survey. Once the classifier is found, it is easy to find the proportion of instances with a
given label by invoking the classifier on the instances. Alternatives that directly estimate
the proportion of labels with labeled data have been introduced by, for example, Iyer et al.
(2014).

However, getting instances with attached labels for training, as assumed in classical
PAC learning, is often difficult. Sometimes this is due to limits on the measurement pro-
cess (Hernández-González et al., 2013; de Freitas & Kück, 2005; Musicant et al., 2007;
Stolpe & Morik, 2011). At other times, before data sets are released, labels are purposely
detached from their instances in order to maintain privacy (Chen et al., 2006; Rüping,
2010; Wojtusiak et al., 2011). Instead, only the proportion of labels are given for a group of
sample instances. In the case of binary labels, we will refer to this proportion as the class
ratio. For example, in estimating who will win an election, training data consisting of pre-
election polls only release the percentage of people planning to vote for a given candidate.
Quadrianto et al. (2009) give several other examples where the only data available is of this
form.

Our goal is to use a training set which consists of a set of instances and the proportions
of labels of that set of instances to learn a classifier from a hypothesis class that is able to
correctly predict the class ratio, i.e. the proportions of labels, from a hidden distribution.
This is the learning-theoretic problem we formalize and tackle in this paper. With only
the proportion of labels given as training data, the proportion of labels may be inferred
by first finding a classifier that predicts the labels for each instance (Patrini et al., 2014;
Quadrianto et al., 2009; Rüping, 2010; Yu et al., 2013). Alternatively, Iyer et al. (2016)
propose inferring the proportion of labels directly.

Yu, Choromanski, Kumar, Jebara, and Chang (2014) introduce a version of a model for
a related problem, learning from label proportions. In their model, each bag of examples
comes with the proportions of each label in that bag, and each bag is drawn i.i.d. from a
distribution over bags. Their goal is to learn a classifier with low error. They give some
of the first sample complexity guarantees. Another approach is where the examples are
drawn i.i.d., but the bags may be an arbitrary partition of the examples, as is done by
Rüping (2010) and Stolpe and Morik (2011). Compared to these “bag” models, our model
of learning corresponds to the “one-bag” case with binary labels, where each example is
drawn i.i.d. from an arbitrary distribution (and the goal is to learn a classifier that correctly
predicts the class ratio). However, as our results demonstrate, we believe this model is
already interesting to study. We formalize this as a PAC-like learning model, which allows
us to compare the difficult problem of learning a hypothesis class in classical PAC learning
to learning a hypothesis class in this model, which we call CR learnability.

In particular, we give the following results, including the first computational hardness
results for learning a class ratio. After formally defining the model in Section 2, we start in
Section 3 by pointing out that CR learning satisfies a natural uniform convergence property,
meaning that any class with finite VC dimension is learnable in this model (see, e.g., Shalev-
Shwartz & Ben-David, 2014, for more on VC dimension). However, CR learnability is not
characterized by finite VC dimension: We give a simple class of functions with infinite VC
dimension that is learnable in this model. In addition, we give a class of functions whose
learnability under label proportions is independent of the Zermelo-Fraenkel set theory with
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the axiom of choice (ZFC), implying that learnability in this model does not admit any
simple characterization like VC dimension.

In Section 4, we compare efficient PAC to efficient CR learnability, where the learning
algorithm must take only polynomial time in the size of its input. We show that for classes
with finite VC dimension, if it is efficiently CR learnable, it is also efficiently properly PAC
learnable. We then go on to show that CR learning can be harder than PAC learning in
Section 4.1: classes that are efficiently PAC learnable like parities and monotone disjunctions
are hard to learn in this setting. Finally, in Section 5 we give some positive results indicating
cases where it is possible to CR learn. We also show that n-dimensional half-spaces over
the boolean cube are CR learnable under the uniform distribution.

2. Model and Sample Complexity

For c a function c : X → {0, 1} and D a distribution over the domain of c, we will call pc the
percentage of positive labels in this distribution, i.e. the class ratio pc = Px∼D[c(x) = 1].
For a given sample S, we call the percentage labeled positively as the class ratio p̂c =
1
|S|
∑

x∈S c(x). Where clear, we will abbreviate these as p and p̂ respectively.

In this setting, each example x drawn from D has a hidden label c(x), but the learning
algorithm does not get to see examples with labels. Instead, the algorithm only gets to see
the set of unlabeled examples S and p̂c, the percentage of S labeled positively by c. The
goal is to find a function h in a hypothesis class H such that pc should be close to ph with
high probability.

We now define CR learnability (where “CR” stands for “class ratio”).

Definition 1 (CR Learnability). A class of functions H is CR learnable if there is an
algorithm A such that for every target function c in H, any distribution D over X, and
for any ε, δ > 0, given m ≥ poly(1/ε, 1/δ, n, size(c)) examples drawn i.i.d. from D and p̂c,
returns a hypothesis h in H such that

P[|pc − ph| ≤ ε] ≥ 1− δ.

If in addition, A is an efficient algorithm (i.e. running in time polynomial in the size of
its input), then we call such a class efficiently CR learnable.

In general, we may consider agnostic or improper versions of this learning model. Im-
proper learning is where the returned hypothesis need not belong to the same class as the
class from which the target functions come, but instead need only belong to some larger
class instead. If this larger class is just the class of all functions h : X → {0, 1}, CR learning
is very easy. We can efficiently improperly CR learn with a sample complexity that only
depends on ε and δ:

Observation 2. The sample complexity of improper CR learning is O
(

ln(1/δ)
ε2

)
.

Proof outline. In improper learning, it is easy to find a function h∗ so that not only does
p̂h∗ = p̂, but also ph∗ = p̂: e.g. h∗ may be a randomized function that on any input returns
1 with probability p̂ and 0 otherwise. Then ph∗ = p̂ and a Hoeffding bound implies that p̂
is close to p.
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For example, if the task is to predict the proportion of votes for a given candidate using
only a single poll, improper learning in this model is easy simply by virtue of the fact
that p̂ is an unbiased estimator for p. However, the hypothesis h∗ described above will not
be a realistic model of voting. When the hypothesis class represents all plausible models
of voting, proper learning corresponds to finding a plausible model of voting, one which
describes a relationship between examples and labels, that also predicts the proportion of
votes correctly. For this reason, for the remainder of this paper, we will only consider proper
CR learning.

Definition 1 is a distribution-free setting, but when the distribution is known, sample
complexity also may be independent of the VC dimension.

Observation 3. Let D be a known distribution. Let

β = inf
h,h′∈H:
h6=h′

|ph − ph′ |.

Then the sample complexity for CR learning the hypothesis class H is O
(

ln(1/δ)
β2

)
.

Proof outline. Here, we can use another Hoeffding bound to get that with high probability,
p̂ is within β/2 of pc, for c the target hypothesis. But the definition of β implies that there
is exactly one value pc∗ in {pc : c ∈ H} such that p̂ is closer to pc∗ than any other value in
{pc : c ∈ H}. Then with high probability pc = pc∗ . Thus an algorithm may output any h
such that ph = pc∗ .

In Section 5, we return to distribution-specific learning.

3. Comparing PAC to CR Learnability

We start by considering sample complexity in the distribution-free setting. Is CR learning
harder or easier than PAC learning? We first give a uniform convergence result that implies
that if a class has finite VC dimension, then it is CR learnable. Despite this result, unlike
the PAC setting, VC dimension does not characterize CR learnability. Perhaps surprisingly,
we show that there are classes with infinite VC dimension that are CR learnable and those
whose CR learnability are independent from ZFC (for more, see below).

First, we prove a uniform convergence bound. Following the proof of the equivalent
bounds in PAC learning under an arbitrary loss function (see Shalev-Shwartz & Ben-David,
2014), we can show the same bounds also hold here. Namely, we can use the VC dimension
of a hypothesis class H to bound generalization error. In particular, we have:

Theorem 4 (Uniform convergence). For target function c ∈ H with finite VC dimension
d, with probability at least 1− δ, for all h ∈ H,

|ph − pc| ≤ |p̂h − p̂c|+
√

8d log(em/d)

m
+

√
2 log(4/δ)

m
.

Proof. Consider the empirical loss |p̂h − p̂c| =
∣∣ 1
m

∑m
i=1 h(xi)− c(xi)

∣∣ for sample S =
{x1, . . . , xm}. Unfortunately its expectation ES∼Dm [|p̂h − p̂c|] does not equal the dis-
tributional loss |ph − pc| = |Ex∼D[h(x)] − Ex∼D[c(x)]|, so instead, we consider conver-
gence of the signed loss instead: `(h, x) := h(x) − c(x), LD(h) := Ex∼D[`(h, x)], and
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LS(h) := 1
m

∑m
i=1 `(h, xi). This is a loss function with |`(h, x)| ≤ 1, so we can bound gen-

eralization error by the empirical Rademacher complexity (see, e.g., Shalev-Shwartz and
Ben-David (2014)): For R(·) the Rademacher complexity, with probability of at least 1− δ,
for all h ∈ H,

LD(h)− LS(h) ≤ 2Ezi∼D[R({(`(h, z1), . . . , `(h, zm)) | h ∈ H})] +

√
2 ln(2/δ)

m
.

The Sauer-Shelah lemma implies that |{(h(z1), . . . , h(zm))|h ∈ H}| ≤
(
em
d

)d
, so we also

have |{(`(h, z1), . . . , `(h, zm)) | h ∈ H}| ≤
(
em
d

)d
. Again since |`(h, x)| ≤ 1, Massart’s

lemma then implies that R({(`(h, z1), . . . , `(h, zm)) | h ∈ H}) ≤
√

2d log(em/d)
m . Thus with

probability of at least 1− δ/2, for all h ∈ H,

LD(h)− LS(h) ≤ 2

√
2d log(em/d)

m
+

√
2 ln(4/δ)

m
.

Repeating this argument for −`(h, z), and then applying the union bound, we conclude

|LD(h)− LS(h)| ≤ 2

√
2d log(em/d)

m
+

√
2 ln(4/δ)

m
.

But if the signed losses are bounded to each other, then so must the unsigned losses be
bounded to each other:

||ph − pc| − |p̂h − p̂c|| ≤ 2

√
2d log(em/d)

m
+

√
2 ln(4/δ)

m
.

This immediately implies that PAC learnable classes form a subset of CR learnable
classes. In the remainder of this section, we show first that it is a strict subset. We then
show that we can find a hypothesis class whose learnability is independent of ZFC, the
common axiomatic system of mathematics. Following the work of Ben-David et al. (2019)
who showed the first independence result for a machine learning problem, Reyzin (2019)
suggested that independence results may hold in other models of machine learning, such as
this one.

To demonstrate this, we make use of a recent result by Ben-David et al. (2019), who
defined EMX-learnability and gave a class of functions whose learnability is independent of
ZFC. First, we give the definition of EMX learnability.

Definition 5 (Ben-David et al., 2019). An (ε, δ)-EMX learner for a class of functions C
is an algorithm that, for some integer m = m(ε, δ), produces a hypothesis cS ∈ C for which

PS∼Dm [ED[cS ] ≤ sup
c∈C

ED[c]− ε] ≤ δ

for every distribution that is finitely-supported over the σ-algebra over all subsets of the
input space.
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This definition asks the learner to produce a (proper) function having as high distribu-
tional weight as possible. Ben-David et al. (2019) give the following surprising result.

Theorem 6 (Ben-David et al., 2019). EMX learnability of finite subsets of [0, 1] over finitely
supported distributions (over the unit interval) is independent of ZFC.

Now, we demonstrate that in some cases, EMX learning suffices to be able to CR learn:

Theorem 7. Consider a space Z equipped with a total order. For any interval of Z (induced
by the total order), suppose finite subsets of that interval are EMX learnable over finitely
supported distributions. Then finite subsets of Z are CR learnable over finitely supported
distributions.

Proof. To CR learn finite subsets of Z, we first show that even though the finite subset may
be arbitrarily large, it is contained in a small number of intervals of Z. We then show how
an EMX learner can achieve any class ratio on Z (within a factor of ε) using these intervals.

First, define heavy points as those whose distributional mass is at least ε/4 – note there
can be no more than 4/ε such points. Let the remaining points be called light. Let WL be
the distributional weight on the light points. There must be a subset of the heavy points
whose weight adds up to within WL of the target proportion p. Between these heavy points
there are 4/ε + 1 intervals of Z containing light points, so there are also at most 4/ε + 1
sub-intervals that combined with the subset of the heavy points reach within ε/4 of the
target proportion: each additional light point included in a sub-interval can add only at
most ε/4 to the total mass included.

Hence, there exists a union of at most 4/ε + 1 intervals containing light points, that
together with a subset of at most 4/ε heavy points (around which we can also add intervals
around the single points), whose weight adds up to the right proportion (within ε/4). Since
the VC dimension d of a union of k = 8/ε+ 1 intervals scales as 2k + 1, Theorem 4 tells us
that Õ(d/ε2) = Õ(1/ε3) samples suffice to find such intervals via empirical risk minimization
on the sample to within ε/4, meaning we can find k such intervals with proportion within
ε/2 of the true proportion.

Finally, for each interval, we use an EMX learner to find a finite subset within that
interval with mass approximating the total mass of the interval, within sufficiently small
error; e.g. within ε2/18 suffices. Then the union of these finite subsets will be the finite
subset of Z with mass within ε of the true proportion (except with probability δ). Since
there are at most 8/ε+ 1 such intervals to approximate, the union bound implies that the
total error contributed in this part is also bounded by ε/2. This is sufficient to achieve CR
learnability.

When Z is the unit interval over the reals, this means that EMX learning finite subsets
is equivalent to CR learning finite subsets, and because EMX learning finite subsets is
independent of ZFC, so is CR learning:

Corollary 8. CR learnability of finite subsets of [0, 1] over finitely supported distributions
is independent of ZFC.

Proof. Using Theorem 6, it suffices to show that finite subsets of [0, 1] over finitely supported
distributions over the unit interval are CR learnable if and only if they are EMX learnable.
The “if” direction follows from Theorem 7.
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Now for the other direction, since we know there exists a finite subset of the unit interval
that contains the entire distributional mass, i.e. has true proportion 1, we can feed a CR
learner p̂ = 1, along with the sample. If this learner can successfully CR learn finite subsets
of [0, 1], this learns a finite subset that maximizes the proportion, as desired.

Finally, we note that while the polynomial sample complexity requirement of CR learn-
ing is not present in EMX, this doesn’t cause a problem. This is because we can always
define a representation for which the finite sample complexity bound is polynomial. While
this is not normally sensible, it is sufficient to establish the existence of a class for which
the result holds.

And when Z = N, Theorem 7 implies that finite subsets of N are CR learnable. This is
because intervals of N are either isomorphic to itself, or are finite numbers of points. Finite
subsets of either of these are EMX learnable (Ben-David et al., 2019). But actually, it’s
worth noting something stronger, that finite subsets of N are efficiently learnable. The class
of finite subsets of N has infinite VC dimension, implying it is a class that is efficiently CR
learnable but is not PAC learnable.

Corollary 9. Finite subsets of N are efficiently CR learnable over finitely supported distri-
butions.

Examining the proof of Theorem 7, it suffices to show that CR learning unions of
intervals and then EMX learning each of those intervals can be done efficiently. But note
that in the case of N, first finding a set of intervals amongst a size m set of sample points
using Theorem 4 is equivalent to choosing a subset of those points whose mass is within
ε/4 of the empirical proportion by empirical risk minimization. Given that subset of points,
EMX learning for each interval is just selecting all of the subset, so it suffices to perform
ERM on the original set of m sample points. This can be done efficiently in time polynomial
in 1/ε using a dynamic program for subset sum.

4. Comparing Efficient PAC to Efficient CR Learning

In this section, we consider how requiring efficiency of the learning algorithm changes the
relationship between CR and PAC. In the previous section we showed that it is easier to CR
learn than it is to PAC learn, in the sense that PAC is a strict subset of CR. In this section,
we show that this relationship does not hold between efficient CR and efficient PAC. From
Corollary 9, we already know that there are hypothesis classes with infinite VC dimension
that are efficiently CR learnable but not efficiently PAC learnable, but here we show that
there are classes that are hard to CR learn even though they are efficiently PAC learnable.
Moreover, the only classes that are efficiently CR learnable that are not efficiently PAC
learnable have infinite VC dimension:

Theorem 10. Suppose NP 6= RP. Then if a hypothesis class H with finite VC dimension
is efficiently CR learnable, it is also efficiently (properly) PAC learnable.

Proof. Let H be CR learnable by some efficient oracle A, and f the polynomial sample size
required by this oracle. We now give an efficient algorithm for PAC learning H. Given
ε, δ > 0, draw m samples from the unknown distribution D, with m to be determined later.
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Call the set S of unique inputs x1, . . . , xm and their labels c(x1), . . . , c(xm) for hidden target
function c. Let k be the number of positive labels

∑
j c(x

′
j). Define a new distribution D′

as the following:

D′(x) =



m
km+m−k if x ∈ S and c(x) = 1

1
km+m−k if x ∈ S and c(x) = 0

0 otherwise


.

Let ε′ = 1/(2m2) and δ′ = δ. Draw m′ = f(1/ε′, 1/δ′) samples x′j from D′ and label
each as c(x′j). We give to the oracle as input ε′, δ′, and the examples x′j , along with the

proportion of positive labels p̂ = k
m′ . Then with probability at least 1− δ the oracle returns

a hypothesis c∗ such that

|pc∗ − pc| <
1

2m2
.

The smallest non-zero probability mass in D′, however, is

1

km+m− k
≥ 1

m2
,

minimized when k = m. Thus pc∗ = pc.
We now show that c∗ = c when restricted to the points x1, . . . , xm. Suppose there is a

point xi such that c∗(xi) 6= c(xi) where c(xi) = 1. Then in order to have pc∗ = pc while
c∗(xi) = 0, at least m points labeled 0 by c must be labeled positively by c∗, since D′ places
(proportional to) m weight on positively labeled points and only unit weight on negative
points. This is a contradiction, as there are only m total points. Similarly, if c(xi) = 0
and c∗(xi) = 1, there must be m points labeled 0 by c∗ that are labeled 1 by c, but again
there are only m distinct points. Thus c and c∗ must agree on all m points, i.e. c∗ has zero
empirical error.

All that remains is to check that we need only a polynomial sample size to use uniform
convergence (Theorem 4). This only requires VC(H) = poly(1/ε, 1/δ, n, size(c)), where
VC(H) denotes the VC dimension of H. If H is finite, recall that VC(H) ≤ log |H|. But
since size(c) ≥ log |H|, we certainly have VC(H) = poly(size(c)). If H is infinite, then the
size of the input and classifiers are unbounded. Then the assumption that VC(H) < ∞
implies that it is also a constant, and therefore the bound given by Theorem 4 is indeed a
polynomial.

4.1 Hardness of CR Learning

We now give three examples of hypothesis classes that are hard to CR learn: parities,
monotone disjunctions, and monotone conjunctions. Parities are functions ha : {0, 1}n →
{0, 1} of the form ha(x) = a ·x mod 2, i.e. the parity of the bits of a subset of x determined
by the bit mask a. Monotone disjuctions are disjunctions on n variables without negations
of the literals and likewise monotone conjunctions are conjunctions without negations. Each
of these has linear VC dimension and is efficiently PAC learnable (Shalev-Shwartz & Ben-
David, 2014).
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We start by showing that parities are hard to CR learn, even when the subset of the
bits is always amongst the first k bits of the input for k poly-logarithmic in n. This class
has VC dimension linear in k. To do this, recall in (white-label) noisy PAC learning, each
label in the training data is flipped with unknown rate η. We assume the algorithm is given
as input some η′, where η ≤ η′ < 1/2 and must only take time polynomial in 1

1−2η′ . Noisy
PAC learning parity functions under the uniform distribution is presumed to be hard. Blum
et al. (2003) give an 2O(n/logn) algorithm, which is the best-current bound.

We now find a specific distribution where CR learning is hard in this sense for parities:

Theorem 11. For a hypothesis c, let Dc be the distribution over {0, 1}n that places η
2n−1

weight on the examples labeled 0 and 1−η
2n−1 weight on examples labeled 1.

CR learning parities under Dc is at least as hard as PAC learning unknown parity c with
η white-label noise under the uniform distribution.

Proof. We use an oracle for CR learning parities from under Dc to noisy-PAC learn parities.
We get as input η′, parameters ε and δ, and some m examples xi, with m to be determined
later, with noisy labels ˜̀

i. When ˜̀
i = 1, with probability η, the true label `i = 0 and

otherwise `i = 1. We may assume that the unknown parity c is non-trivial. Then under
the uniform distribution over {0, 1}n, for any such parity function, there are 2n−1 points
labeled 1 and 2n−1 points labeled 0. For any point labeled 0, the probability that it was
drawn from the uniform distribution is 1

2n−1 and the probability that its label was flipped

to 1 was η. Then the probability that an example had ˜̀
i = 1 but `i = 0 is η

2n−1 and

similarly if `i = 1 the probability is 1−η
2n−1 . Note that this is exactly the distribution Dc. So

if the oracle for CR learning parities is given just the examples where ˜̀
i = 1, the oracle will

receive i.i.d. samples from Dc. We will also give to the oracle ε′ = 1/2−η′
2 and δ′ = δ/3. The

expected proportion of these examples given to the oracle is 1− η, but we do not know the
true labels nor do we know η. So instead, we will invoke this oracle M + 1 times, with the
proportion given to the oracle as each of 0, 1/M, . . . , 1, where M =

∑
i
˜̀
i, i.e. the number

of training examples with noisy label ˜̀
i = 1 1.

If the oracle returns the correct parity c, then it should agree in expectation with the
noisy labels ˜̀

i on all but η of the examples. For an incorrect parity c′, by the orthonormality
of the parity functions, the expected disagreement is 1/2. For h the output of the oracle, if

smaller than an η′+1/2
2 fraction of the noisy labels ˜̀

i disagree with the corresponding label
h(xi), then we return the hypothesis. Otherwise, we repeat with the next invocation of the
oracle.

Let f be the polynomial sample bound for the oracle for CR learning. First, we need
to make sure that the oracle receives at least f(1/ε′, 1/δ′) examples except with probability
at most δ/3. In expectation, m/2 of the examples xi will have ˜̀

i = 1. Using a Hoeffding
bound,

P

[∣∣∣∣∣∑
i

˜̀
i −m/2

∣∣∣∣∣ > m/4

]
≤ 2e−m/8.

1. The oracle is undefined when the proportion of positive labels is not the true value p̂. We may assume
that the oracle returns an arbitrary hypothesis in this case.
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So the oracle will receive at least 1
4m examples (and no more than 3

4m examples) except
with probability no more than δ/3 so long as m > 8 log(6/δ). This then means that we
require m > 4 · f(1/ε′, 1/δ′) so that M ≥ f(1/ε′, 1/δ′).

Now we need to verify that when the proportion given to the oracle is the correct
proportion p̂c, the oracle will return c except with probability at most δ/3. The oracle is
guaranteed to return a parity h such that, except with probability δ′ = δ/3,

|ph − pc| ≤ ε′ =
1/2− η′

2
.

Using the definition of Dc, pc = 1 − η. If h 6= c, then ph = 1/2 again by orthonormality.
But then

|ph − pc| = |1/2− η| >
1/2− η′

2
,

so it must be the case that h = c. Thus at least one of the invocations of the oracle will
return the correct parity.

So it remains to show that we will succeed at returning this parity. If the oracle returns
an incorrect parity h, again using a Hoeffding bound,

P

[∣∣∣∣∣
∑

i 1h(xi)6=˜̀
i

m
− 1/2

∣∣∣∣∣ ≥ 1/2− η′

2

]
≤ 2e−

m(1/2−η′)2
2

<
1

M + 1
· δ

3

when

m = Ω

(
log(Mδ )

(1/2− η′)2

)
= Ω

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2


because M ≤ 3

4m, where 1A is the indicator function that is 1 if A is true and 0 otherwise.
This implies that for an incorrect hypothesis, whose expected fraction of disagreements with

the noisy labels is 1/2, the empirical fraction is at least η′+1/2
2 , the threshold we had set.

Similarly, for the correct hypothesis, where the expected fraction of disagreements is η < η′,

the empirical fraction of disagreements is no more than η′+1/2
2 except with probability at

most 1
M+1 ·

δ
3 . This means that all of the tests of the hypothesis succeeds except with

probability at most δ/3. Then setting

m = Ω

max

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2

 , 4 · f(1/ε′, 1/δ′)


suffices so that, with the union bound, the total probability of failure is no more than δ, as
required.

Consider parity functions on the first k bits, which have VC dimension equal to k.
There is no known algorithm for noisy PAC learning parity functions on the first k bits
when k = ω(log n log log n). It is conjectured that there is no efficient algorithm for PAC-
learning noisy parity that runs in time o(2

√
n), which would imply hardness of noisy PAC

learning parities on the first k bits for k = ω(log2 n). Calling this the parity hardness
assumption, Theorem 11 implies the following:
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Corollary 12. Under the parity hardness assumption, there is no algorithm for efficiently
CR learning parities on the first k bits for k = ω(log2 n).

The above result relies on the hardness of PAC learning parities, rather than NP-
hardness. We can also establish problems that are NP-hard to learn. To do this, we
start by defining the consistency problem of a hypothesis class. For a hypothesis class C,
the consistency problem for CR learning is the following: Given a multi-set X of points and
an integer k, where each unique xi in X appears some ai times in X, is there a hypothesis
c ∈ C such that the size of the multi-set of points that are labeled 1 is exactly k? That is,
is there a hypothesis c such that

∑
xi:c(xi)=1 ai = k? If there is such a c, we will say that c

is consistent with X.
We reduce from the consistency problem to the learning problem, which is a slightly

more involved reduction than in the classical PAC setting.

Theorem 13. Suppose that the consistency problem for a hypothesis class C is NP-hard.
There is no efficient algorithm for CR learning C unless NP = RP.

Proof. It suffices to reduce from the consistency problem to the learning problem. Indeed,
using an oracle to an efficient CR learner for C, we merely need to solve the consistency
problem with high probability. Given an instance of the consistency problem with input
multi-set X = {xi} and integer k, define a distribution D that outputs each unique xi with
probability proportional to ai.

Set

ε =
1

2|X|
.

For δ > 0, we will query the oracle with inputs δ, ε, and an i.i.d. sample from D of size
m = f(1/δ, 1/ε), where f is the polynomial sample bound for the oracle. Since the sample
from D may not be exactly ai copies of xi, we do not know p̂ to give to the oracle. So
instead, we will invoke the oracle m + 1 times, setting the input proportion to be each of
0, 1/m, . . . , 1, and then check the resulting output hypothesis to see if it is consistent with
X. If so, accept, and if no such hypothesis is ever found, reject2.

Certainly, if we accept, there is a consistent hypothesis by definition: we accept if an
oracle outputs a consistent hypothesis. Conversely, if there is a consistent hypothesis c,
then the oracle will accept: Let c be the consistent hypothesis. Since it is consistent,
by the definition of D, pc = k/|X|. Now consider the invocation of the oracle with the
true proportion p̂. This invocation will output some hypothesis h that will, except with
probability at most δ, satisfy

|pc − ph| =
∣∣∣∣ k|X| −

∑
xi∈S ai

|X|

∣∣∣∣ ≤ 1

2|X|
,

where S is the set of points h labels positively. Since each ai is an integer, this implies that
k
|X| =

∑
xi∈S′

ai

|X| , i.e. that h is consistent with X and therefore we will accept with probability
at least 1− δ.
2. The oracle’s behavior is undefined if the value input as the proportion of positive labels is not the true

value p̂. We may assume, however, that the oracle rejects whenever this is the case because the time
the oracle takes is polynomially-bounded so we can just wait for that amount of time to see if the oracle
returns a hypothesis.
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Setting δ to go to 0 in the size of the input of the consistency problem completes the
proof.

Now, we can show that there are classes with linear VC dimension that are NP-hard to
learn. In particular, we start with monotone disjunctions. Recall a monotone disjunction
is a disjunction over n variables without negations, i.e.

∨
j∈J x

j for a subset J ⊂ [n], where

we use xj to refer to the jth bit of a vector x. We reduce the consistency problem for
monotone disjunctions from a decision problem we will refer to as Exact Partial Set
Cover, which asks, given a universe U , a collection of subsets S ⊂ 2U and an integer k, is
there a subfamily S′ ⊂ S such that | ∪s∈S′ s| = k.

Lemma 14. Exact Partial Set Cover is NP-hard.

Proof. The reduction is from the well-known NP-hard problem Exact Cover by 3-Sets,
X3C, which asks, given a universe U of exactly 3t elements, and a collection S of 3-element
subsets of U , if there is a sub-collection S′ ⊂ S of size t such that ∪s∈S′s = U . For each
3-element subset si ∈ S, define auxiliary elements zi,1, . . . , zi,`, with ` to be determined
shortly. Given an instance of X3C, we construct an instance of Exact Partial Set
Cover. The universe we define as U ∪ {zi,j} and the collection of subsets we define as the
collection {si∪{zi,1, . . . , zi,`}}. Finally, let k = |U |+`t. This is a polynomial-time reduction
as long as ` is only polynomially large.

If there is an exact cover by 3-sets, then the corresponding collection of subsets will have
union exactly |U | + `t: The non-auxiliary elements of this union must cover U , and since
it is a size t collection, there are `t auxiliary elements in the union. Conversely, if there is
an exact partial set cover of size b whose union is size k = |U | + `t, this collection must
be exactly size t: If b > t, then the size of the union, which is at least `b, must be strictly
larger than k as long as ` > |U |. And if b < t, then the size of the union is no more than
|U | + `b, strictly smaller than k. Thus the corresponding collection of subsets must be an
exact cover, as it is size t and its union is size |U |.

Corollary 15. CR learning monotone disjunctions is NP-hard.

Proof. Using Theorem 13, it suffices to reduce the consistency problem from Exact Par-
tial Set Cover. Given an instance (U, S, k) of this problem, we construct an instance of
the consistency problem m = |U | examples xi, each with |S| bits. Without loss of generality,
we assume that U = {1, . . . ,m}. We define the jth bit of xi to be 1 if the jth set sj of the
collection includes i, and otherwise we set the bit to be 0. We set the number of points to
be labeled 1 as k.

The disjunction d(x) = xj1 ∨ . . .∨xj` will label exactly k of these m examples positively
if and only if the union of the collection S′ = {sj1 , . . . , sj`} is size exactly k: If d(xi) = 1,

then xji = 1 for at least one j ∈ {j1, . . . , j`}, i.e. i is in S′. And if d(xi) = 0 , then xji = 0
for all j ∈ {j1, . . . , j`}, i.e. i is not in any of the sets in S′. Thus, the number of examples
that d labels positively is the size of the union of S′.

Using a similar construction, it can be shown that learning monotone conjunctions is
also NP-hard:

Corollary 16. CR learning monotone conjunctions is NP-hard.
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5. Efficiently CR Learnable Classes

In Section 4.1, we gave a number of examples of classes that are hard to CR learn. We now
turn to examples of classes that can be efficiently CR learned. Certainly, as long as labelings
in a given hypothesis class are efficiently enumerable, then finite classes H are certainly CR
learnable in time |H|. Or instead, by enumerating only distinct hypotheses on the sample,
assuming that this is efficient, learning can be achieved in md time using Sauer’s lemma.
This immediately implies that all such classes with constant d are CR learnable. But there
are also examples of classes with finite but larger VC dimension that can be efficiently CR
learned.

Consider the following hypothesis class which only allows hypotheses whose positive
labels are close to each other:

Hk = {h : {1, . . . , 2n} → {0, 1} : max
h(i)=h(j)=1

|i− j| ≤ k}.

There are still exponentially many functions and V C(Hk) = k. For k sufficiently small,
this class is efficiently learnable:

Observation 17. There is an O(2km) time algorithm for CR learning Hk.

Order the m examples in {1, . . . , 2n}, and for each length k subset, of which there
are m − k + 1 of them, check all 2k possible labelings. Now when k = O(log n), this is
a polynomial-time algorithm for CR learning Hk even though the VC dimension is not
constant.

In the classical PAC setting, when it is hard to learn under an arbitrary distribution, it
is often still valuable to show that learning can still be done in special cases, such as the
uniform distribution. We now give an example, namely half-spaces, where it is easy to learn
under the uniform distribution.

The idea to find a half-space that classifies the given proportion p̂ positively is to take a
random half-space through the origin, and then move it in the direction of its normal vector,
and stop when the half-space classifies the input p proportion of the sample positively. With
high probability, this will be possible because no two points in the sample will be projected
to the same point on the normal vector.

Proposition 18. The class of half-spaces in n dimensions is CR learnable under the uni-
form distribution over {0, 1}n.

Proof. Since the VC-dimension of half-spaces is linear in n by Radon’s theorem (Mohri
et al., 2012), using Theorem 4 it certainly suffices to be able to efficiently find a half-space
h such that p̂h = p with high probability. Consider a hyperplane P of dimension n − 1
through the origin and v a normal vector defining P .

Our goal will be to find such a vector v such that no two points in {0, 1}n project more
than exponentially close to each other (in terms of n) on v. This allows us to use only a
polynomial number of bits to represent each projected point while still being able to find a
hyperplane that separates every pair of consecutive projected points.

It suffices to choose v uniformly at random. To show this, consider an arbitrary pair of
points x and y in {0, 1}n and consider the line ` that passes through these two points. If v
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and ` are perpendicular, then x and y will project onto the same point on v. More generally,
we can find the maximum angle between v and ` so that the distance as a function of n, let’s
call this d′(n), between the two projected points is not too small. In particular, suppose
d′(n) = o(1/2n

c
) for all constants c > 0. A distance of o(1/2n

c
) would require ω(nc) bits to

distinguish the two points. For x and y distance d apart, this maximum angle between v
and ` is sin−1(d′(n)/d) = O (d′(n)/d) using the Taylor approximation for sin−1(x).

There are O(2n
2
) pairs of points since the points come from {0, 1}n. Then the total sum

of angles that would result in any pair of projected points being too close is O

(
2n

2
d′(n)
d

)
,

which goes to 0 exponentially quickly in n because d is at least a constant and d′(n) =
o(1/2n

2
). Thus, with high probability, no two points in {0, 1}n project to the same point

on v, or project more than exponentially close to each other on v.
Given m examples, setting m to be polynomial in n ensures with high probability that

all examples are distinct, and therefore no two examples project more than exponentially
close to each other on v. Since p̂c = i/m for some i ∈ {0, 1, . . . ,m}, we need to find a plane
parallel to P such that the corresponding linear threshold function classifies i of the sample
points positively. For each pair of consecutive projected points cv and c′v on v for real
number c and c′, consider the half-space given by the plane defined by the points p ∈ Rn

satisfying v
(
p−

(
c+c′

2

)
v
)

= 0, so that these two points are classified differently by the

half-space. Thus one of these half-spaces (or the half-spaces classifying all points positively
or negatively) will have p̂h = i/m since no two points in the sample project onto the same
point on v.

Introducing noise to CR learning and PAC learning changes the relationship between
the two models. For example, PAC learning parities with unknown η white-label noise
is hard under the uniform distribution, as discussed above, but CR learning parities with
white-label noise is easy under the uniform distribution. In our model, that means each
label is flipped i.i.d. with probability some unknown η, and the proportion of noisy positive
labels p̂η is given as input instead, but otherwise the learning requirement remains stays
the same.

Observation 19. The class of parities is CR learnable under the uniform distribution and
unknown η white-label noise.

Proof. Let pηc be the proportion of positive labels under η noise and parity c. Note pηc is
always

(1− η)pc + η(1− pc) = pc(1− 2η) + η,

but for any non-trivial parity c, pc = 1/2, so pηc = 1/2. Then Observation 3 implies that
we may distinguish efficiently the trivial parity from the non-trivial parities and in the case
that pηc = 1/2 we may return any non-trivial parity.

6. Conclusion

In this paper we formalized a model for learning a hypothesis class by only examples drawn
from a distribution and the proportion of them receiving each label, with the goal of finding
a hypothesis that matches these statistics on the underlying distribution.
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We give some initial results into a learning theory for this task, including that in the
case of finite VC dimension, classes that are efficiently CR learnable are automatically also
efficiently properly PAC learnable. On the other hand, we give an independence result
that implies that CR learning will not admit a nice VC-like characterization. We also give
examples where it is possible to efficiently CR learn, which may be surprising given that
this is a low-information setting, including half-spaces under the uniform distribution.

These results imply that the classes that are PAC learnable form a strict subset of those
classes that are CR learnable, but that the only classes that are CR learnable but not
PAC learnable have infinite VC dimension (e.g. finite subsets of N). Moreover, there are
classes that are efficiently PAC learnable but not efficiently CR learnable (e.g. monotone
disjunctions) and vice versa (e.g. finite subsets of N), but again in the latter case these must
have infinite VC dimension.

These results are for the binary setting and only for the ‘one bag’ version of the problem.
We leave for future work the analysis of the case where there is more than one bag of
examples and each bag’s proportion of labels is given. For that case, and in other similar
settings where the learner is given more information, we expect there to be more positive
algorithmic results.
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