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Abstract

In this paper, we analyze PAC learnability from labels pro-
duced by crowdsourcing. In our setting, unlabeled examples
are drawn from a distribution and labels are crowdsourced
from workers who operate under classification noise, each
with their own noise parameter. We develop an end-to-end
crowdsourced PAC learning algorithm that takes unlabeled
data points as input and outputs a trained classifier. Our three-
step algorithm incorporates majority voting, pure-exploration
bandits, and noisy-PAC learning. We prove several guarantees
on the number of tasks labeled by workers for PAC learning
in this setting and show that our algorithm improves upon
the baseline by reducing the total number of tasks given to
workers. We demonstrate the robustness of our algorithm by
exploring its application to additional realistic crowdsourcing
settings.

Introduction and Previous Work
Overview
In this paper, we study the problem of learning a classifier
from data labeled by a crowd of workers. In our model, we
make the assumption that each worker has his or her own er-
ror rate, independent of the data. In this framework, we give
a flexible three-step algorithm that achieves the PAC learn-
ing criterion. First, a subset of data points is chosen from
X , and sufficiently many workers are asked to label each
point, so that with high probability, majority votes on each
point are correct. This gives a “ground truth” set of points
on which workers can be evaluated, so that in the second
step, we can estimate their individual error rates and identify
good workers – this can be done in many ways, for example
by running pure-exploration bandit algorithms. In the final
step, the workers selected in the previous step are assigned
to label sufficiently many new points so that a PAC-classifier
can be trained efficiently. While each part of our approach
comes from known results, combining all these steps into a
streamlined procedure is, to our knowledge, new. We also
illustrate the flexibility of our approach herein.

Instead of relying on random workers to produce labels,
the goal of our approach is to quickly identify good workers
and assign the main labeling task to them. Our algorithms
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work especially well when there are a few expert workers
in a large crowd, and when they are difficult to pre-screen.
Such scenarios can often occur when specialized knowledge
is needed, e.g. in the case of using crowdsourced labels to
training a classifier to identify cat breeds, where most peo-
ple presumably don’t know anything about cats, but a few
people in any large crowd will be adept at it.

Previous Work
Classification Noise. We assume that workers in the
crowd are imperfect. In particular, each worker wi has an
individual, hidden noise rate 0 ≤ ηi < 1/2 so that each
data point has an independent and equal chance of being
mislabeled, conditioned on the worker. We build our algo-
rithm and analysis around this noise model but show that
our analysis can be adapted to handle the case where the
noise rates are conditioned on class membership. These
noise models have been extensively studied in crowdsourc-
ing literature (Cao et al. 2015; Fang et al. 2018; Kang and
Tay 2018; Li, Yu, and Zhou 2013; Wang and Zhou 2015;
Zhou, Chen, and Li 2014) and are usually attributed to
Dawid and Skene (1979).

In learning theory, an algorithm satisfies the probably ap-
proximately correct (PAC) learnability criterion for concept
class C if for any c ∈ C, any ε, δ > 0 and any distribution
D on X from which a sample S is drawn, the hypothesis
hS ∈ C returned by the algorithm satisfies

Pr
S∼Dm

[ Pr
x∼D

(hS(x) 6= c(x)) > ε] < δ (1)

with a sample complexity that is poly(1/ε, 1/δ, |x|, size(c))
(Valiant 1984). The PAC learning model was extended by
Angluin and Laird (1987) to capture a simple notion of
noise, which they termed “classification noise.” In their ex-
tension, labels of samples are flipped independently with
probability 0 ≤ η < 1/2 by the noisy oracle, and the
learner’s runtime and sample complexity must also have a
polynomial dependence on 1

1−2η . For part of our work, we
will adapt the results of Angluin and Laird (1987) to our
noise setting. Note that our noise setting is similar in that a
label of a data point is flipped independently with probabil-
ity ηi from workerwi; in other words, each worker functions
as a noisy oracle in our setting. Since our noise model is a
generalization, we refer to our noise model as classification
noise throughout this paper.



Majority Voting in Crowdsourcing. Since worker skill
can be unknown and varying in crowdsourcing, entities post-
ing data points to be labeled on crowdsourcing platforms
may require that each data point be labeled by multiple
workers. Majority voting is the most obvious method for
aggregating the labels from multiple workers. Li, Yu, and
Zhou (2013) establish error rate bounds of generalized hy-
perplane rules of which majority voting is a special case.
While they assume the same model of classification noise
as our work, their analysis is limited to establishing error
bounds of these hyperplane aggregation rules and not on
PAC learning. Wang and Zhou (2015) establish error bounds
for majority voting under different assumptions, but they
also do not focus on PAC learning. Sheng et al. (2017) ex-
plore various strategies of utilizing multiple noisy labels
based on majority voting and pairing, but they do not focus
on PAC learning. Awasthi et al. (2017), who focus on PAC
learning from crowdsourced labels as we do, note that ma-
jority voting is not ideal because the number of worker labels
needed to produce an accurate majority vote with probabil-
ity 1− δ scales with the size of the data set. We arrive to this
same conclusion with our noise model, but we find it benefi-
cial to still use majority voting on a small subset of the unla-
beled data set to establish a “high probability” ground-truth
training set which helps to eliminate the need for queries to
an expert oracle as their algorithm requires.

PAC learning in Crowdsourcing. Feng et al. (2018), in
very recent work, develop PAC-style bounds for the cost
complexity of learning an aggregation function that fits a
crowd of workers with varying reliabilities. They focus on
using PAC learning to train an aggregation function for the
workers’ labels; we, however, focus on using PAC learn-
ing to train a classifier that generalizes from worker la-
bels. Wang and Zhou (2016) also develop PAC-style bounds
for the cost complexity of learning a classifier in a similar
crowdsourcing setting but their algorithm is similar to our
baseline approach. Concurrently, Zhang and Conitzer (2019)
develop a PAC learning framework for aggregating agents’
judgments in a similar setting as ours. However, they focus
on recovering the target classifier exactly and employ meth-
ods similar to our baseline approach with additional assump-
tions. Awasthi et al. (2017) develop PAC learning algorithms
in the crowdsourcing setting that generalize from worker la-
bels but their assumptions on the crowd differ from ours. On
the one hand, they assume nothing about the workers’ label
distribution (this is the agnostic learning setting), but on the
other hand they assume some fraction α of the crowd are
perfect performing workers. While this assumption is rea-
sonable in some settings (for example, if the crowd is cu-
rated), there may exist settings where this assumption would
not hold since even the best performing workers are capa-
ble of making a mistake. Thus, we instead assume that each
worker has a hidden error rate ηi. Second, in the case that the
fraction of perfect performing workers is less than 1/2, their
algorithm requires queries to an expert oracle. Our algo-
rithm, however, does not require any expert oracle queries.

Multiarmed Bandits for Crowdsourcing. There is sub-
stantial progress in multiarmed bandit (MAB) literature re-
garding identifying the best arms in the vanilla MAB setting
(Even-Dar, Mannor, and Mansour 2006; Jiang, Li, and Qiao
2017; Kalyanakrishnan and Stone 2010; Kang and Tay 2018;
Mannor and Tsitsiklis 2004; Rangi and Franceschetti 2018;
Zhou, Chen, and Li 2014). In our work, each arm will rep-
resent a worker and we build upon these previous results to
train a classifier. In this work, we restrict our attention to the
fixed confidence setting of best arm vanilla MAB - we want
to identify the best arms with confidence 1− δ.

More recently, MAB have been adapted to crowdsourc-
ing settings (Cao et al. 2015; Kang and Tay 2018; Liu and
Liu 2015; Rangi and Franceschetti 2018; Zhang, Ma, and
Sugiyama 2015; Zhou, Chen, and Li 2014). These previous
works use bandit techniques to strategically assign tasks to
workers under assumptions that are realistic to crowdsourc-
ing including limited budgets, limited worker availability,
and limited worker loads. Our algorithm builds upon these
works to ultimately output a trained classifier. In particular,
(Cao et al. 2015; Zhou, Chen, and Li 2014) suggest using
their MAB top-K arm algorithms to identify good work-
ers, but they assume there exists a set of accurately labeled
points from which to learn (ground truth set). Similarly,
Liu and Liu (2015) suggest using many bandit algorithms
with the same limitation. Our algorithm does not require a
ground truth set of data because in practice, ground truth
sets may not be available or can be expensive to obtain.
Although some previous algorithms (Kang and Tay 2018;
Liu and Liu 2015) do not assume a ground truth set of points
and instead estimate the correct label for points online, these
algorithms describe an optimal selection policy for assigning
tasks rather than training a classifier like ours. Other work
(Rangi and Franceschetti 2018; Zhang, Ma, and Sugiyama
2015) likewise focuses on a task assignment policy rather
than training a classifier. Other more applied works also con-
sider similar exploration/exploitation trade-offs, e.g. (Ipeiro-
tis and Gabrilovich 2014).

Model and Preliminaries
Given a hypothesis class C of finite VC dimension d and
parameters ε > 0 and δ > 0, we want to PAC-learn C using
data points with labels gathered from workers in a crowd.
Let W = {wi | i ∈ [1, n]} denote the set of all workers,
|W | = n. Each worker wi has an individual noise rate 0 ≤
ηi ≤ 1/2 and will correctly label any given example with
probability 1− ηi. The noise is assumed to be persistent, so
a worker asked to label the same example a second time will
deterministically produce the same label again. In particular,
for any target function c ∈ C, for any x ∈ X . The worker wi
acts as follows: for all x, Pr[wi(x) 6= c(x)] = ηi.

Similar to Amazon Mechanical Turk, we define a task as
a single data point that needs a label. The goal, then, is to
PAC-learn C while minimizing the number of tasks labeled
by workers; in other words, we want to minimize the num-
ber of times we query the crowd. This modeling requirement
is due to the fact that in most realistic settings, workers are
paid per task, and a natural goal is to train a good classi-
fier while expending as little as possible. Also note that this



model corresponds to PAC learning from data that has been
labeled by workers, each of which is a classifier operating
under classification noise (Angluin and Laird 1987).

We will ultimately derive upper bounds on the number
of tasks labeled by workers to PAC-learn C. We now define
several parameters that come into play throughout this paper
and in our final bounds. We define

η̄W =
1

|W |
∑

{j|wj∈W}

ηj

denotes the average error rate of workers in W . Let η̄∗K,W
denote the average error rate of the best K workers in W .
As a special case, η̄∗1,W denotes the error rate of the single
best worker in W .

To obtain reliable labels, our algorithm will identify ap-
proximately good workers. Let 0 ≤ ∆ ≤ 1/2. We define a
∆-optimal worker and ∆-optimal set of K workers.

Definition (∆-Optimal Worker (Even-Dar, Mannor, and
Mansour 2006)). A worker wi ∈W is said to be ∆-optimal
if ηi ≤ η̄∗1,W + ∆.

Definition (∆-Optimal Set of K Workers (Zhou, Chen, and
Li 2014)). Let S ⊆ W and |S| = K. The set of workers S
is ∆-optimal if η̄S ≤ η̄∗K,W + ∆.

Baseline Approaches

We now describe two baseline approaches and their corre-
sponding task complexities. For the first baseline approach,
we plug η̄W into the classification noise bound of Angluin
and Laird (1987) (see Theorem 9 for details) to get an algo-
rithm that solicits

O
(
d log (1/δ)

ε(1− 2η̄W )2

)
(2)

labels in total, from worker pool W of N workers, where
workers are selected at random to label the points.

Another baseline approach is to obtain a large perfectly
labeled set of data points with high confidence via majority
voting and use the proper noiseless PAC bound, which re-
quires m = O

(
d log(1/δ)

ε

)
examples. By Theorem 2 (which

appears in a later section), for each of m datapoints we
need a majority vote of O

(
log(m/δ)

(1−2η̄W )2

)
workers to get a

perfectly labeled set with high probability. Combining these
two bounds gives a total sample complexity of

Õ
(
d log (1/δ)

ε(1− 2η̄W )2

)
,

which is actually slightly worse (with respect to suppressed
polylogarithmic terms) than the bound in Equation 2.

Since we want to learn to arbitrarily small errors ε, we do
not want the d/ε dependence to be multiplied by the factor
of 1

(1−2η̄W )2 , which could be large for η̄W close to 1/2. This
is the dependence this paper aims to avoid.

Crowdsourced Learning Algorithm
Our algorithm proceeds in three parts. First, we choose a
small, randomly chosen set of data points to have labeled by
multiple workers. This allows us to know the true labels of
these data with high confidence using majority voting. Sec-
ond, we use these labeled data points to identify the approx-
imately best workers. Third, we use these workers to label
additional data points from which to train a classifier.

Algorithm 1: Crowdsourcing PAC Algorithm (Infor-
mal)

Input: n workers, unlabeled data points X
Output: classifier h ∈ C

1 take a majority vote with workers on small subset of
unlabeled tasks yielding a set of accurately labeled
tasks with high confidence

2 using the ground-truth data from Step 1, identify the
approximate top worker(s) (e.g. using MAB algorithms
(Even-Dar, Mannor, and Mansour 2006;
Zhou, Chen, and Li 2014;
Jiang, Li, and Qiao 2017;
Cao et al. 2015))

3 assign tasks at random among worker(s) identified in
Step 2 to perform noisy-PAC learning (Angluin and
Laird 1987), returning hypothesis h ∈ C that is an
empirical risk minimizer (ERM) with the labels of the
approximate top worker(s)

We now proceed to analyze each part of the algorithm sep-
arately.

Majority Voting by Workers with Classification
Noise
Our algorithm begins by getting a set of points for which the
labels need to be known, thereby creating a “ground truth”
set on which the workers’ error rates can be tested. This is
done by a majority vote of the labels of randomly selected
workers. For this we need the following lemma, which is
a simple consequence of the Hoeffding inequality (it is also
proved in a more general setting in Li, Yu, and Zhou (2013)).
Lemma 1. Let L(x) = {wi(x) | wi ∈ W} be the labels
from workers in W , for some x ∈ X . Suppose majority vot-
ing over the n labels in L(x) is applied and the winning
label is the final label corresponding to x. Then, the error of
the majority vote can be upper bounded as follows:

Pr[MAJ(L(x)) 6= c(x)] ≤ 2e−n(1−2η̄W )2/2.

As a consequence, we can derive the following theorem.
Theorem 2. Let Y ⊆ X and |Y | = T . Suppose we want
to get true labels for data points in Y with probability 1− δ
using majority voting with the crowd of workers W . Then
for each y ∈ Y , it is sufficient to solicit

O
(

log(T/δ)

(1− 2η̄W )2

)
labels from the crowd.



Proof. Follows from Lemma 1 and the union bound.

Since Theorem 2 scales poorly, it is not prudent to rely
solely on majority voting for gathering a labeled data set.
However, we find that using majority voting on a small
enough data set can be useful because it can eliminate
the assumption of a ground truth set and instead generate
an ground-truth set with high probability. In this way, we
also eliminate the need for expert oracle queries used in
Awasthi et al. (2017).1

Identifying Top Performing Workers
Using the ground-truth training labeled data set acquired
from the previous section, we now identify one approxi-
mately good worker. We also examine the case where we
want to identify a set of approximately good workers.

Identifying one ∆-optimal worker. The naive approach
to identifying a ∆-optimal worker with probability 1 − δ is
to sample each arm O

(
1

∆2 log(n/δ)
)

times and return the
arm with the largest empirical average.

Theorem 3. Identifying a ∆-optimal worker with probabil-
ity at least 1−δ can be done inO

(
n

∆2 log(n/δ)
)

arm trials.

Since each ground-truth data point can be used to test all n
workers, we needO

(
1

∆2 log(n/δ)
)

ground-truth data points
to find a ∆-optimal worker. If we introduce the assumption
that there is at least one perfect performing worker in the
crowd, then the number of arm trials to identify a ∆-optimal
worker decreases.

Lemma 4. If there is at least one worker in the crowd who
performs perfectly, then O( n∆ log(n/δ)) samples are suffi-
cient to identify a ∆-optimal worker with probability 1− δ.

Proof. The probability that a worker who was observed to
be perfect on t examples has error ≥ ∆ is bounded by (1−
∆)t ≤ e−∆t. For the union bound, we need to set this to
≤ δ/k, which yields the result.

Corollary 5. Acquiring accurate labels for data points with
probability 1− δ so that a ∆-optimal worker can be identi-
fied requires at most Õ

(
log2(n/δ)

∆(1−2η̄W )2

)
worker labels if there

is at least one perfect performing worker in the crowd and
Õ
(

log2(n/δ)
∆2(1−2η̄W )2

)
otherwise.

Proof. The number of arm trials to identify a ∆-optimal
worker is given in Theorem 3 and Lemma 4. We sample all
arms uniformly, so O

(
1

∆2 log(n/δ)
)

and O
(

1
∆ log(n/δ)

)
accurately labeled points are needed in order to compute
the reward for each arm trial, respectively. We acquire an

1This of course relies on access to a sufficiently large crowd,
and hence we assume that N = Ω̃

(
log(T/δ)

(1−2η̄W )2

)
, so that at this

stage each worker will be assigned at most one labeling task, to get
the label of each point. Additionally, notice that the number of la-
bels in Theorem 2 scales as a function of the number of data points
T for which we want labels, as noted by Awasthi et al. (2017). Our
bound in Theorem 2 is also a function of η̄W because of our clas-
sification noise model, which differs from Awasthi et al. (2017).

accurately labeled point with high confidence as in The-
orem 2, where we set T = O

(
1

∆2 log(n/δ)
)

and T =

O
(

1
∆ log(n/δ)

)
. We then multiply by T to get the total

number of worker labels needed to acquire an ground-truth
set of size T .

The problem of identifying the best workers can also
be solved with sophisticated methods that employ pure-
exploration stochastic multi-armed bandit algorithms (Cao
et al. 2015; Zhou, Chen, and Li 2014); for example, OptMAI
(see Theorem 6) improves the dependence on n in logarithm,
even in the case of finding the approximately-best worker.

In our crowdsourcing setting, each worker is an arm in the
bandit setting with mean reward 1 − ηi. When we select a
worker/arm, the reward is 1 if the worker’s label is correct
and 0 otherwise. In order to compute rewards, many bandit
algorithms require a ground-truth set of points (Cao et al.
2015; Even-Dar, Mannor, and Mansour 2006; Jiang, Li, and
Qiao 2017; Zhou, Chen, and Li 2014). Instead, we use the
set we gathered from the majority voting step as a proxy for
a ground-truth set. Thus, we are able to make use of many
MAB algorithms, but for now we focus on vanilla MAB.

Identifying the Top K Workers. Let K ≤ n. The fol-
lowing sample complexity bound of dentifying a set of the
approximate top K workers is known.

Theorem 6 (Zhou, Chen, and Li 2014). For K ≤ n
2 ,

OptMAI(n, K, q) identifies a ∆-optimal set of K arms with
probability 1− δ using

q = O
(
n

∆2

(
1 +

log(1/δ)

K

))
(3)

arm trials.2

An upper bound on the number of trials per arm is given,
as well.

Theorem 7 (Zhou, Chen, and Li 2014). In OptMAI(n, K,
q), each arm is sampled at most

s = O
( q

n.3

)
(4)

times, where q is set according to Equation 3.

Now, we will use OptMAI from Zhou, Chen, and Li
(2014) to efficiently learn a set of the approximate top K
workers in our crowdsourcing model. A worker labeling a
datapoint will function as an arm pull. Hence, a number of
correctly labeled datapoints as in Equation 4 will be suffi-
cient to implement this strategy.

Corollary 8. Acquiring accurate labels for s data points (as
per Equation 4) with probability 1 − δ so that a ∆-optimal

2For K ≥ n/2, OptMAI(n,K, q) identifies a ∆-optimal set of
K arms with probability 1− δ using

q = O
((

(n−K)n

K∆2

)(
(n−K)

K
+

log(1/δ)

K

))
arm trials.



set of K workers can be identified requires at most

Õ

n.7 log(1/δ)
(

1 + log(1/δ)
K

)
∆2(1− 2η̄W )2


total tasks assigned to workers to label points.

Proof. The number of arm trials to identify a ∆-optimal set
of K workers is given by q in Theorem 6. Each arm is sam-
pled at most O

(
q
n.3

)
times (Theorem 7), thus we need this

many accurately labeled points in order to compute the re-
ward for each arm trial. We acquire an accurately labeled
point with high confidence as in Theorem 2, where we set
T = O

(
q
n.3

)
. We then multiply by T to get the total num-

ber of worker labels needed to acquire a ground-truth set of
size T .

It is also clear that for various extensions and variants
of our problem, we can also use more sophisticated ban-
dit algorithms. For example, if different sets of workers are
available during different rounds, we can use sleeping ban-
dits (Kleinberg, Niculescu-Mizil, and Sharma 2010), etc.
The variety of known bandit algorithms working under vari-
ous assumptions further illustrates the flexibility of our mod-
ular approach.

PAC Learning under Label Noise
Now that the algorithm has identified good workers, we use
those workers to label more tasks needed to PAC learn the
concept class C. In this step, each task consists of labeling
a distinct data point; in other words, each data point is la-
beled only once by one of the good workers we identified
in the previous step. To perform the PAC learning we use
the algorithm from (Angluin and Laird 1987) in which the
learner queries a noisy oracle sufficiently many times and
returns the hypothesis h ∈ C that has the minimal number
of disagreements with the results from the noisy oracle. We
assume that finding this hypothesis can be done efficiently.

We first recall the main result in (Angluin and Laird 1987)
(adapted for hypothesis classes of finite VC-dimension in
(Laird 1988)), which states the number of queries that must
be made to the noisy oracle in order to PAC learn C:

Theorem 9 (Angluin and Laird 1987; Laird 1988). If a
learning algorithm that is given at least

O

(
d log (1/δ)

ε(1− 2η)2

)
samples from a noisy oracle with error parameter 0 ≤ η <
1/2 can produce a hypothesis hS that minimizes disagree-
ments with the noisy sample, then hS satisfies the PAC crite-
rion for the class C, i.e. for any ε, δ > 0 and any distribution
D on X ,

Pr
S∼Dm

(d(hS , h
∗) ≥ ε) ≤ δ,

where d(hS , h
∗) denotes the rate of disagreement between

hS and the target concept h∗.

We adapt Theorem 9 to the two types of approximately
good workers identified in the previous section so that ei-
ther one ∆-optimal worker functions as the noisy oracle or
the ∆-optimal set of K workers sampled i.i.d. function as
the noisy oracle. In the former case, the oracle noise rate η
becomes η̄∗1,W + ∆, so by Theorem 9 we assign to the ∆-
optimal worker at most

O

(
d log(1/δ)

ε(1− 2(η̄∗1,W + ∆))2

)
(5)

additional points to label. In the latter case, the oracle noise
rate becomes η̄∗K,W + ∆, so we assign the ∆-optimal set of
K workers

O

(
d log(1/δ)

ε(1− 2(η̄∗K,W + ∆))2

)
(6)

points to label.

Total Task Complexity
We combine the task bounds established for majority vot-
ing, identifying good workers, and PAC-learning with good
workers to derive the total task complexity of our algorithm.
To satisfy the PAC criterion (1), we set the failure rate for
each part of our algorithm to be at most δ/3 (so that the to-
tal failure rate is bounded by δ). We then add the three task
bounds. Notice that the bounds in Equations 5 and 6 adapted
from Theorem 9 and the arm trial bounds from Section are
a function of ∆. We parameterize ∆ as a function of either
best worker’s error rate or the average error rate of the best
set of K workers. For Theorems 10 and 11, which follow,
we set

∆ =
1/2− η̄∗1,W

2
.

The following theorem gives an upper bound on the number
of tasks required by our algorithm in order to PAC-learn C.
Theorem 10. Let ε, δ > 0. Suppose that in Step 2 of the
algorithm, we identify one approximately good worker. Then

Õ

(
log2(n/δ)

(1− 2η̄∗1,W )2(1− 2η̄W )2
+

(
n+ d

ε

)
log(1/δ)

(1− 2η̄∗1,W )2

)
tasks can be labeled by workers in order to efficiently PAC
learn C.

Proof. We sum the task complexity from each step in the
algorithm. We first sample the crowd Õ

(
log2(n/δ)

∆2(1−2η̄W )2

)
times (Corollary 5) in order to gather a ground truth set
with probability 1 − δ. Using the ground truth set as the
training set, we sample the crowd O

(
n

∆2 log(n/δ)
)

times
(Theorem 3) in order to identify an approximately good
worker. We then use the approximately good worker to label
O
(

d log(1/δ)
ε(1−2(η̄∗1,W+∆))2

)
points (bound in Equation 5). Sum-

ming these components gives

Õ
(

log2(n/δ)

∆2(1− 2η̄W )2

)
+O

( n

∆2
log(n/δ)

)
+O

(
d log(1/δ)

ε(1− 2(η̄∗1,W + ∆))2

)
.



Setting ∆ =
1/2−η̄∗1,W

2 and simplifying yields the task com-
plexity.

Recall that from Lemma 4, if we assume there is one per-
fect worker in the crowd, the task complexity improves. We
see the improvement in the overall task complexity below.
In this case, since η̄∗1,W = 0, we set ∆ = 1

4 .

Theorem 11. Let ε, δ > 0. Suppose that in Step 2 of the al-
gorithm, we identify one approximately good worker and we
assume there exists at least one perfect performing worker
in the crowd. Then

Õ
(

log2(n/δ)

(1− 2η̄W )2
+

(
n+

d

ε

)
log(1/δ)

)
tasks can be labeled by workers in order to efficiently PAC
learn C.

Proof. We sum the task complexity from each step in
the algorithm. We first sample the crowd Õ

(
log2(n/δ)

∆(1−2η̄W )2

)
times (Corollary 5) in order to gather a ground truth set
with probability 1 − δ. Using the ground truth set as the
training set, we sample the crowd O

(
n
∆ log(n/δ)

)
times

(Lemma 4) in order to identify an approximately good
worker. We then use this approximately good worker to la-
bel O

(
d log(1/δ)

ε(1−2(η̄∗1,W+∆))2

)
points (Equation 5). Since there

is a perfect worker in the crowd, η̄∗1,W = 0. Summing these
components gives

Õ
(

log2(n/δ)

∆(1− 2η̄W )2
+
n

∆
log(n/δ) +

d log(1/δ)

ε(1− 2∆)2

)
.

Setting ∆ = 1/4 and simplifying yields the task complexity.

As discussed in Section , an alternative to identifying one
approximately good worker is to identify K approximately
good workers to limit the burden of tasks for workers. The
maximum number of tasks a single worker must complete is
referred to as the load (Awasthi et al. 2017). In the case of
one approximately good worker, that worker must label all
the tasks prescribed by the bound in Equation 5. In the case
of K approximately good workers, the workers can evenly
split the tasks prescribed by the bound in Equation 6, reduc-
ing the load. If load is a priority in a particular crowdsourc-
ing setting, then we have the following task upper bound for
our algorithm. To derive this bound, we set

∆ =
1/2− η̄∗K,W

2
.

Theorem 12. Let ε, δ > 0. Let K denote the number of
workers identified in Step 2 of the algorithm and assume

K ≤ n
2 . Then

Õ

(
n.7 log(1/δ)(1 + 1

K log(1/δ))

(1− 2η̄∗K,W )2(1− 2η̄W )2

)
+

O

(
( nK + d

ε ) log(1/δ) + n

(1− 2η̄∗K,W )2

)

⊂ Õ

(
n log2(1/δ)

(1− 2η̄∗K,W )2(1− 2η̄W )2
+

d log(1/δ)

ε(1− 2η̄∗K,W )2

)
.

tasks can be labeled by workers in order to efficiently PAC
learn C.

Proof. Again, we sum the task complexity from each
step in the algorithm. We first sample the crowd

Õ
(
n.7 log(1/δ)(1+

log(1/δ)
K )

∆2(1−2η̄W )2

)
times (Corollary 8) in order to

gather a ground truth set with probability 1 − δ. Using the
ground truth set as the training set, we sample the crowd q
times in order to identify a set of K approximately good
workers (Theorem 6). We then use these approximately
good workers to label O

(
d log(1/δ)

ε(1−2(η̄∗K,W+∆))2

)
points (bound

in Equation 6). Summing these components gives

Õ

(
n.7 log(1/δ)(1 + log(1/δ)

K )

∆2(1− 2η̄W )2

)

+O
(
n

∆2

(
1 +

log(1/δ)

K

))
+O

(
d log(1/δ)

ε(1− 2(η̄∗K,W + ∆))2

)
.

Setting ∆ =
1/2−η̄∗K,W

2 and simplifying yields the task com-
plexity.

Comparison to Baseline and to Other Work
In the bounds established above, the term 1

(1−2η̄W )2 is not
multiplied the d/ε term, which is the improvement over the
baseline described in Section . In particular, in Theorem 10,
the d/ε term is multiplied by a factor of

1

(1− 2η̄∗1,W )2

which is function of the error rate of the best worker η̄∗1,W
in W instead of the average of all workers in W , η̄W , as in
the baseline. Similarly, in in Theorem 12, the d/ε term is
multiplied by

1

(1− 2η̄∗K,W )2

which is function of the error rate of the best K workers
in W , η̄∗K,W , instead of η̄W . Theorem 11 shows further im-
provement from the baseline as the d/ε is multiplied only
by a factor of log(1/δ). Note that in all three Theorems, the
task complexity can get arbitrarily bad as any of the crowd



parameters approaches random guessing, i.e. as η̄∗1,W , η̄W ,
or η̄∗K,W approach 1/2.

Unlike the baseline, there are additional terms in each of
the bounds above that are not multiplied by d/ε. While these
terms indeed add to the task complexity, as ε becomes arbi-
trarily small they become negligible, thus, the term multi-
plied by d/ε is most important.

We now discuss how our results compare to the work
of Awasthi et al. (2017). Recall that Awasthi et al. (2017)
assume that a fraction α of workers are perfect perform-
ers with no assumptions on the rest of the crowd. Like
Awasthi et al. (2017), our algorithm is a PAC learning algo-
rithm but ours does not rely on or require an assumption of
perfect workers in the crowd. Instead, our algorithm assumes
everyone has an individual noise rate. When we do consider
perfect workers, we find that even just one perfect worker in
the crowd improves our task complexity bound. When the
fraction of perfect workers is below 1/2, the algorithm in
Awasthi et al. (2017) requires “golden queries”, queries to
an expert oracle. Note that none of our PAC bounds are de-
pendent on access to an expert oracle.

Variants and Extensions
We now demonstrate a few ways in which our model and al-
gorithm can be easily adapted to fit different crowdsourcing
settings.

Asymmetric Classification Noise
In some settings, workers may perform differently depend-
ing on the true label of the data point. This assymetric noise
model is attributed to Dawid and Skene (1979). For simplic-
ity, we assume the binary classification setting with labels
{−1,+1}. For worker wi ∈ W , let η+

i and η−i denote the
error rates of positive and negative instances; that is, for each
x ∈ X ,

η+
i = Pr[wi(x) 6= c(x) | c(x) = 1]

and
η+
i = Pr[wi(x) 6= c(x) | c(x) = −1].

Let η̄+
W and η̄−W denote the average one-sided error rates

among all workers in W . Also let

η̂i = η+
i Pr[c(x) = 1] + η−i Pr[c(x) = −1]

and let i∗ = argminiη̂i.
We now show that our algorithm can be easily adapted to

the setting of asymmetric classification noise. We first derive
an analogue of Theorem 2 which is also a result of Hoeffding
and union bounds.
Theorem 13. Let Y ⊆ X where |Y | = T . Suppose we
want to get true labels for data points in Y with probability
1 − δ using majority voting using the crowd of workers W
under asymmetric classification noise. Then for each data
point y ∈ Y , it is sufficient to solicit

O
(

log(T/δ)

(1− 2 max(η̄+
W , η̄

−
W ))2

)
labels.

The only added bound we need is an asymmetric-noise
analogue for the Angluin and Laird (1987) bound from The-
orem 9.
Corollary 14 (to Theorem 9). If a learning algorithm that
is given at least

O

(
d log (1/δ)

ε(1− 2 max(η+, η−))2

)
samples labeled under the Dawid-Skene noise model (Dawid
and Skene 1979) with parameters η+ and η− can produce
a hypothesis h that minimizes disagreements with the noisy
sample, then h satisfies the PAC criterion for the class C, i.e.
for any ε, δ > 0 and any distribution D on X ,

Pr(d(h, h∗) ≥ ε) ≤ δ.
where d(h, h∗) denotes the rate of disagreement between h
and the target concept h∗.

Proof. The simplest proof of this is a reduction to the uni-
form noise case, as suggested by Blum and Kalai (1998) for
reducing from one-sided noise to two-sided noise. Without
loss of generality, assume η+ > η− (otherwise, we will flip
the other label). We will flip each negative label with prob-
ability p. Hence, the new noise rates are η′+ = η+ − η+p
and η′− = η− + (1− η−)p. Making η′− = η′+ and solving
for p yields p = η+−η−

1+η+−η− . The new symmetric noise rate is
now η′+ = η′− ≤ max(η+, η−), so we can apply the bound
from Theorem 9 to finish the proof.

We can now proceed to derive upper bounds on the task
complexity of our algorithm adapted to this new setting.
Theorem 15. Let ε, δ > 0. Suppose we identify one approx-
imately good worker in Step 2 of the algorithm per label.
Then

Õ
(

log2(n/δ)

(1− 2 max(η̄+
W , η̄

−
W ))2(1− 2η̂i∗)2

)
+O

((
n+

d

ε

)
log(1/δ)

(1− 2 max(η+
i∗ , η

−
i∗))2

)
tasks can be labeled by workers in order to efficiently PAC
learn C.

Proof. We sum the task complexity from each step in
the algorithm. As before, we first sample the crowd
Õ
(

log2(n/δ)

∆(1−2 max(η+W ,η
−
W ))2

)
times (Theorem 3 and Theo-

rem 13) in order to gather a ground truth set with prob-
ability 1 − δ. Using the ground truth set as the training
set, we sample the crowd O

(
n

∆2 log(n/δ)
)

times (Theo-
rem 3) in order to identify an approximately good worker.
We then use the approximately good worker to label
O
(

d log(1/δ)

ε(1−2 max(η+
i∗ ,η

−
i∗ ))2

)
points (Corollary 14). Summing

these components gives

Õ
(

log2(n/δ)

∆(1− 2 max(η̄+
W , η̄

−
W )2)

)
+O

( n

∆2
log(n/δ)

)
+O

(
d log (1/δ)

ε(1− 2 max(η+
i∗ , η

−
i∗))2

)
.



Setting ∆ = 1/2−η̂i∗
2 and simplifying yields the task com-

plexity.

The baseline approach in this setting would be to substi-
tute the average one-sided error rates of workers into the
bound from Corollary 14, yielding an upper bound of

O
(

d log (1/δ)

ε(1− 2 max(η̄+
W , η̄

−
W ))2

)
.

With only slight adjustments to our algorithm and analy-
sis, the bound we derive in Theorem 15 for this asymmetric
noise setting is still an improvement on the baseline since
the d/ε term is multiplied by a term that is a function of η̄+

i∗

and η̄−i∗ instead of η̄+
W and η̄−W .

Per-worker Task Limits
In practice, the load per worker may be limited. In Section
3.4 we discuss how identifying the top K workers instead
of one good worker in Step 2 of the algorithm reduces the
load on workers. In this extension, we consider a different
setting of limited worker loads where each worker can com-
plete no more than B tasks. This setting is useful because
in reality, workers will have time and energy limitations that
will bound the number of tasks they can realistically com-
plete. Suppose that B > 0 denotes the task limit for each
worker. We assume that B is greater than the number of tri-
als per arm required to identify top workers in Step 2 so that
each worker has the capacity to help with labeling additional
tasks, to some extent, in Step 3. We assume that in this set-
ting, for Step 2 of the algorithm, we identify a ∆-optimal
set of K workers instead of one ∆-optimal worker. We take
this approach because we can use the limited worker load
constraint and our knowledge of the number of tasks to be
completed in Step 3 of the algorithm to determine how many
workers K to identify in Step 2. We first determine the ca-
pacity remaining per worker after running the top-K MAB
algorithm. We recall that

q = O
(
n

∆2

(
1 +

log(1/δ)

K

))
from Theorem 3.6.
Lemma 16. After implementing OptMAI(n,K,q) to
identify the top K ≤ n/2 workers, the number of tasks re-
maining per worker is at least

B − 4n.7

(1/2− η̄∗K,W )2

(
1 +

log(1/δ)

K

)
.

Proof. From Theorem 7, each arm is pulled at most
O(q/n.3) times. We subtract this from the task limit B and
set

∆ =
1/2− η̄∗K,W

2
,

and simplify.

Recall that the bound in Equation 6, derived from The-
orem 9, is the number of data points that need to labeled
by the selected K workers in Step 2 to complete the PAC
learning algorithm. Dividing the bound from Equation 6 by
the capacity remaining per worker yields the number of top
workers, K, that need to be identified in Step 2.

Lemma 17. In Step 2 of the algorithm,

K = O

((
d

ε
+ n.7

)
log(1/δ)

B(1− 2η̄∗K,W )2 − n.7

)
workers will be identified.

Proof. The number of workers K is the number of data
points that need to be labeled, as prescribed by the bound
in Equation 6, divided by the tasks remaining per worker,
established in Lemma 16. After setting ∆ =

1/2−η̄∗K,W
2 ,

K =

2d
ε(1−2η̄∗K,W )2 log(1/δ)

B − 2n.7

(1−2η̄∗K,W )2

(
1 + log(1/δ)

K

) .
The theorem follows from solving for K.

Theorem 12 can now be extended to upper bound the
number of tasks labeled by workers in this new setting by
simply letting K be defined as in Lemma 17.

Agnostic PAC
It is possible that our symmetric or asymmetric classification
noise model does not model the behavior of all workers. For
instance, there may be workers who behave maliciously or
workers with error rates ηi > 1/2. On one end of the spec-
trum, each worker may have a fixed error rate. On the other
end of the spectrum, there may be no assumptions on worker
behavior at all, and this case is referred to as the agnostic set-
ting.

PAC learning in the agnostic setting is usually
computationally hard (Feldman et al. 2012). Hence,
Awasthi et al. (2017) assume an α fraction of workers are
perfect performers and places no assumptions on the behav-
ior of the remaining 1− α workers. We would like to begin
bridging the two ends of the spectrum in a similar way to
account for workers that cannot be modeled by classifica-
tion noise. Here, we begin to do this by showing a simple
extension of the result of Awasthi et al. (2017).

We let α denote the fraction of workers that can be mod-
eled by persistent classification noise with ηi ≤ 1/2. As in
the work of Awasthi et al. (2017), there are no assumptions
on the behavior of the remaining 1 − α fraction of work-
ers. PAC learning can be achieved in this setting by adapting
the proof of Theorem 4.3 from Awasthi et al. (2017); in par-
ticular, in our proposed setting, the probabilistic guarantees
of their Lemma 4.6 still hold. Thus, their algorithm still the
extended setting we proposed, as we state in the following
corollary.

Corollary 18 (to Theorem 4.3 of Awasthi et al. 2017). Let
W be the subset of workers that can be modeled by persis-
tent classification noise with average noise rate η̄W , and let
α denote the fraction all workers that are in W . Then when

α(1− η̄W ) ≥ 1/2,

a concept class C can be efficiently PAC learned from the
crowd given the ability to efficiently find an ERM over C.
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