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SUMMARY

The main theme of this thesis is to investigate how learning problems can be solved in the face

of limited resources and with limited information to base inferences on. We study feature-ef�cient

prediction when each feature comes with a cost and our goal is to construct a good predictor during

training time with total cost not exceeding the given budget constraints. We also study complexity-

theoretic properties of models for recovering social networks with knowledge only about how people in

the network vote or how information propagates through the network.

In our study of feature-ef�cient prediction – a setting where features have costs and the learner is

limited by a budget constraint on the total cost of the features it can examine in test time, we focus on

solving this problem with boosting by optimizing the choice of weaker learners in the training phase

and stopping the boosting process when the budget runs out. We experimentally show that our method

improves upon the boosting approachAdaBoostRS (4) and in many cases also outperforms the recent

algorithmSpeedBoost (5). We provide a theoretical justi�cation for our optimization method via

the margin bound. We also experimentally show that our method outperforms CART decision trees, a

natural budgeted classi�er.

We then study on the problem of reconstructing social networks from voting data. In particular,

given a voting model that considers social network structure, we aim to �nd the network that best

explains the agents' votes. We study two plausible voting models, one edge-centric and the other vertex-

centric. For these models, we give algorithms and lower bounds, characterizing cases where network

recovery is possible and where it is computationally dif�cult. We also test our algorithms on United

xi



SUMMARY (Continued)

States Senate voting data. Despite the similarity of the two models, we show that their respective

network recovery problems differ in complexity and involve distinct algorithmic challenges. Moreover,

the networks produced when working under these models can also differ signi�cantly. These results

indicate that great care should be exercised when choosing a voting model for network recovery tasks.

In the �nal part of the thesis, we explore problem of constructing a network by observing ordered

connectivity constraints, where ordered constraints are made to capture properties of real-world prob-

lems. We give hardness of approximation results and nearly-matching upper bounds for the of�ine

problem, and we study the online problem in both general graphs and restricted sub-classes. In the

online problem, for general graphs, we give exponentially better upper bounds than exist for algorithms

for general connectivity problems. For the restricted classes of stars and paths we are able to �nd al-

gorithms with optimal competitive ratios, the latter of which involve analysis using a potential function

de�ned over PQ-trees.

xii



CHAPTER 1

INTRODUCTION

Learning theory seeks to answer the questions: What are proper models for learning, and for a given

learning model, is a given class of functions learnable? However in the real world, problems generally

do not fall perfectly into any learning model, and we cannot afford to stop researching even when

problem of interest is known not to be learnable. Solving problems when observations are incomplete

and �awed, and when features are pricey or risky to obtain is an everyday occurrence of all �elds of

scienti�c and technological endeavors. In a clinical trial, when subjects are in short supply, Wald (6)

studies the sequential approach that keeps on testing more patients only when the uncertainty of the

hypothesis in question is suf�ciently large. To combat the problems of applying learning models that

are trained in perfect conditions to imperfect real world setting, Globerson and Roweis (7) study the

problem of whether a robust predictor can be built with resiliency to missing or corrupted features. Not

only do we try to �nd solutions in imperfect conditions we also need to understand the boundary of what

we can learn with the scarcity of resources and information. Efforts in this direction are organized into

the �eld of approximation theory, which is the study of approximation algorithms to computationally

hard problems and their performance guarantees, and into the �eld of competitive analysis, the study of

online algorithms that must respond promptly to current input without seeing the entire input. It is well-

known in the study of differential equations that, as it is hard enough to �nd a solution to a well-de�ned

equation, the inverse problem of recovering the parameters of an unknown equation from observations of

its solution is almost always ill-de�ned and can be signi�cantly harder in both analysis and computation.

1
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We have the same problem in the setting of network analysis. While �nding the behavior of people in

a given model from a known underlying network between them is computationally hard, as discussed

in (8), the question of recovering the unknown network from observing people's behavior always lead

to more intractable computational tasks, and small difference in the models can result in big difference

in the recovered networks. However, as we cannot force earthquakes or �oods to follow some arbitrary

equations we have in mind, we cannot force people to live in a certain social network and in a particular

way. We need to reveal the mechanisms of earthquakes and �oods by measuring them, and we need

to recover social network structure and models of how people interact in it by measuring behavior. So,

learning under inadequate knowledge is not just practical, it is at the heart of all scienti�c exploration.

In this thesis we aim to solve three problems in the area of learning under limited resource and

information.

The AdaBoost algorithm formulated by Freund and Schapire (9) is the bases for many state-of-

the-art solvers for hard prediction problems. However, one problem that limits its application in many

real-world scenarios is that boosting doesn't consider cases where features have costs. In the �eld of

medical diagnoses, prices of tests vary vastly, from taking temperature, which costs practically nothing,

to an MRI, which could easily cost thousands of dollars. In medical emergencies, not only do the

monetary costs count, the amount of time used for making diagnoses can also be a matter of life or

death. The World Wide Web is another source of prediction tasks that are time-sensitive; for example,

no matter how strong a search engine algorithm is, if it runs too long, it risks people dropping out before

seeing the results. By overlooking feature costs, the plain boosting algorithm may fail to predict at

test time when the total cost of the features it uses exceeds some budget. In light of this, we set off in
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Chapter 3 to construct predictors in the boosting framework that are feature-ef�cient, i.e. responsive to

costs and budgets. The problem of feature-ef�cient learning is approached from many different angles in

the theory of learning (10; 11) and studied under a variety of machine learning models (12; 13; 14; 15).

One approach,AdaBoostRS , proposed by Reyzin (4), from where we directly get our inspiration is

that, we �rst run the normal boosting algorithm to get a predictor, which is a linear combination of weak

learners, then “prune” the linear combination to met the budget. This is done via random sampling with

a bias towards the larger coef�cients and smaller costs. However this approach is not satisfactory in the

following aspects: �rst, since the coef�cient is not necessarily an indicator of the relative importance

of the weak learner, the practice of biasing towards terms with larger coef�cients is not well-founded;

second, boosting chooses weak learners to back up each other, so arbitrarily removing terms may cause

the mutually supporting structure to fall apart; �nally, Reyzin's optimization is done in two separate

steps. This motivates us to �nd algorithms that can optimize with respect to both accuracy and cost at the

same time while the predictor is being trained. We show that not only is this possible, the performance

of the two approaches we propose,AdaBoostBT_Greedy andAdaBoostBT_Smooth , improves

greatly over the two-staged optimization on both synthetic and real-world datasets.

Next, in Chapter 4, we study the computational complexity and algorithms for recovering networks

from only observations of their members' behavior. In order to carry out the inference, we �rst have to

hypothesize the ways social networks can impact the formation of members' opinion. We focus on two

plausible and previously studied models, one is an edge-centric model called the independent conver-

sation model (8) and the other vertex-centric called the common neighbor model (16). While in both

models, edges of networks are used to represent some form of in�uence between pairs of vertices, the
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difference in the exact formulations causes the two network recovery problems to differ in complexity

and produces distinct algorithmic challenges. In the independent conversation model we characterize

cases where network recovery is possible and where it is computationally dif�cult. To analyze the com-

plexity of the recovery problem under the common neighbor model, we compare the problem to the task

of recovering graph from the square of its adjacency matrix, whose closely related problem we show to

be hard. We also give a heuristic algorithm to the network recovery problem under the common neigh-

bor model. In experimental results, we test our algorithms on United States Senate data. We show that

the networks produced when working under the two models can also differ signi�cantly. These results

indicate that great care should be exercised when choosing a model for network recovery tasks.

Networks can also manifest their structure through how things, such as substances, information, or

cases of disease, spread through them. Inspired by the works on connectivity constraints (17; 18; 19),

in Chapter 5 we study the problem of inferring network from ordered connectivity constraints, which

are formulated to capture the propagation pathways through a network over time. One salient feature

of the task of reconstructing networks from ordered constraints is that the real-world problems it tries

to imitate are very often of time-sensitive nature. For example, when a new transmission pathway of

an epidemic is reported, prevention and control measures should be put into action as soon as possible

in response, because although waiting for more information may bene�t the optimization of the cost

by restricting redundant actions, it potentially put at risk something we cannot afford to sacri�ce, such

as human lives. This motivated us to devote a large part of Chapter 5 on the comparative analysis of

the reconstruction problem in the online setting, in which constraints are given one at a time, and an

algorithm is required to satisfy each constraint upon receiving it with the understanding that no previous
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actions can be revoked even they turn out to be unnecessary later on. To brie�y sum up the results we

get in Chapter 5: in the of�ine problem, we give hardness of approximation results and nearly-matching

upper bounds; in the online problem, for general graphs, we give exponentially better upper bounds for

competitive ratios than those exist for general connectivity problems, and for the restricted classes of

stars and paths, we are able to �nd algorithms with optimal competitive ratios.



CHAPTER 2

BACKGROUND

2.1 Learning theory

2.1.1 AdaBoost

Boosting was �rst introduced by Schapire in 1990 (20) as an algorithmic proof to the theoretical

question “whether weak and strong PAC-learnablility are equivalent”. The power of boosting as a solver

for real-world problems was established when Freund and Schapire formulated the AdaBoost, short for

“adaptive boosting”, in 1995 (21).

AdaBoost takes as input a set of labeled examplesS, a collection of weak classi�ersH , and number

of roundsT, and outputs a classi�er that is the signature of a linear combination of the weak classi�ers.

By weak classi�er, we mean a classi�er that is better than random guess. As in real life we form a

strong team by choosing teammates that can back each other up, AdaBoost forms the linear combi-

nation so that weak classi�ers in it complement each other. This backing-up mechanism is driven by

a probability distribution on the examples. In each roundt, a weak classi�erht is chosen fromH ,

and a combination coef�cient, or weight,at is computed using theht 's error rate so as to minimize

an exponential loss function. After adding the weighted weak classi�er to the combination, AdaBoost

mulitiplicatively diminishes the probability mass of examples thatht classi�es correctly, and ampli�es

those of examples thatht gets wrong, and normalizes the masses to make it a probability distribution

again. See Algorithm 1 for a pseudo code of AdaBoost.

6
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Algorithm 1 AdaBoost(S) , where:S � X � f� 1,+ 1g, andH a set of weak classi�ers,T 2 N

Given: (x1, y1), ...,(xm, ym) 2 S

Initialize D1( i) = 1
m.

for t = 1, . . . ,T do

Train base learner using distributionD t , get weak classi�er

ht 2 H : X ! f� 1,+ 1g.

Set

at =
1
2

ln
1 + g t

1 � g t
,

whereg t = å i D t ( i)yiht (xi ) is the margin of the weak classi�er with respect toD t .

Update

D t+ 1( i) = D t ( i) exp(atyiht (xi )) / Zt ,

whereZt is the normalization factor.

end for

Output the �nal classi�er

H (x) = sign

 
T

å
t= 1

atht (x)

!

.
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We note that, by updating the probability distribution in such a way that misclassi�ed examples

increase in importance, AdaBoost signals the process of weak classi�er selection on exactly where the

previous rounds fail to do well. It also worth noting that, although the greedy approach of choosing the

weak classi�er with the smallest margin works well in general, it isnot necessarily the way AdaBoost

makes the selection, especially when there are more criteria for a good weak classi�er than low classi�-

cation error. In Chapter 3, we generalize AdaBoost to deal with the case when each weak classi�ers has

a cost and there is a budget limit on the total costs of the combination. The way we tackle the problem

is to select weak classi�ers with respect to their performance, cost, and remaining budget.

An interested reader will �nd (22) a great reference to AdaBoost, and to machine learning in gen-

eral. We also point out that, although we treat AdaBoost as a binary classi�cation algorithm in this

thesis, it has been generalized to many highly successful algorithms for multi-classi�cation (23) and

regression (24).

2.1.2 Decision tree learning

Decision tree learning is a supervised learning method that uses decision trees to do classi�cation

and regression. The method takes as input a training set of labeled examples with their observed features,

and outputs a tree with each leaf node identi�ed with a predicted label and each interior node, the root

included, a test on a particular feature. When a new example comes, it traverses through the tree from

the root to a leaf, and the path it takes is determined by the outcomes of the tests it encounters along the

way. A test on feature is also called a split, because examples that go through the test will be split into

two sets depended on their values of the selected feature. The choice of the feature used as a split is

determined by how informative the feature is on predicting the labels of the subset of examples that go
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through the test, with informativeness measured by a given impurity function. An interested reader will

�nd (25) a great reference to decision tree learning.

The following is a toy example of a decision tree predicting the gender of an imaginary species

given an animal's weight, length, and color:

Figure 1: A toy example of decision tree predicting the gender of a species

In the example above, an animal that is 3.2kg and brown will be predicted as a female, and one that

is 1.8kg and 60cm long will be predicted as a male.

There are many algorithms that compute decision trees, and the one we use in Section 3.7 is called

the CART decision tree, a detailed description of which can be found in (26).
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2.2 Computational complexity theory and competitive analysis

2.2.1 Complexity classes

All discussions on computational complexity theory we are going encounter in this thesis are in the

computational model of Turing Machine, which we won't introduce in detail, but refer an interested

reader to (27). In complexity theory, there are two big categories of problems,decision problemsand

function problems. For every input, a decision problem expects an output that can be recorded by a

single bit, i.e. either 'YES' or 'NO', while a function problem expects an output that is more complex

than a yes-or-no answer.

De�nition 1 (Complexity class P and NP). A decision problem is in the complexity classP if it can be

decided in polynomial time of its input size by a deterministic Turing machine. A decision problem is in

the complexity classNP if it can be decided in polynomial time of its input size on an nondeterministic

Turing machine.

In computational complexity theory, a reduction is an algorithm converting one problem to another.

Reductions are used to provide an order of hardness on problems. Intuitively, if we can reduce a problem

A to a problemB, and by solvingB we get the result forA in turn, B should be at least as hard asA.

Since a reduction is meaningless if it takes longer to run than solving the original problem directly, the

reductions we consider in this thesis all run in polynomial time in some way or another:

De�nition 2 (Polynomial-time Karp reduction). A polynomial-time Karp reduction from a decision

problemA to a decision problemB is an algorithm that, on input an instancex of problemA, given an
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instancey of B in polynomial time, such that the answer toy is 'YES' if and only if the answer tox is

also 'YES'.

De�nition 3 (Complexity class NP-hard and NP-complete). AnNPproblemB is NP-complete ifA can

be reduced toB for all A 2 NP.

De�nition 4 (Polynomial-time Turing reduction). A polynomial-time Turing reduction from a problem

A to a problemB is an algorithm that solves problemA using polynomially many of calls to a subroutine

for problemB (assumed to output result in unit time) on an oracle Turing machine, and polynomial time

beside the calls to the subroutine.

The Karp reduction is also calledmany-one reduction, and the Turing reduction is also called

oracle reduction. We note that Turing reduction is more general than Karp reduction in that, �rst,

Turing reduction can also be applied to function problems, and second, Karp reduction can be viewed

as a restricted case of the Turing reduction in which the subroutine can only be called once.

In De�nition 4 above, assume that the Turing machine is probabilistic, i.e. one that chooses from a

set of instructions according to some probability distribution at each transition, and we only insist on that

the solution is correct with probability� 2/3 , then we have arandomized polynomial-time Turing

reduction. The2/3 in the de�nition can be replaced by any probability strictly greater1/2 , or even by

1 � #for arbitrarily small# > 0, in which case the running time is allowed to depend polynomially on

1/ #.

De�nition 5 (Complexity class #P). A function problem is in #P if its output is the number of accepting

paths of anNPproblem running on a nondeterministic Turing Machine.
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We note that unlike the classes P and NP, and most other complexity classes, #P is a class offunction

problems.

De�nition 6 (The Hitting Set problem). Let U = f u1, . . . ,ung be a set (also called a universe), and

S = f S1, . . . ,Smg be a set of subsets ofU. A subsetH � U is called a hitting set ifH \ Si 6= Æfor

all i = 1, . . . ,m. Theoptimization or searchversion of Hitting Set problem is the function problem of

�nding a smallest hitting set. Thedecisionversion of the Hitting Set problem asks whether there exists

a hitting set of size� k, with somek 2 N + .

Theorem 1. The decision version of the Hitting Set problem isNP-complete (27), while the optimization

version isNP-hard, since its solution can be translated to a solution to the corresponding decision

problem immediately.

Since it is unlikely we can �nd ef�cient, i.e. polynomial-time, exact algorithms for NP-hard prob-

lems, polynomial-time approximation algorithms that render reasonably good sub-optimal solutions for

hard problems become the next best thing we can hope for. To measure the performance of a polynomial-

time approximation algorithm, we consider theapproximate ratio, the quotient of the output given by

the approximation in the worst case to the optimum, as a function of the input size. There are extensive

researches in the area of approximation algorithms and an interested reader can �nd, for example, (28)

as good reference. In this thesis, we are going to use the following result on the approximability of the

hitting set problem, whose proof can be found in (29).

Theorem 2. If P 6= NP, the approximation ratio of the Hitting Set problem isW( log n).
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2.2.2 Competitive analysis

An online algorithm is an algorithm that must process input that is given in a one-by-one fashion.

For example, an online algorithm for the hitting set problem, when given a sequence of setsS1, S2, . . .

one at a time, should be able to pick up an element to hitSi upon seeing it. Note that actions an online

algorithm has taken will not be revoked even if they are later shown to be unnecessary. The performance

of an online algorithm is measured bycompetitive ratio, which is the quotient of its output to that of

an optimal of�ine algorithm.

When the online algorithm we consider is randomized, we have to specify how much knowledge the

adversary has on the randomness of the algorithm.

De�nition 7 (Oblivious adversary and adaptive adversary).

� An oblivious adversaryknows the algorithm but not the randomized results of the algorithm.

Hence an oblivious adversary must �x an input sequence, presumably the worst one, before feed-

ing it to the online algorithm, but cannot alter it afterwards.

� Anadaptive adversaryknows the algorithm and also the randomized result of the algorithm up to

the current round and can use it to determine its input to the algorithm in the next round.

The adaptive adversary de�ned above is also calledadaptive online adversary, to distinguish itself

from adaptive of�ine adversary that knows, in addition, the random number generator of the algorithm.

Since it can be shown that we can no long bene�t from randomization when facing adaptive of�ine

adversaries, by adaptive we usually mean implicitly adaptive online.
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Assume that the objective function of an online problem is stated in the form of minimizing a

quantity. To �nd a lower bound to the competitive ratio, we �nd a strategy that the adversary can

take such that the competitive ratio cannot go bellow a certain valuel no matter how smart an online

algorithm is. A stronger lower bound can be achieved if there is a smarter strategy the adversary can

take to force the best algorithm to do worse, i.e. to have a competitive ratio that isw( l ). To �nd an

upper bound in the same setting, on the contrary, we �nd an online algorithm for the problem such that

the competitive ratio cannot be forced to go above a certain valueu by any strategy the adversary takes.

By a stronger upper bound, we mean an algorithm that is more powerful such that the competitive ratio

is o(u) for the shrewdest adversary. From the de�nition of lower and upper bounds, we can derive that

l = O(u), i.e. u = W( l ), holds for all pairs of lowerl and upper boundsu. When we �nd a pair of

lower and upper bounds,l andu, that match each other in their orders of magnitude of the input size,

we know bothl andu are the strongest, because for any lower boundl0, we havel0 = O(u) = O( l ) ,

and for any upper boundu0, we haveu0 = W( l ) = W(u) . In this case, we say that we �nd theoptimal

competitive ratio.

2.3 Graph theory

A graphG = ( V, E) is de�ned by a setV of objects, usually called vertices or nodes, together with

a collectionE of edges, where eache 2 E is a subset ofV. In this thesis, we only considersimple

graphs, whose edges contain exactly two distinct elements. The edges are used to represent some sort

of relation between objects – in a social network, whereV is a group of people, an edge may represent

a channel for information and opinion exchange between two people; in a traf�c network, whereV is a

collection of locations, an edge may represent a direct access from one location to another.
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A complete graphhas an edge between each pair of vertices. Apath is a sequence of vertices and

edgesv1, e1, v2, e2, v3, . . .vk� 1, ek� 1, vk, wherev1 throughvk are distinct elements, except for possibly

the �rst and the last one, and edgeei = f vi , vi+ 1g for all i = 1, . . . ,k � 1. Whenv1 = vk, the path is

called acycle. We say a graph isconnected, if for any pair of verticesu andv, there is a path connecting

them. We call a graph a path, ifV = f v1, . . . ,vkg andE = f e1, . . . ,ek� 1g. An acyclic graphcontains

no cycle. Atree is a connected acyclic graph. Aleaf in a tree can have only one edge incident to it,

while an interior vertex must serve as the endpoint of at least two edges. Astar is a graph that has a

centerv0 connecting to all vertices, and the edge setE = ff v0, vg jfor all v 2 Vg. Examples of the

concepts introduced above can be found in Figure 2.

(a) A pathc, d, b, e, a in a

complete graph with5 ver-

tices

(b) A cyclec, a, d, c
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(c) A star with v0 as the

center

(d) A tree

Figure 2: Path, cycle, star, tree

TheneighborhoodN (v) of a vertexv is de�ned to be the subset of all vertices that are connected to

v, i.e. N (v) = f u 2 V j f u, vg 2 Eg. Thedegreeof a vertexv, denoted bydv, is de�ned to be the size

of its neighborhood, i.e.dv = jN (v)j. For two distinct verticesu, v we denote byduv the size of the

their common neighborhood, i.e.duv = jN (u) \ N (v)j. Theadjacencymatrix A(G) of a graphG, or

simply A whenG is clear from the context, is af 0, 1g-valued matrix with rows and columns indexed

by the vertices, ordered in the same way. The(u, v)-entry of A(G) equals to1 if and only if f u, vg is

in E. The adjacency matrix for the graph in Figure 3(a) is given by Figure 3(b). For a simple graph,

A is a symmetric matrix, and the diagonal entries of the adjacency matrix are all0. In this thesis, we

are especially interested inA2, the square of the adjacency matrix, since it encodes several important

information of the graph. In particular, the(v, v)-entry of A2 is dv, and the(u, v)-entry of A2 is duv.
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The complexity of the decision problem of whether a given nonnegative integral matrix is the square of

the adjacency matrix of some graph is a long lasting open problem.

(a) A graphG on 4

vertices

(b) A(G) (c) (A(G))2

Figure 3: The adjacency matrixA(G) and its square

A subgraph G0 = ( V0, E0) of a graphG = ( V, E) is formed with vertext setV0 � V and edge set

E0 � E, together with the constraint that all endpoints of edges inE0are inV0. An induced subgraph

G[V0] of a subsetV0 � V is a subgraph ofG with the edge set consisting of all edges ofG that have

both endpoints inV0. We say a subset of verticesV0 form aclique in G if the induced subgraphG[V0]

is complete. Theclique number k(G) of a graphG is de�ned to be the size of its largest clique. The

k-CLIQUE problem asks whether a graphG has clique numberk(G) � k, for somek 2 N + . We are

going to use the following result in this thesis.

Theorem 3. Thek-CLIQUE problem isNP-complete.



18

2.4 Probability theory

In this part, we give a brief review to probability theory on �nite set that are used throughout this

thesis, especially in Chapter 4.

2.4.1 Basic concepts

A �nite probability space W = ( S,P) is composed of a setS of objects, and a map, called

distribution,P : S ! R � 0, such thaå s2S P(s) = 1. We callP(s) the probability ofs. An event A is

a subset ofS, and we de�ned the probability of an eventA to be

P(A) = å
s2 A

P(s). (2.1)

A random variableX is a mapS ! R. Theexpectationof a random variableX is given byE(X) =

å s2S P(s)X(s).Thevarianceof a random variableX is given by

Var (X) = E
�
(X � E(X)) 2�

= E(X2) � (E(X))2 . (2.2)

Let X andY be two random variables, we de�ne thecovarianceof X andY to be

Cov(X,Y) = E (( X � E(X)) (Y � E(Y))) = E(XY) � E(X)E(Y). (2.3)

We can de�ne events by conditions on random variables. For example, we can de�ne an eventA =

[1 < X � 4], where[1 < X � 4] is the shorthand forf s 2 Sj1 < X(s) � 4g, or an eventB = [ X =

3,Y � 8], where[X = 3,Y � 8] is the shorthand forf s 2 SjX(s) = 3,andY(s) � 8g. We say a
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f 0, 1g-valued random variableXA is anindicator random variable for an eventA if XA (s) = 1 if

and only if s 2 A. The subscriptA in XA is sometime omitted ifA is obvious from the context. The

probability mass function, or pmf, fX of an random variableX is de�ned to be the function that gives

the probability of the event[X = a] for all a 2 R, i.e. fX (a) = P [X = a]. In the case whenWis �nite,

we say two random variablesX andY areidentical if and only if [X = a] = [ Y = a] for all possible

a, and areindependent if and only if P [X = a,Y = b] = P [X = a] P [Y = b] for all possiblea

andb. We say a sequence of random variablesX1, ...,Xn areindependently identically distributed,

or i.i.d., if they are all identical, andP [X1 = a1, . . . ,Xn = an] = Õ n
i= 1 P [X i = ai ] for all possible

(a1, . . . ,an). The expectation has thelinearlity property, which says that the expectation of random

variables is equal to the sum of their expectation, regardless of whether they are independent or not. The

probability that an eventA happens conditioned on another eventB also happens, denoted byP [A jB]

and called theconditional probability of A given B, is equal toP [A \ B] / P [B] if P [B] 6= 0, and

0 if otherwise. Sometimes, the probability spaceW is just an elementW( � ) = ( S,P � ) in a family of

probability spaces parameterized by� = (q1, . . . ,qk), and our task is to estimate� by sampling. Suppose

we have a collection of samplesf s1, . . . ,smg drawn independently fromW( � ) of some unknown�, we

de�ne thelikelihood of the samples to beL(q) = Õ m
i= 1 P � (si ), and themaximum likelihood estimate

of � to beargmax� L( � ). An estimator got by maximizing the likelihood function is called amaximum

likelihood estimator.

For an example demonstrating the concepts above, we consider the probability spaceW of all pos-

sible graphs on three verticesa, b, andc. For a distribution onW, we assume thatf a, bg exists with
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probability0.5, f b, cg 0.2, andf c, ag 0.8. We further assume that the edges exist independently of each

other. We list the totally23 = 8 possible graphs inW and their probability in Figure 4.

Figure 4: A distribution on the set of all graphs on three vertices

Let us consider the eventA that the graph having two edges. Then we haveA = f G5, G6, G7g and

P(A) = 0.08+ 0.32+ 0.02= 0.42. Given that we have a graph having two edges, the probability that

the graph is actuallyG5 is given byP (G5jA) = 0.08/0.42. Let X be the random variable of the number

of edges in graphs inW, then we haveE(X) = 0.08� 0 + ( 0.08+ 0.02+ 0.32) � 1 + ( 0.08+ 0.32+

0.02) � 2+ 0.08� 3 = 1.5, whileVar (X) = 0.08� 0+ ( 0.08+ 0.02+ 0.32) � 1+ ( 0.08+ 0.32+ 0.02) �
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4 + 0.08� 9 � 1.52 = 0.57. In terms ofX, the eventA is de�ned by [X = 2]. Let Xab, Xbc, Xca be

the indicator random variables of the existence of edgef a, bg , f b, cg andf c, ag, respectively. We have

X = Xab+ Xbc + Xca. It is easy to calculate thatE (Xab) = 0.5, E (Xbc) = 0.2, andE (Xca) = 0.8,

and hence by linearity of expectation we get, again,E(X) = 0.5+ 0.2+ 0.8 = 1.5.

Note in the example above we can viewWas an elementW(0.5, 0.2, 0.8) in the family of probability

spaces parameterized by the existing probability of the three edges. Assume for simplicity that the edges

exist with probabilityp independently, and we want to estimatep by sampling three graphs from the

space. Suppose the three graphs we get areG2, G5, G6, we can calculate that the probably of getting

these three graphs isq = 2p2(1 � p) + p(1 � p)2. Sinceq is maximized atp =
p

1/3 , we have the

maximum likelihood estimates ofp is
p

1/3 .

2.4.2 Chernoff-Hoeffding bound

By the central limit theorem, we know that the sample mean converges toE(X) as the size of

the samples becomes large. But more often than not, we need a quantitative understanding on the

convergence rate and, in turn, on the sample size that would guarantee an acceptably low chance that

our estimate deviates fromE(X) by too much. Because the ubiquitous appearance of the problem above

in the study of learning, especially in the PAC model, we introduce the Chernoff-Hoeffding bound that is

the one technique in cracking the problem. We begin with the original form of the Chernoff-Hoeffding

bound onf 0, 1g-value random variables, i.e. Bernoulli random variables, and proceed to variations of

the bound used in this thesis directly.
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Theorem 4(Chernoff-Hoeffding Theorem). SupposeX1, ...,Xn are i.i.d. Bernoulli random variables.

LetY = 1
n å n

i= 1 X i and letp = E(X i ), then for any#> 0 we have

P (Y � p + #) � e� D(p+ #kp)n, P (Y � p � #) � e� D(p� #kp)n,

where

D(pkq) = p ln
p
q

+ ( 1 � p) ln
1 � p
1 � q

,

is the Kullback-Leibler divergence between two Bernoulli random with variables expectationsp andq,

respectively.

In case that the random variable of interest isf � 1, 1g-valued, as those appear in Chapter 4, we have

Corollary 5. SupposeX1, ...,Xn are i.i.d. f � 1, 1g-valued random variables. LetY = 1
n å n

i= 1 X i and

let p = E(X i ), then for any#> 0 we have

P (Y � p + #) � e� D(p+ #/2 kp)n, P (Y � p � #) � e� D(p� #/2 kp)n.

Proof. Let X0
i = ( X i + 1)/2 andY0 = 1

n å n
i= 1 X0

i . Applied Theorem 4 toY0 with p0 = E(X0
i ) =

(p + 1)/2 .

With the inequality

D(p + #kp) < 2#2,
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we get a simpler form of the Chernoff-Hoeffding bound forf � 1, 1g-valued random variables

P (Y � p + #) , P (Y � p � #) � e� n#2/2 (2.4)



CHAPTER 3

TRAINING-TIME OPTIMIZATION OF A BUDGETED BOOSTER

This chapter was previously published as Yi Huang, Brian Powers, Lev Reyzin: Training-Time Opti-

mization of a Budgeted Booster.International Joint Conferences on Arti�cial Intelligence Organization

(IJCAI) 2015: 3583-3589.

3.1 Introduction

The problem of budgeted learning centers on questions of resource constraints imposed on a tradi-

tional supervised learning algorithm. Here, we focus on the setting where a learner has ample resources

during training time but is constrained by resources in predicting on new examples. In particular, we

assume that accessing the features of new examples is costly (with each feature having its own access

cost), and predictions must be made without running over a given budget. This budget may or may not

be known to the learner. Learners that adhere to such budget constraints are sometimes calledfeature-

ef�cient .

A classic motivation for this problem is the medical testing setting where features correspond to the

results of tests that are often costly or even dangerous to perform. Diagnoses often need to be made

on incomplete information and doctors must order tests thoughtfully in order to stay within whatever

budgets the world imposes. In internet-scale applications this problem also comes up. The cost to

access certain features of a document or website is often used as a proxy for computing time which

24
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is crucially important to minimize. To address this issue, Yahoo! has recently released datasets which

include feature costs (15).

Here, we focus on boosting methods, in particularAdaBoost , to make them feature-ef�cient pre-

dictors. This line of work was started by Reyzin (4), who introduced the algorithmAdaBoostRS , a

feature-ef�cient version ofAdaBoost . While AdaBoostRS provably converges to the behavior of

AdaBoost as the feature budget is increased, it only considers feature costs and budget at test time.

Reyzin left open the problem of whether optimizing during training can improve performance. Here, we

answer this question with a resounding yes, giving algorithms that clearly outperformAdaBoostRS ,

especially when costs vary and budget limits are small.

Our approach relies mainly on two observations. The �rst is that when all features have equal costs,

stopping the training ofAdaBoost early, once the budget runs out, will outperformAdaBoostRS .

Second, when features have different costs, which is the setting that chie�y concerned Reyzin, one can

still run AdaBoost but choose weak learners as to better trade-off their cost against contribution to the

performance of the ensemble.

3.2 Past work

Research on this problem goes back at least to Wald (6), who considered the problem of running a

clinical trial sequentially, only testing future patients if the validity of the hypothesis in question is still

suf�ciently uncertain. This question belongs to the area of sequential analysis (30).

Ben-David and Dichterman (10) examined the theory behind learning using random partial infor-

mation from examples and discussed conditions for learning in their model. Greiner et al. (11) also

considered the problem of feature-ef�cient prediction, where a classi�er must choose which features to
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examine before predicting. They showed that a variant of PAC-learnability is still possible even without

access to the full feature set.

In related settings, Globerson and Roweis (7) looked at building robust predictors that are resilient to

corrupted or missing features. Cesa-Bianchi et al. (31) studied how to ef�ciently learn a linear predictor

in the setting where the learner can access only a few features per example. In the multi-class setting,

Gao and Koller (12) used a parameter-tuned value-theoretic computation to create ef�cient instance-

speci�c decision paths. In a similar vein, Schwing et al. (13) trained a random forest to adaptively select

experts at test-time via a tradeoff parameter. He et al. (14) trained an MDP for this task, casting it as

dynamic feature selection – their model is a variant of ours, except that they attempt to jointly optimize

feature costs and errors, whereas our model has a strict bound on the budget. Finally, Xu et al. (15)

tackled a related a feature-ef�cient regression problem by training CART decision trees with feature

costs incorporated as part of the impurity function.

In the area of boosting, Pelossof et al. (32) analyzed how to speed up margin-based learning algo-

rithms by stopping evaluation when the outcome is close to certain. Sun and Zhou (33) also considered

how to order base learner evaluations so as to save prediction time.

However, our main motivation is the work of Reyzin (4), who tackled the feature-ef�cient learn-

ing problem using ensemble predictors. He showed that sampling from a weights distribution of an

ensemble yields a budgeted learner with similar properties to the original ensemble, and he tested this

idea experimentally onAdaBoost . The goal of this paper is to improve on Reyzin's approach by

considering the feature budget during training.
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We also compare to the recent work of (5), who also focused on this setting. Their algorithm,

which is calledSpeedBoost , works by sequentially choosing weak learners and voting weighta as

to greedily optimize the improvement of a loss function (e.g. exponential loss) per unit cost, until the

budget runs out.

3.3 AdaBoost and early stopping

Our goal in this paper is to produce an accurate classi�er given a budgetB and a set ofm training

examples, each withn features, and each feature with a cost via cost functionC : [n] ! R+ .

Reyzin's AdaBoostRS (4) takes the approach of ignoring feature cost during training and then

randomly selecting hypotheses from the ensemble produced byAdaBoost until the budget is reached.

Here we look at a different approach – to optimize the cost ef�ciency of boosting during training, so

the ensemble classi�er that results is both relatively accurate and affordable.

One straightforward approach is to runAdaBoost , paying for the features of the weak learners cho-

sen every round, bookkeeping expenditures and the features used, until we cannot afford to continue. In

this case we are simply stoppingAdaBoost early. We call this algorithm the “basic”AdaBoostBT

for Budgeted Training. Surprisingly, this albeit simple methodology produces results that are signi�-

cantly better thanAdaBoostRS for both features with a uniform cost and features with random cost

across a plethora of datasets.

We note that, inAdaBoost , since training error is upper bounded by

bP [H (x) 6= y] �
T

Õ
t= 1

Zt =
T

Õ
t= 1

q
1 � g2

t ,
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at each roundt of boosting one typically greedily chooses the base learner that minimizes the quantity

Zt , which is equivalent to choosing the base learner that maximizesg t . This is done in order to bound

the generalization error, which was shown by Freund and Schapire (21) to be bounded by

P [H (x) 6= y] � bP [H (x) 6= y] + Õ

 r
Td
m

!

.

In these boundsbP refers to the probability with respect to the training sample, andd is the VC-dimension

of H .

Hence, one can simply chooseht in step 4 ofAdaBoostBT according to this rule, which amounts

to stoppingAdaBoost early if its budget runs out. As we show in Section 3.6, this already yields

an improvement overAdaBoostRS . This is unsurprising, especially when the budget or number of

allowed rounds is low, asAdaBoost aggressively drives down the training error (and therefore gener-

alization error), whichAdaBoostRS does not do as aggressively. A similar observation will explain

why the methods we will introduce presently also outperformAdaBoostRS .

However, this approach turns out to be suboptimal when costs are not uniform. Namely, it may

sometimes be better to choose a worse-performing hypothesis if its cost is lower. Doing so may hurt the

algorithm on that current round, but allow it to afford to boost for longer, more than compensating for

the locally suboptimal choice.

3.4 A better trade-off

Here we focus on the problem of choosing a weak learner when feature costs vary. Clearly, higher

values ofg t are still preferable, but so are lower feature costs. Both contribute to minimizing the quantity
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Õ T
t= 1 Zt , which upper bounds the training error. Highg ts make the product small term-wise. Lower

costs, on the other hand, allow for more terms in the product.1 The goal is to strike the proper balance

between the two.

One problem is that it is dif�cult to know exactly how many future rounds of boosting can be

afforded under most strategies. If we make the assumption that we expect the costs of base learners

selected in future rounds to be similar to the costc in this round, we could affordBt / c additional rounds

of boosting. Assuming that future rounds will incur the same cost and achieve the sameg t as in the

current round, minimizing the quantityÕ T
t= 1 Zt is equivalent to minimizing the quantity

�
1 � g t (h)2� T/2

=
�
1 � g t (h)2� Bt /2 c

.

SinceBt /2 is common to all hypotheses,ht is chosen using the following rule:

ht = argmin h2H

�
(1 � g t (h)2)

1
c(h)

�
, (3.1)

where

g t (h) = å
i

D t ( i)yih(xi ),

andc(h) is the cost of the features used byh. This is our �rst algorithm criterion for modifying base

learner selection in step 4 ofAdaBoostBT (boxed for emphasis) and name itAdaBoostBT_Greedy .

1This also creates a slightly more complex classi�er, which factors into the generalization error bound, but this
effect has been observed to not be very signi�cant in practice (34; 35).
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Algorithm 2 AdaBoostBT(S,B,C) , where:S � X � f� 1,+ 1g, B > 0, C : [n] ! R+

Given: (x1, y1), ...,(xm, ym) 2 S

Initialize D1( i) = 1
m, B1 = B

for t = 1, . . . ,T do

Train base learner using distributionD t , get

ht 2 H : X ! f� 1,+ 1g

if the total cost of the unpaid features ofht exceedsBt then

setT = t � 1 and break

else

setBt+ 1 asBt minus the total cost of the unpaid features ofht , marking them as paid

end if

Set

at =
1
2

ln
1 + g t

1 � g t
,

whereg t = å i D t ( i)yiht (xi )

Update

D t+ 1( i) = D t ( i) exp(atyiht (xi )) / Zt ,

whereZt is the normalization factor

end for

Output the �nal classi�er

H (x) = sign

 
T

å
t= 1

atht (x)

!
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There is a potential pitfall with this approach: if we mark every used feature down to cost0 (since

we don't re-pay for features), then the optimization will collapse since every base learner with cost0

will be favored over all other base learners, no matter how uninformative it is. We can obviate this

problem by considering the original cost during the selection, but not paying for used features again

while updatingBt , as is done in our Algorithm.

As optimizing according to Equation 3.1 makes a very aggressive assumption of future costs, we

consider a smoother optimization for our second approach. If in roundt, we were to selectht with cost

c, the average cost per round thus far is then

(B � Bt ) + c
t

.

If we expect future rounds to have this average cost, we get a different estimate of the number of

additional rounds we are able to afford. Speci�cally, in step 4 ofAdaBoostBT , we select a base

learner according to

ht = argmin h2H

�
�
1 � g t (h)2� 1

(B� Bt )+ c(h)

�
. (3.2)

Selecting according to Equation 3.2 is less aggressive, because as more of the budget is used, current

costs matter less and less. Hence, we call this second algorithmAdaBoostBT_Smoothed . While

some other feature-ef�cient algorithms require a non-heuristic tuning parameter to control trade-off,

this equation continually revises the trade-off as the budget is spent. Our experimental results show that

it pays to be less greedy for larger budgets. To further customize this trade-off, however, a parameter
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t 2 (0, 1) may be used to scale(B � Bt ) allowing greed to drive the decision for more rounds of

boosting.

One could even implement a hybrid approach, in whichAdaBoostBT_Greedy is used at be-

ginning to select weak learners andAdaBoostBT_Smoothed is used later on when the quality (a

function ofg andc) of the unused features drops below a certain threshold. Exploring this hybrid idea,

however, is outside the scope of this paper.

3.5 Additional theoretical justi�cation

While the theory behind optimizing the bound ofÕ T
t= 1 Zt on the training error is clear, we can

borrow from the theory of margin bounds (35) to understand why this optimization yields improved

results for generalization error.

One might be concerned that in �nding low cost hypotheses, we will be building too complex a

classi�er, which will not generalize well. In particular, this is the behavior that the (21) generalization

bound would predict. Fortunately, the margin bound theory can be used to alleviate these concerns.

The following bound, known as the margin bound, bounds the probability of error as a sum of two

terms.

P [y f (x) � 0] � bP [y f (x) � q] + Õ

 r
d

mq2

!

,

wheref (x) = å T
t= 1 atht (x), as in Algorithm 2. The �rst term is the fraction of training examples whose

margin is below a given value and the second term is independent of the number of weak learners.
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It can be shown (22) that the �rst term can be bounded as follows

bP [y f (x) � q] � eqå ai

T

Õ
t= 1

Zt ,

whereai is de�ned in Algorithm 2. For smallq this tends to

T

Õ
t= 1

Zt =
T

Õ
t= 1

q
1 � g2

t .

This well-known viewpoint provides additional justi�cation for optimizingÕ T
t= 1 Zt , as is done in the

preceding section.

3.6 Experimental results

Although there are a number of feature-ef�cient classi�cation methods (12; 13; 15), we directly

compare the performance ofAdaBoostBT , AdaBoostBT_Greedy andAdaBoostBT_Smoothed

to AdaBoostRS andSpeedBoost as both are feature-ef�cient boosting methods which allow for any

class of weak learners.
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Figure 5: Experiments on nine UCI machine learning datasets
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In Figure 5,AdaBoostBT_Greedy andAdaBoostBT_Smoothed are compared toAdaBoostRS

andSpeedBoost on nine UCI machine learnig datasets. Test error is calculated at budget increments

of 2. The feature costs are uniformly distributed in the interval[0, 2]. The horizontal axis has the budget,

and the vertical axis has the test error rate.AdaBoostRS test error rate uses the secondary vertical axis

(on the right hand side) for all data sets except for heart. Error bars represent a 95% con�dence interval.

For our experiments we �rst used datasets from the UCI repository, as shown in Table I. The features and

labels were collapsed into binary categories, and decision stumps were used for the hypothesis space.

In the table bellow we summarized the statistics (dataset sizes, numbers of features for training

and test, and number of rounds when running theAdaBoost predictor.) of experiments demonstrated

above.
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TABLE I Statistics of the experiments on nine UCI machine learning datasets

num features training size test size AdaBoost rounds trials

(optimized)

ocr17 403 1000 5000 400 100

ocr49 403 1000 5000 200 100

splice 240 1000 2175 75 100

census 131 1000 5000 880 100

breast cancer 82 500 199 500 400

ecoli 356 200 136 50 400

sonar 11196 100 108 99 400

heart 371 100 170 15 400

ionosphere 8114 300 51 400 400

webscope set2 519 7000 15439 500 20
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Figure 6: Experiments on the Yahoo! Webscope data set 2

In Figure 6,AdaBoostBT_Greedy andAdaBoostBT_Smoothed are compared toAdaBoostRS

andSpeedBoost on the Yahoo! Webscope data set 2. Test error is calculated at budget increments of

2. Error bars represent a 95% con�dence interval.

Experimental results, given in Figure 5, compare average generalization error rates over multiple

trials, each with a random selection of training examples. Features are given costs uniformly at random

on the interval[0, 2]. For comparison,AdaBoost was run for a number of rounds that gave lowest test
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error, irrespective of budget. This setup was chosen to compare directly against the results of Reyzin (4)

who also used random costs. We test on all the datasets Reyzin used, plus others.

Then, to study our algorithms on real-world data, we used the Yahoo! Webscope dataset 2, which

includes feature costs (15). The data set contains 519 features, whose costs we rescaled to costs to the

set {.1, .5, 1, 2, 5, 10, 15, 20}. Examples are query results labeled 0 (irrelevant) to 5 (perfectly relevant).

We chose to collapse labels 1-5 to be binary label 1 (relevant) to test our algorithms. Results are given

in Figure 6.

The most apparent conclusion from our experiments is that it is not only possible to improve upon

AdaBoostRS by optimizing base learner selection during training, but that the improvement is dra-

matic. Further modi�cations of the basicAdaBoostBT tend to yield additional improvements.

AdaBoostBT_Greedy often performs better than the basicAdaBoostBT for small budgets,

but it chooses base learners quite aggressively – a low cost base learner is extremely attractive at all

rounds of boosting. This makes it possible that the algorithm falls into a trap, as we see in the sonar

and ionosphere datasets where a huge number of features (11,196 and 8,114 respectively) lead to many

features with costs close to zero (due to the cost distribution). Even after 500 rounds of boosting on the

sonar dataset, this approach still does not spend the budget of 2 because the same set of cheap features

are re-used round after round leading to a de�cient classi�er. Similar behavior is seen for the ecoli (356)

and heart (371) datasets which also have relatively small training sizes, leading to over-�tting on small

budgets.

AdaBoostBT_Smoothed avoids this trap by considering the average cost instead. The appeal of

cheap base learners is dampened as the boosting round increases, with its limiting behavior to choose
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weak learners that maximizeg. Thus, we can see that usingAdaBoostBT_Smoothed , while tending

to perform worse thanAdaBoostBT_Greedy for low budgets, tends to exceed its accuracy for larger

budgets.

In cases whenAdaBoost will noticeably over-�t with larger budgets (breast cancer, ecoli, heart

- note the behavior of Stopping Early) we note thatAdaBoostBT_Smoothed achieves the same (or

better) error rate asAdaBoost at much lower budgets. For example, on the ecoli data set,AdaBoost

needs a budget of 18 to achieve whatAdaBoostBT_Smoothed does with a budget of 6.

On the Yahoo! Webscope data set, we see a dramatic difference betweenAdaBoostBT and our

other optimizations. However, this is understandable becauseAdaBoost typically includes the expen-

sive feature (cost of 20) in early rounds of boosting thus failing to produce a feature-ef�cient classi�er

for small budgets. Both theGreedy andSmoothed optimizations, however, effectively select from

the less expensive features to create powerful low-budget classi�ers.

Comparing to Speedboost

We also compare to the classi�cation algorithmSpeedBoost (5) on all data sets, which was re-

cently designed for tackling the same issue.SpeedBoost works by choosing weak learners (together

with a voting weighta) so as to greedily optimize the improvement of a loss function per unit cost until

the budget runs out. To mirror (5), as well asAdaBoost , we use exponential loss.
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In our experiments,SpeedBoost performs almost identically toAdaBoostBT_Greedy , which

forces us to use dashed lines forSpeedBoost in Figure 5. This phenomenon can be explained as

follows. Let Ht (xi ) = å t
t = 1 at ht (xi ), SpeedBoost tries to �nd

argmax
a2R+ ,h2H

å m
i= 1e� yi Ht (xi ) � å m

i= 1e� yi (Ht (xi )+ ah(xi ))

c(h)

For a �xed h 2 H , let

I (a) =
m

å
i= 1

e� yi Ht (xi ) �
m

å
i= 1

e� yi (Ht (xi )+ ah(xi )) ,

we have

I0(a) = �
m

å
i= 1

e� yi Ht (xi ) (� yih(xi ))e� ayi h(xi )

= å
f i :yi = h(xi )g

e� yi Ht (xi )e� a � å
f i :yi 6= h(xi )g

e� yi Ht (xi )ea

which is equal to zero if and only if

a =
1
2

ln
å f i :yi = h(xi )g e� yi Ht (xi )

å f i :yi 6= h(xi )g e� yi Ht (xi )
. (3.3)

Plugging in thea above, we get

max
a2R+ ,h2H

å m
i= 1e� yi Ht (xi ) � å m

i= 1e� yi (Ht (xi )+ ah(xi ))

c(h)

= max
h2H

1
c(h)

0

B
@

m

å
i= 1

` t ( i) � 2

0

@ å
i :yi = h(xi )

` t ( i) å
i :yi 6= h(xi )

` t ( i)

1

A

1
2

1

C
A .
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Where` t ( i) = e� yi Ht (xi ) . Hence, inSpeedBoost , we implicitly �nd

argmax
h2H

1 �
p

1 � g(h)2

c(h)
. (3.4)

Note that Equation 3.4 does not depend ona, which, after choosingh, can be set according to Equa-

tion 3.3. Remember that inAdaBoostBT_Greedy we �nd

argmin h2H

�
1 � g(h)2� 1

c(h) .

Since

min h2H
�
1 � g(h)2� 1

c(h) = maxh2H
� ln

p
1 � g(h)2

c(h)
,

and the Taylor series of� ln (x) is

(1 � x) +
1
2

(1 � x)2 � o((1 � x)2),

we have wheng(h) is close to0 (the value toward which boosting drives edges by making hard dis-

tributions), the two functionsSpeedBoost andAdaBoostBT_Greedy seek to optimize are very

similar.

As we can see, both algorithms greedily optimize an objective function without considering the

impact on future rounds. Hence,SpeedBoost falls into the same trap of copious cheap hypotheses as

AdaBoostBT_Greedy .
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Yet, our approach offers a number of bene�ts overSpeedBoost . First, we have �exibility of

explicitly considering future rounds, asAdaBoostBT_Smoothed does, in many cases outperforming

SpeedBoost – e.g. on the ecoli, heart, sonar, and ionosphere data. Second, computational issues (for a

discussion, see (5)) surrounding choosing the besta is completely avoided in our weak learner selection

that the double optimization ofSpeedBoost can also be avoided. Hence, our approach is simple, yet

powerful at the same time.

3.7 A note on decision trees

One straightforward method for making a budgeted predictor is to use decision trees, and we con-

sider this approach in this section. Decision trees are a natural choice for budgeted predictor since after

a tree is constructed, each test example only needs to go through one path of the tree in order the receive

a label. Hence, it incurs a cost using features only on that particular path. One may even be tempted to

think that simply using decision trees would be optimal for this problem. We experimentally show that

this is not the case, especially for larger budgets.

The problem with decision trees is that when one has more budget at hand and is able to grow larger

trees, the trees begin to over�t, and this occured on all datasets (Figure 7). In contrast,AdaBoostBT

performs better with more budget on most datasets. Cost optimization methods, bothGreedy and

Smoothed , tend to exploit large budgets to an even greater extent. Budgeted boosting algorithms

continue to drive error rates down with higher budgets; decision trees do not.
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Figure 7: Error Rates of decision trees.

In Figure 7, the horizontal axis is these number of nodes (log scale in number of nodes, linear in

expected tree depth). The vertical axis is percent error. Diamonds show theAdaBoost error rate for

easy comparison.



CHAPTER 4

RECOVERING SOCIAL NETWORKS BY OBSERVING VOTES

This chapter was previously published as Benjamin Fish, Yi Huang, Lev Reyzin: Recovering Social

Networks by Observing Votes.International Conference on Autonomous Agents & Multiagent Systems

(AAMAS)2016: 376-384.

4.1 Introduction

One approach to investigating voting data assumes that agents' votes are independent of one another,

conditioned on some underlying (sometimes probabilistic) model of ground truth. This is usually an

unrealistic assumption, leading to a more recent line of inquiry which asks how the social network

structure of the voters affects the relationship between votes. Each agent in a social network expresses a

position (votes for or against a bill, prefers one brand over another, etc.) that is in�uenced by their social

connections. In this view, it is possible to detect the organization and evolution of voting communities

by looking at the social network structure. The literature on congressional and political voting networks

focuses on detecting community structure, partisanship, and evolutionary dynamics (36; 37; 38; 39;

40; 41), while the literature on idea propagation investigates how to best maximize the spread of ideas

through a population (42; 43).

However, it is often not necessarily clear how to build this social network graph. For example,

Macon et al. give a few different variants on how to de�ne the social network of the voters of the United

44
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Nations (38). In this approach, different graphs may reveal different aspects of the social network

structure.

This corresponds neatly with a typical view in social choice theory that votes are manifestations of

subjective preferences. At the other extreme, a voter votes according to a noisy estimate of the ground-

truth qualities of the possible choices on which he or she is voting. While both are over-simpli�ed

extremes, it is useful to consider the extremes in order to investigate their consequences (8).

In this paper, as in previous work, we assume there is a �xed probabilistic model which is used to

determine the relationship between initial preferences for the possible choices and how each individual

ends up voting for those choices. This probabilistic model takes into account the social network structure

in which the voters are embedded.

In this approach, it is typically assumed that the social network of the voters is known. The goal

is then to �nd the correct choice from votes, as tackled by Conitzer and then others (8; 44; 45). This

can be made more dif�cult depending on the structure of a social network, which may enforce the

wrong choice by aggregating individual opinions over dense subgraphs, leading voters with low degree

to possibly change their mind to the majority view of the subgraph.

In practice, the social network is usually not known and it is not necessarily clear how to infer the

graph. In this paper, we tackle the problem of inferring the social network from the votes alone. We

discuss two similar but distinct voting models in the vein of Conitzer (8), and show how to recover

the graph given the votes under these voting models and under several notions of what it means to

recover the graph. We show that your ability to learn the graph from the votes is highly dependent on

the underlying voting model - in some settings, it is computationally hard to do so but not in others.
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Moreover, we demonstrate that the resulting learned graphs can differ signi�cantly depending on which

underlying voting model is assumed.

4.2 Models and results

We give results for two similar models: an edge-centric model, which Conitzer calls theindependent

conversation model(8), and a vertex-centric model, introduced in this paper, which we will call the

common neighbor model.

Similar to some existing models, the common neighbor model is, for instance, equivalent to the

"deterministic binary majority process" run for one step (where the initial assignment is random). This

process was examined by Goles and Olivos (16) and related work, e.g. by Frischknecht et al. (46),

and it has been used in the press to illustrate the disproportionate in�uence of certain voters (47). The

models we consider herein also resemble settings in multiple previous works, e.g. by Grabisch and

Rusinowska (48), Grandi et al. (49), and Schwind et al. (50).

In both of our models, there is an unknown simple undirected graphG on n vertices. Each vertex is

an agent, who can vote “� 1” or “ 1”. Both models describe how each agent votes in one round of voting.

We considerm rounds of voting and in each round every vertex votes, leading to a sequence of vote sets

V [m] = V1, . . . ,Vm, where eachVi is the set of votes from all voters. The problem is to recoverG from

V [m].

First, we de�ne the independent conversation model, a two-step process where edges represent

conversations between voting agents, and each agent votes according to the majority outcome of his

conversations.
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De�nition 8 (independent conversation model). First, each edge �ips a coin i.i.d. that with probability

p is 1 and with probability(1 � p) is � 1. Then each vertex votes according to the majority of its

adjacent edges' preferences. If there is a tie, then it is broken in favor of voting1 with probabilityq and

� 1 with probability1 � q.

This process is depicted for a particular graph in Figure 8. Note that the set of votesVi only includes

the �nal votes, not the initial preferences.

Figure 8: An example of the independent conversation model

On the left of Figure 8, we have the outcome of pairwise “conversations” between connected neigh-

bors. On the right of Figure 8 we show the resulting votes. For simplicity, the edge probabilities are not

depicted.
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The common neighbor model is similar, except here the initial preferences are on the vertices, not

the edges:

De�nition 9 (common neighbor model). Each vertex initially �ips a coin i.i.d. that with probability

p is 1 and with probability1 � p is � 1. Then each vertex votes1 if more adjacent vertices' initial

preferences were1 then � 1 and vice versa. If there is a tie, then it is broken in favor of voting1 with

some probabilityq and � 1 with probability1 � q.

This process is illustrated in Figure 9.

Figure 9: An example of the common neighbor model

On the left of Figure 9 we have the initial preferences of the nodes. On the right of Figure 9, we

show the resulting votes. For simplicity, the preference probabilities are not depicted.
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It is straightforward to see how they are different. In the independent conversation model, two

vertices' votes are independent of each other if and only if they do not share an edge, while in the

common neighbor model, they are independent if and only if they have no common neighbors.

Our main contribution consists of algorithms to recover the hidden graphG from the votes, lower

bounds, and experiments for both models.

Our results span a few different notions of what it means to recover the unknown graph. First, we

ask whether there exists a polynomial-time algorithm that succeeds with high probability (given only a

polynomial number of votes in the number of voters) in �nding the unknown graphG when the votes

were drawn fromG. The algorithm must take time polynomial in both the number of votes given as

input and the number of vertices. We refer to this asexact learning. We show the following:

Result 1. In the independent conversation model, there is a polynomial-time algorithm that exactly

learns the unknown graph whenp = 1/2 (with high probability). Moreover, for constantp 6= 1/2 ,

an exponential number of votes are required to exactly learn the graph. (SeeObservation 6andTheo-

rem 7.)

Our algorithm is a statistical test for edges between pairs of vertices by calculating sample covari-

ances of their votes, which here measures how likely it is that two voters vote the same way. This is

very similar to how voting networks are often constructed in the literature (51; 38; 40). This result can

then be seen as a formal motivation for why this type of method should be used.

Result 2. In the common neighbor model, no algorithm can exactly recover the unknown graph. (See

Observation 13.)
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The above two results motivate us to consider other notions of what it means to recover the graph

because the graph is generally not recoverable ef�ciently here. Moreover, in a setting where there is not

necessarily a ground-truth graph from which the votes were drawn, we are still interested in �nding a

graph that explains the votes.

We make this precise by asking for the maximum likelihood estimator (MLE) graph, that graph that

maximizes the probability of the observed votes over the distribution of votes induced by a �xed voting

model. As is standard for the maximum likelihood estimator, we assume that the prior over graphs is

uniform. We refer to this asmaximum likelihood learning. Under this model of learning, votes do not

necessarily need to come from any particular hidden graph. Nevertheless, the goal is to produce the

MLE graph under a voting model for a set of input votes regardless of where the votes came from.

Result 3. In the independent conversation model, there is a polynomial-time bounded-probability ran-

dom reduction from a#P-complete problem to �nding the likelihood of the MLE graph. However, if

enough votes are drawn from a hidden graphG whenp = 1/2 , there is a polynomial-time algorithm

that �nds the MLE graph on the votes with high probability. (SeeTheorem 10andTheorem 12.)

This lower bound is an indication that computing the likelihood of the MLE graph is dif�cult, since

if there were an ef�cient algorithm to compute this quantity then there would be an ef�cient algorithm

to solve a#P-complete problem that succeeds with high probability.

On the other hand, merely trying to �nd the MLE graph is possible, at least if there is enough votes

given as input (speci�cally, forn voters, ordern4 votes suf�ces).

In the common neighbor model, we investigate a third approach to �nding a graph that explains the

votes. Given that we recover graphs in the independent conversation model using covariances between



51

votes, it is natural to ask whether it is possible to �nd a graph whose expected covariances are close to

the observed covariances in the common neighbor model. We show that even if you were to know the

expected covariances exactly, it would still be computationally dif�cult to �nd such a graph.

Result 4. For the common neighbor model, �nding a graph with given expected covariances between

votes is at least as hard as recovering an adjacency matrix from its square. Moreover, a generalization

of this problem, namely the generalized squared adjacency problem, is NP-hard. (SeeObservation 14

andTheorem 16.)

The squared adjacency problem and its generalized version are de�ned as follows:

De�nition 10. The input for the squared adjacency matrix problem is a matrixB, and the decision

problem asks if there is an adjacency matrixA of a simple graph such thatA2 = B.

De�nition 11. The input for the generalized squared adjacency problem is a collection ofn2 setsSi j ,

and the decision problem asks if there is a simple graph whose adjacency matrix isA such thatA2
ij 2 Si j

for each entryA2
ij of A2.

To the best of our knowledge, the squared adjacency matrix problem is not known to be NP-hard

nor is it known to be in P. It is a dif�cult open problem in its own right, and other versions of it have

been proven NP-hard (52). It is equivalent to the special case of the generalized version where the set

sizes are exactly one.
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4.3 The independent conversation model

In this section, we show when there is a algorithm to recover the hidden graph. We will also show

that it is hard to �nd the likelihood of the maximum likelihood graph for an input sequence of votes.

Before we present those two results, we start with the following observation:

Observation 6. For constantp 6= 1/2 , under the independent conversation model, it takes exponen-

tially many votes to distinguish with high probability between the complete graph and the complete

graph minus an edge.

This follows directly from the fact that in both the complete graph and the complete graph minus an

edge, ifp 6= 1/2 , with exponentially high probability every voter will vote 1. Our only hope is that it

becomes possible to recover the graphG whenp = 1/2 , which we show to be the case.

4.3.1 An algorithm for p = 1/2

In this section, we prove the following:

Theorem 7. Let p = q = 1/2 . For any graphG onn vertices andd > 0, if m = W
�
n2

�
ln n + ln 1

d

��

votes are drawn fromG under the independent conversation model, there is a polynomial-time algorithm

that will recoverG with probability at least1 � d.1

Let Xu 2 f 1, � 1g be the random variable representing the outputted vote of vertexu, soXu = 1 if

u votes 1 and� 1 otherwise. Now consider two verticesu andv. The votes ofu andv are independent

if and only if (u, v) is not an edge. This yields a natural approach to determining if(u, v) is an edge of

1This result actually remains true for arbitrary values ofq, but we restrict the Theorem toq = 1/2 to simplify
the proof in this version.
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G: measure the sample covariance between the votes ofu andv and if this covariance is suf�ciently far

away from zero, there must be an edge.

To formalize this, we need to calculate the covariance betweenXu andXv if there is an edge between

them:

Lemma 8. For any edge(u, v) of G, let du and dv be the degrees ofu and v. For convenience, let

r = ( 1 � 2p)q+ p. Then Cov(Xu, Xv) is

8
>>>>>>>>>><

>>>>>>>>>>:

4r 2(du � 1
du � 2

2
)( dv � 1

dv � 2
2

) ( p(1 � p))
du+ dv � 2

2 , evendu, dv

4r (du � 1
du � 2

2
)( dv � 1

dv � 1
2

) ( p(1 � p))
du+ dv � 1

2 , evendu, odddv

4r (du � 1
du � 1

2
)( dv � 1

dv � 2
2

) ( p(1 � p))
du+ dv � 1

2 , odddu, evendv

4(du � 1
du � 1

2
)( dv � 1

dv � 1
2

) ( p(1 � p))
du+ dv

2 , odddu, dv.

Proof. Consider an edge(u, v) 2 E(G). Sinceu andv vote independently given the vote of the edge

(u, v), we will write the probability that each of these vertices vote1 given the edge vote.

Namely, callP1
u = P [Xu = 1jedge(u, v) votes 1] and P� 1

u = P [Xu = 1jedge(u, v) votes -1]

and similarlyP1
v , P� 1

v the analogous probabilities forv.

We can write the covariance in terms of these four probabilities:Cov(Xu, Xv) = 4p(1 � p)( P1
u �

P� 1
u )( P1

v � P� 1
v ).
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To show this, it suf�ces to write the covariance as a function of the joint probabilitiesP [Xu = Xv = 1],

etc., and then write each joint probability as a function of the probabilities that a vertex votes1 given

that how the adjacent edge votes. For example, by conditioning on the vote of edge(u, v),

P [Xu = Xv = 1] = pP1
u P1

v + ( 1 � p)P� 1
u P� 1

v .

The others are similar.

To complete the proof, all we need are formulae forP1
u andP� 1

u (P1
v andP� 1

v are calculated analo-

gously). This is done by choosing edges to form the majority vote ofu's neighborhood.

Recalld(u) � 1 andd(v) � 1 are the degrees ofu andv, respectively, minus1 (in order to discount

the edge(u, v)). We then have

P1
u =

8
>>>>>><

>>>>>>:

å
d(u)� 2

2
i= 0 (d(u)� 1

i )(1 � p) i pd(u)� 1� i evend(u)

+ q(
d(u)� 1

d(u)
2

)(1 � p)
d(u)

2 p
d(u)� 2

2 ,

å
d(u)� 1

2
i= 0 (d(u)� 1

i )(1 � p) i pd(u)� 1� i , oddd(u).

and

P� 1
u =

8
>>>>>><

>>>>>>:

å
d(u)� 4

2
i= 0 (d(u)� 1

i )(1 � p) i pd(u)� 1� i evend(u)

+ q(
d(u)� 1
d(u)� 2

2
)(1 � p)

d(u)� 2
2 p

d(u)
2 ,

å
d(u)� 3

2
i= 0 (d(u)� 1

i )(1 � p) i pd(u)� 1� i , oddd(u),

The statement of the lemma then follows.
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In the case wherep = 1/2 , the covariance will be suf�ciently large; namely that it will beW(1/ n),

wheren is the number of vertices ofG:

Corollary 9. Whenp = 1/2 and(u, v) is an edge ofG,

Cov(Xu, Xv) �
1

2p
1

p
dudv

�
1

2p n
.

Proof. We simplify the formula for the covariance derived in Lemma 8 by giving lower bounds for the

central binomial coef�cients, from which the result immediately follows: For any positive integerk, the

central binomial coef�cient(s) satisfy

�
kl

k� 1
2

m
�

�
2k

p
p k

.

These lower bounds follow from Sterling's approximationk! =
p

2p k
�

k
e

� k �
1 + O

� 1
k

��
.

Note this lower bound was only polynomial in1/ n becausep = 1/2 ; otherwise, the exponential

term(p(1 � p)) n, for p constant, ensures that the covariance goes to 0 exponentially quickly inn.

We are now ready to prove Theorem 7, which uses the Hoeffding bound to establish that the sample

covariance converges quickly enough to its expectation, which if there is an edge is given in Lemma 8

and if there is no edge is just 0.

Proof of Theorem 7.Recall that in the independent conversation model, we are givenm votesXu,i
i.i.d.�

Xu for i = 1, . . . ,m and allu in G, whereXu is thef� 1, 1g-valued random variable found by taking

the majority vote of the initial votes ofu's neighborhood.



56

For p = q = 1/2 , E (Xu) = 0 for each vertexu, which means thatCov(Xv, Xu) = E (XuXv).

This means that the sample covariance betweenu andv is

Cm
u,v =

1
m

m

å
i

Xu,i Xv,i .

The algorithm to recoverG from the m votes is straightforward: For each pair of verticesu, v,

calculate the sample covarianceCm
u,v. If Cm

u,v > 1
4p n , then the algorithm claims there is an edge between

u andv, and otherwise, the algorithm claims there is no such edge. We call this thecovariance test. It

suf�ces to show that the probability that the covariance test is wrong is low. Using Corollary 9, we get

for edge(u, v),

P
�

Cm
u,v <

1
4p n

�
� P

�
Cm

u,v � E
�
Cm

u,v

�
< �

1
4p n

�
,

and for(u, v) /2 E(G),

P
�

Cm
u,v >

1
4p n

�
= P

�
Cm

u,v � E
�
Cm

u,v

�
>

1
4p n

�
.

By the Hoeffding bound each of these two terms is bounded above bye� cm
n2p 2 for some constantc.

Let G0be the network inferred by the above algorithm. Then the probability thatG0 is notG is no

more than

å
u,v2 E

P
�

Cm
u,v <

1
4p n

�
+ å

u,v/2 E

P
�

Cm
u,v >

1
4p n

�
,

which is bounded from above by(n
2)e� cm

n2p 2 .

Hence, for anyd > 0, settingm = W
�
n2

�
ln n + ln 1

d

��
suf�ces so that(n

2)e� cm
n2p 2 < d.
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4.3.2 Moving from exact learning to maximum likelihood learning

In the previous section, we showed that exact learning is possible whenp = q = 1/2 . We now

show that it is possible to not only exactly learn the graph, but also �nd the maximum likelihood graph

for the votes whenp = q = 1/2 , assuming we are given enough data. Recall the maximum likelihood

graph (which we will also refer to as the MLE graph) is the graph that maximizes the probability of the

observed votes over the distribution of votes.

Theorem 10. Let p = q = 1/2 . For any graphG on n vertices andd > 0, if m = W
�
n2

�
n2 + ln 1

d

��

votes are drawn fromG under the independent conversation model, there is a polynomial-time algorithm

that will �nd the maximum likelihood graph on the drawn votes with probability at least1 � d.

In other words, if the votes really do come from a hidden graph and we are given ordern4 votes,

we can �nd the maximum likelihood graph. Speci�cally, what we show is that if you are given this

many votes from a hidden graph, then the MLE graphis the hidden graph with high probability. The

proof of Theorem 10 then follows from applying Theorem 7, i.e. using the covariance test to �nd the

hidden graph, which is the MLE graph. This moves a statement about exact learning to a statement

about maximum likelihood learning.

We now prove (Lemma 11) that the MLE graph is the hidden graph for a suf�ciently large set of

votes drawn from a hidden graph. Indeed, we show something stronger: the hidden graph will be more

likely (under this model) than any other graph by an arbitrarily large factora (where the number of votes

given as input needs to increase logarithmically ina). This stronger result will also be needed for the

proof of Theorem 12.
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The statement of this will need some notation: For any graphG on n vertices, letVG be the distri-

bution over a set ofn votes induced byG under the independent conversation model forp = q = 1/2 .

For convenience we will denote them-product distributionVG � . . . � V G asV[m]
G . That is, for any vote

V 2 f� 1, 1gn, PVG(V ) = P (V jG) is the probability mass ofV underVG. Similarly, for a sequence

of votesV [m], P
V[m]

G

�
V [m]

�
= P

�
V [m]jG

�
is the probability mass ofV [m] underV[m]

G .

Lemma 11. For d > 0, a > 1,

P
V [m] �V [m]

G

�
P

�
V [m]jG

�
� a max

G06= G
P

�
V [m]jG0

� �
< d

for m = W
�
n2

�
n2 + ln 1

d + ln a
��

.

Proof. Fix a > 1 and denote byE the event that

maxG06= G P(V [m]jG0)
P(V [m]jG)

�
1
a

.

First of all, if P(V [m]jG) = 0, then this event occurs, so we can safely assume the converse. The

idea of this proof is that we will show the probability ofE happening is small by conditioning on what

the vote sequenceV [m] looks like when drawn fromG. Speci�cally, in the proof of Theorem 7, we show

that the covariance test would have successfully foundG with high probability, so we condition on this

happening.

Fix a graphG0 6= G. We will want to show that the probability thatV [m] is pulled fromG0(instead

of G) is suf�ciently small. The covariance test failed ifV [m] were pulled fromG0: the covariance test
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returnedG on V [m] instead ofG0. And again, the probability that the covariance test failed is low, as

showed in the proof of Theorem 7, so the probability thatV [m] is pulled fromG0must be small.

We denote the set of vote sequences for which the covariance test returnsG by F G. Using this

notation, we condition onV [m] being inF G or not and then get an immediate upper bound:

P
V[m]

G
(E) � P

V[m]
G

�
EjV [m] 2 F G

�
+ P

V[m]
G

�
V [m] 62F G

�
.

We then bound each of these two terms. The probability that the covariance test failed onV [m] is

small: By inspecting the proof of Theorem 7, we have that for some constantc,

P
V[m]

G

�
V [m] 62F G

�
�

�
n
2

�
e� cm

n2p 2 . (4.1)

Otherwise, the covariance test succeeded and we condition onV [m] 2 F G. We now show that

P
V[m]

G

�
EjV [m] 2 F G

�
� a

�
2(n

2) � 1
� �

n
2

�
e� cm

n2p 2 . (4.2)

Markov's inequality gives

P
V[m]

G

�
maxG06= G P(V [m] jG0)

P(V [m] jG) � 1
a

�
�
�
� V [m] 2 F G

�

�

a � E
V[m]

G

�
maxG06= G P(V [m] jG0)

P(V [m] jG)

�
�
�
� V [m] 2 F G

�
.
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It is then enough to expand this expected value using the de�nition to get that

P
V[m]

G

�
EjV [m] 2 F G

�
� a å

V [m]2F G

max
G06= G

P
�

V [m]jG0
�

.

Now we group the terms of the sum by which graphG0 6= G maximizes the probabilityP
�

V [m]jG0
�

.

There may be many terms in the sum that any one graphG0maximizes, but certainly each vote sequence

associated with each term is inF G. There are of course2(n
2) � 1 such graphs, so

å
V [m]2F G

max
G06= G

P
�

V [m]jG0
�

� å
G0:G06= G

å
V [m]2F G

P
�

V [m]jG0
�

=
�

2(n
2) � 1

�
P

�
V [m] 2 F GjG0

�
.

If V [m] were inF G but V [m] was pulled fromG0, then the covariance test has failed at returningG0. So

P
�

V [m] 2 F GjG0
�

�
�

n
2

�
e� cm

n2p 2 ,

implying Equation 4.2. Combining Equation 4.1 and Equation 4.2, we get

P
V[m]

G
(E) � a2(n

2)
�

n
2

�
e� cm

n2p 2 .

ForP
V[m]

G
(E) to be upper-bounded byd > 0, it suf�ces to setm = W

�
n2

�
n2 + ln 1

d + ln a
��

.



61

4.3.3 Hardness of computing the MLE

As we have seen, whenp = q = 1/2 , distinguishing between graphs can be done in polynomial

time. This might give hope that, in this case, computing the likelihood of the MLE graph, given a set of

votes, may be easy. That is, given a graphG which is the maximum likelihood graph for a set of input

votesV [m] overG, we wish to computeP(V [m]jG). Alas, we give hardness results indicating this is not

easy to do.

We reduce from Conitzer's problem of computingP (V � jG), whereV � is a vote produced by a

given graphG (8).1 He shows that this is problem is #P-hard by reducing from counting the number of

perfect matchings in a bipartite graph. Surprisingly, our proof of this hardness result uses the easiness of

�nding the MLE graph in polynomial time in the case whenp = q = 1/2 . Namely, we use Lemma 11

to be able to say when the inputG is the maximum likelihood graph for a set of votesV [m], which in

turn says when the oracle will successfully computeP(V [m]jG) . Formally, we prove the following

theorem:

Theorem 12. There is a randomized polynomial-time oracle reduction from counting the number of

perfect matchings in a balanced bipartite graph to computing the MLE of the maximum likelihood

graph from a sequence of votes with high probability.

sketch.It suf�ces to consider the case wherep = q = 1/2 . Instead of directly reducing from the

#P-hard problem of counting the number of perfect matchings in a balanced bipartite graph, we reduce

1While the problem Conitzer considers is slightly different than computingP (V � jG), in the case where
p = 1/2 , his problem reduces to computingP (V � jG).
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from the#P-hard problem of computingP (V � jG) given a graphG and voteV � on n voters under the

independent conversation model.

The idea of the proof is going to be to build a sequence of votesV [m] whose MLE we know to be

the inputG, and then compute

P(V � jG) =
P(V [m], V � jG)

P(V [m]jG)
.

Our oracle will give us the values of the right-hand side. This approach will work ifP(V � jG) 6= 0.

So we �rst test for the case ifP(V � jG) = 0. Conitzer provides a way to do this for a similar problem

when the vertices of the graph have all odd degree: his reduction is from the maximum weightedb-

matching problem, which we can adapt to the so-called “c-capacitated” version that we need (8; 53).

Else, P (V � jG) 6= 0. We draw a sequence of votesV [m] i .i.d.� V G � . . . � V G. Lemma 11

immediately implies thatG will be the MLE for V [m] with failure probability less thand/2 when

m = W(n2(n2 + ln 2
d)) . In other words, with justW(n4) votes we will successfully query the ora-

cle forP(V [m]jG) with high probability.

It suf�ces to ensure that with high probability we will also successfully query the oracle for the

(m + 1)-length sequenceV [m], V � . Recall that sinceP(V � jG) is the sum, over all satisfying edge

votes, of the quantity
� 1

2

� jE(G)j
, whereE(G) is the edge set ofG and p = 1/2 . There must be at

least one satisfying edge-vote assignment sinceP(V � jG) 6= 0, soP(V � jG) �
� 1

2

� jE(G)j
. In addition,
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again by Lemma 11, for anyG0 6= G, P(V [m] jG)
P(V [m] jG0)

> a with failure probability no more thand/2 when

m = W(n2(n2 + ln 2
d + ln a)) . Then for anyG0 6= G,

P(V [m], V � jG0) <
�

1
a

P(V [m]jG)
� �

2jE(G)jP(V � jG)
�

=
2jE(G)j

a
P(V [m], V � jG).

Settinga = W(en2
) suf�ces to ensure thata > 2jE(G)j . Thus setting

m = W
�

n2
�

n2 + ln
2
d

+ ln a
��

as above for this setting ofa, a query to the oracle forP(V [m], V � jG) will fail with probability less than

d/2 . Settingd to be, say,Q( 1
2n ), yields thatm = W(n4). The oracle reduction, once it tests for the

existence of at least one valid edge vote, simply consists of drawingm votes fromG and then querying

the oracle forP(V [m], V � jG) andP(V [m]jG). The reduction then succeeds with probability at least

1 � d.

4.4 The common neighbor model

We now turn our attention to the common neighbor model. Again, we ask if it is possible to recover

G by seeing only polynomially many votes. In general, it is not possible to recoverG at all, let alone

with only polynomially many votes:

Observation 13. Under the common neighbor model, no algorithm can distinguish between two differ-

ent perfect matchings.
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If G is a matching between the vertices, each vertex will vote how its neighbor votes, meaning

that each vertex votes i.i.d. with probabilityp regardless. Thus there is no way to distinguish between

different matchings.

4.4.1 RecoveringA2 from covariances

Given the impossibility of recovering the graph, we relax the problem to the following: Find a graph

that is likely to produce the given votes in the sense that the expected covariances of this graph should

be as close as possible (under some norm) to the covariances of the observed votes. This problem is

motivated by the algorithm for the independent conversation model which �nds a graph whose expected

covariances match the measured covariances.

Yet even if we were to know theexpectedcovariances of the input votes, �nding a graph whose

expected covariances are close to those input covariances remains challenging:

Observation 14.For the common neighbor model, �nding a graph with given expected vote covariances

is at least as hard as recovering an adjacency matrix from its square.

To prove this observation, it suf�ces to show that the expected covariances are a function solely

of the entries ofA2. Then recoveringA from A2 consists of using the entries ofA2 to compute the

expected covariances, at which point the adjacency matrix of a graph with those covariances will be

exactlyA. Thei, jth entry ofA2 is the number of length-two paths betweeni andj, so it is enough to

write the covariances of a graph in terms of the following: ForG(v) the neighborhood of a vertexv,

denoteduv = jG(v) \ G(u)j, du = jG(u) n (G(v) \ G(u)) j, anddv analogously. The covariances are a

function ofdu, dv, andduv. For the sake of simplicity we will assume thatjG(u)j and jG(v)j are odd,

but it is straightforward to modify the formula given below in the cases when they are not.
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Lemma 15. AssumejG(u)j and jG(v)j are odd. Forp = 1/2 ,

Cov(Xu, Xv) =
1

2duv � 2

 
duv

å
k= 0

�
duv

k

�
Pu,v(k)Pv,u(k)

!

� 1,

where, forqu,v = ( duv + du + 1)/2 � k,

Pu,v(k) =

8
>>>>>><

>>>>>>:

1
2du å du

i= qu,v
(du

i ) if 0 � qu,v � du

0 if qu,v > du

1 if qu,v � 0.

Proof. Let Xu represent vertexu's vote. Whenp = 1/2 , E (Xu) = 0, andP [Xu = Xv = 1] =

P [Xu = Xv = 0] , so the covarianceCov(Xu, Xv) is

E (XuXv) = 2P [Xu = Xv] � 1 = 4P [Xu = Xv = 1] � 1.

To determineP [Xu = Xv = 1], we condition on the number of common neighbors that voted1:

Assuming somek common neighbors vote1, in order for u to vote 1, u needs an additional

duv+ du+ 1
2 � k neighbors to vote1. If k is already at leastduv+ du+ 1

2 , then the probability of voting 1

is already 1; on the other hand if there aren't enough remaining vertices to vote1, then the probability is

0. This yieldsPu,v(k) as the probability thatu votes1 given thatk common neighbors ofu andv voted

1.
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Now we can writeP [Xu = Xv = 1] as

duv

å
k= 0

�
duv

k

�
pk(1 � p)duv � kPu,v(k)Pv,u(k),

completing the proof.

When recovering a graph from a sequence of input votes, we are not even given the expected co-

variances of the input votes. Instead we can calculate the measured covariances, from which we can

determineA2. At this point, we have a function inversion problem on our hands: We can �ndA2

merely by recovering theseduv's and du's from the covariances, but given that the formula given in

Lemma 15 is not closed, this is not trivial. Since there are only polynomially many possible values for

duv anddu, we can simply try all values to �nd the covariance closest to the observed value. However,

there may be covariances that are exponentially close to each other, making it impossible to distinguish

between these values for givenduv, du. In this case the values recovered for the entries ofA2 may not

be unique, which in the worst case leads to the generalized squared adjacency problem. Even in the case

when we recover unique values, it still reduces to the squared adjacency problem.

While the squared adjacency problem is open, we show the following:

Theorem 16. The generalized squared adjacency problem isNP-hard.

Proof. The reduction is from CLIQUE, which asks if there is a clique of sizek on the input graph. Given

a graphG = ( V, E) and an integerk, we construct a set systemf Si j g with (n + 1)2 sets, wheren = jV j.

We then show thatG has a clique of sizek if and only if there is a graphG0 = ( V [ f vg, E0) such that
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thei, jth entry ofA(G0)2 is in Si ,j , whereA(G0) is the adjacency matrix ofG0. The(n + 1)2-sized set

systemf Si ,jg is de�ned as follows:

Si j =

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

f 0, 1g if i 6= j andi, j 6= v and( i , j) 2 E(G)

f 0g if i 6= j andi, j 6= v and( i , j) 62E(G)

f 0g if i = v andj 6= v

f 0g if j = v andi 6= v

f kg if i = j = v

f 0, 1g if i = j andi, j 6= v

Assume there is a clique of sizek in G. ThenG0 is de�ned as follows: Denote the vertex set of

the clique inG by C. G0 will have an edge betweenv and all members ofC, and no other edges. It is

straightforward to check that thei, jth entry of A(G0)2 is in Si j by noting that the diagonal entries of

A(G0)2 are the vertices' degrees and the off-diagonal entries counts the number of common neighbors.

In the other direction, assume there is such a graphG0 whose squared adjacency matrix satis�es

the constraints imposed by the set systemf Si ,jg. In this case, the clique of sizek in G will be exactly

the neighborhood ofv in G0 (not includingv itself). Call N (v) the neighborhood ofv in G0. Note the

degree ofv in G0 must bek, by de�nition of Svv, i.e. jN (v)j = k. Consider a distinct pair of vertices

i, j in N (v). The verticesi andj have at least one common neighbor inG0, namelyv, because both are

in N (v), meaning thatA(G0)2
ij � 1. But if ( i , j) is not an edge inG thenSi j = f 0g by the de�nition of

Si j , a contradiction, forcingN (v) to be a clique as required.
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(a) 101st Senate (1989-1990) (b) 106th Senate (1999-2000)

(c) 113th Senate (2013-2014)

Figure 10: Three US Senates under the independent conversation model
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(a) 101st Senate (1989-1990) (b) 106th Senate (1999-2000)

(c) 113th Senate (2013-2014)

Figure 11: Three US Senates under the common neighbor model

In Figure 10 and Figure 11, democrats are colored blue, Republicans are red, and Independents are

green.
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