
Graphs, New Models, and Complexity

BY

Jeremy Kun
B.S., California Polytechnic State University, 2011

submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

to the graduate college of the
University of Illinois at Chicago, 2016

Chicago, IL

Defense Committee:

Lev Reyzin, Chair and Advisor
György Turán
Dhruv Mubayi
Andrew Suk
Robert Sloan, Department of Computer Science

To my cherished wife Erin, who embraces me quirks and all; to my parents
Judy and Mihály, who raised me with adventure and imagination; and to my
grandmother Erzsébet, who made sure I ate my vegetables.

ii

Acknowledgments

I would like to thank my advisor Lev for his advice, support, and collaboration through-
out my studies. Additionally, I would like to thank the MCS group faculty, especially
György Turán, Dhruv Mubayi, Shmuel Friedland, as well as the graduate students in
our group, Sam Cole, Ben Fish, Yi Huang, Ádám Lelkes, among others. I would fur-
ther like to thank my summer hosts Chandrika Kamath and Rajmonda Caceres for
providing me with intellectually stimulating summers. Also thanks to the many UIC
faculty who inspired and supported me during my indecisive years, including Brooke
Shipley, Izzet Coskun, David Dumas, and others. And to my fellow graduate students,
who have become close friends and whom there are too many to fit here. And finally,
thanks to my wife Erin and my family who encouraged and supported me in my pur-
suits.

The work presented in this thesis was published in conferences and journals as the
following:

Chapter 1 [72]: Jeremy Kun, Brian Powers, Lev Reyzin: Anti-coordination Games and
Stable Graph Colorings. Symposium on Algorithmic GameTheory (SAGT) 2013: 122-
133.
Chapter 2 [73]: Jeremy Kun, Lev Reyzin: On Coloring Resilient Graphs. Mathematical
Foundations of Computer Science (MFCS) (2) 2014: 517-528.
Chapter 3 [39]: Benjamin Fish, Jeremy Kun, Ádám Dániel Lelkes, Lev Reyzin, György
Turán: On the Computational Complexity of MapReduce. International Symposium on
Distributed Computing (DISC) 2015: 1-15.
Chapter 4 [50]: Alexander Gutfraind, Jeremy Kun, Ádám Dániel Lelkes, Lev Reyzin:
Network Installation Under Convex Costs. Journal of Complex Networks 2015 (in
press).

Additional papers published by the author over the course of his graduate studies
are included in the Curriculum Vitae at the end of this document.

iii

Contents

0 Introduction 1
0.1 Basic Definitions . 4
0.2 Algorithmic Game Theory . 6
0.3 Graph Coloring and Resilience . 8
0.4 MapReduce and Distributed Complexity 11
0.5 Neighbor Aid and Disaster Recovery . 14
0.6 Note . 15

1 Anti-Coordination Games and Stable Graph Colorings 16
1.1 Introduction and background . 17

1.1.1 Previous work . 19
1.1.2 Results . 21

1.2 Preliminaries and definitions . 22
1.2.1 Stable Colorings . 22
1.2.2 Mixed and pure strategies . 24
1.2.3 Strict and non-strict stability . 24

1.3 Stable colorings . 25
1.4 Strictly Stable Colorings . 27
1.5 Stable colorings in directed graphs . 31
1.6 Discussion and open problems . 34

2 Resilience and Resiliently Colorable Graphs 35
2.0.1 Related work on resilience . 37
2.0.2 Previous work on coloring . 38

2.1 Resilient SAT . 40
2.2 Resilient graph coloring and preliminary bounds 43

2.2.1 Problem definition and remarks 43
2.2.2 Observations . 44
2.2.3 Upper and lower bounds . 46

2.3 NP-hardness of 1-resilient 3-colorability 48
2.4 Discussion and open problems . 52

iv

3 Computational Complexity and MapReduce 54
3.1 Introduction . 55
3.2 Background and Previous Work . 57

3.2.1 MapReduce . 57
3.2.2 Complexity . 59

3.3 Models . 61
3.3.1 MapReduce and MRC . 61
3.3.2 Nonuniformity . 64
3.3.3 Other Models of Parallel Computation 65

3.4 Nonuniform MRC . 66
3.5 Uniform BSP . 67
3.6 Space Complexity Classes in MRC0 . 68
3.7 Hierarchy Theorems . 72
3.8 Discussion and Open Problems . 77

4 Network Installation Under Convex Costs 79
4.1 Introduction . 80
4.2 Preliminaries . 82
4.3 Convex decreasing NANIP is NP-hard 85
4.4 Greedy analysis for convex NANIP . 91
4.5 Integer programming for NANIP . 93

4.5.1 A new integer program . 93
4.5.2 Experimental results . 95

4.6 Conclusion . 95

References 107

Appendix A Source code listings 108

v

List of figures

1.1 The strictly stable 2-coloring on the left attains a social welfare of 40 while
the non-strictly stable coloring on the right attains 42, the maximum for this
graph. 24

1.2 A graph achieving PoA of 5
4 , for k=5 . 26

1.3 The gadget added for each edge in G. 27
1.4 The clause gadget for (x∨y∨ z̄). Each literal corresponds to a pair of ver-

tices, and a literal being satisfied corresponds to both vertices having the same
color. 29

1.5 The first five figures show that a coloring with a monochromatic literal gad-
get can be extended to a strict equilibrium. The sixth (bottom right) shows
that no strict equilibrium can exist if all the literals are not monochromatic. 30

1.6 The literal persistence gadget (left) and literal negation gadget (right) con-
necting two clause gadgets Ci and Cj. The vertices labeled x on the left are
part of the clause gadget for Ci, and the vertices labeled x on the right are
in the gadget for Cj. 30

1.7 The construction from balanced unfriendly partition to directed stable 2-
coloring. Here u and v “stabilize” the 3-cycle. A bold arrow denotes a com-
plete incidence from the source to the target. 33

1.8 Reducing k colors to two colors. A bold arrow indicates complete incidence
from the source subgraph to the target subgraph. 34

2.1 From left to right: the Petersen graph, 2-resiliently 3-colorable; the Dürer
graph, 4-resiliently 4-colorable; the Grötzsch graph, 4-resiliently 4-colorably;
and the Chvátal graph, 3-resiliently 4-colorable. These are all maximally re-
silient (no graph is more resilient than stated) and chromatic (no graph is
colorably with fewer colors). 44

2.2 The classification of the complexity of k-coloring r-resiliently k-colorable
graphs. Left: the explicit classification for small k, r. Right: a zoomed-out
view of the same table, with the NP-hard (black) region added by Propo-
sition 6. 46

vi

2.3 The gadget for a literal. The two single-degree vertices represent a single lit-
eral, and are interpreted as true if they have the same color. The base ver-
tex is always colored gray. Note this gadget comes from Kun et al. [72]. . 49

2.4 Left: the gadget for a clause. Right: the negation gadget ensuring two liter-
als assume opposite truth values. 50

2.5 A valid coloring of the clause gadget when one variable (in this case x3) is
true. 50

2.6 Two distinct ways to color a negation gadget without changing the truth val-
ues of the literals. Only the rightmost center vertex cannot be given a dif-
ferent color by a suitable switch between the two representations or a reflec-
tion of the graph across the horizontal axis of symmetry. If the new edge in-
volves this vertex, we must fix the truth value appropriately. 52

2.7 An example of an edge added between two clauses C1,C2. 52

4.1 Illustrations of NANIP. (a) Simple instance. When f(0) = 2, f(1) = 1 and
f(k) = 0 for k ≥ 2, the naive sequence σ = (A,B,C,D,E) gives cost of
4 = 2+1+1+0+0, but all optimal solutions (such as (D,C,B,E,A)) have
cost 3. (b) Actual metro stations and their connections in downtown Chicago
“Loop”. With the same f, any optimal sequences must visit CL station be-
fore at least one of its neighbors. 83

4.2 Left: the graph B(3); Right: two B(m) pieced together to force a connected
algorithm to incur Ω(log(n)) cost. 92

4.3 The integer program for NANIP. 94
4.4 A comparison of the formulations in [49] and our new IP formulation with

MTZ-type constraints. This graph plots running time vs. (a) number of nodes
and, (b) number of edges in the target graph. In (a) the number of edges was
kept at 30 throughout, while in (b) the number of nodes was 15 through-
out. 96

vii

List of tables

2.1 The percentage of k-colorable graphs on n = (6, 7, 8) nodes which are r-
resilient. All values are rounded to the nearest tenth of a percent. 45

viii

Thesis advisor: Professor Lev Reyzin Jeremy Kun

Graphs, New Models, and Complexity

Abstract

Over the past few decades the internet and social networks became central to our
society. As a consequence, the study of networks and the algorithmic complexity of
problems about networks are an increasingly important part of the application of
mathematics to practical problems. The content of this dissertation explores a variety
of topics on this theme. First, we explore the tractibility of computing certain kinds of
equilibria for anticoordination games played on graphs. Next, we study a generic no-
tion of “resilience” for combinatorial search problems, specifically studying the com-
plexity of resilient graph coloring. Then we turn to the study of MapReduce, a popular
distributed computing framework whose crucial open questions are about its capac-
ity to solve certain graph problems. Finally, we study a model of disaster recovery in
networks, and prove results about the inability for algorithms to compute approximate
solutions.

ix

0
Introduction

Graphs and networks are among the most basic mathematical objects known, yet

many questions about graphs are open. In particular, many notions that are well un-

derstood in simple domains become much more nuanced and complicated when gen-

eralized to networks. The added complexity comes from the interplay between the

structure of the graph and the mathematical complexities of the problem. As an ex-

ample from game theory, two-player games are well understood, but n-player games

played on a network are often much more complicated. Indeed, we provide concrete

evidence of this in Chapter 1.

Networks are also becoming an increasingly important part of how computer sci-

1

ence is applied more generally. As a short list, the algorithmic study of networks is

applied to the internet, online social networks, routing networks, computing networks,

power grids, biological networks, and many others. Moreover, real world networks

scale to millions or billions of vertices. This gives rise to three needs in the study of

networks:

1. Understanding the asymptotic complexity of algorithms on networks, and more-

over understanding how the specific properties of networks in a problem do-

main differ from general networks. We explore this in Chapter 2.

2. Understanding the capability of distributed computing models to solve problems

on massive networks. We explore this theme in Chapter 3.

3. When problems are known to be intractable, understanding the potential for

one to find an approximate solution. We study this for a specific problem in

Chapter 4.

Many of these needs interleave with the goal of understanding what makes a graph

problem computationally intractable, and of finely delineating the boundary between

tractable and intractable regimes. That theme unites this dissertation. We now give a

short summary of the contributions presented in this dissertation, followed by back-

ground information for each chapter.

In the Chapter 1 we discuss anti-coordination games played on graphs. These are

games in which players (nodes in a graph) are incentivized to choose strategies that

differ from their neighbors. We characterize the price of anarchy for these games,

2

which measures the tradeoff between players acting independently and greedily ver-

sus a central planning authority. We introduce a directed graph generalization which

allows one to model both anti-coordination and coordination incentives. We further

prove that the complexity of computing strategies with certain properties (akin to be-

ing a certain kind of Nash equilibrium) is NP-hard.

In Chapter 2 we introduce a new model for measuring the complexity of a combi-

natorial decision problem called resilience. Loosely speaking, an instance of a prob-

lem is resilient if it is a “yes-instance” (i.e. it has the combinatorial property), and re-

mains so under small adversarial manipulations. Then the goal is to distinguish be-

tween “no-instances” and resilient instances. For graph coloring, this corresponds to

a graph which is, say, 3-colorable and remains so even after an adversary adds an ar-

bitrary edge to the graph. In general, we ask how resilient a problem must be in order

to make finding solutions tractable. Surprisingly, for the example of graph 3-coloring

with the ability to add a single arbitrary edge, it remains NP-hard to find a 3-coloring.

We further study the gradient between hardness and tractability for resilient coloring.

We also completely characterize the complexity of resilient boolean satisfiability: it is

either vacuous or NP-hard.

In Chapter 3 we turn our attention to MapReduce, a popular model of distributed

computation which has novel constraints on communication and space. We first refine

an existing theoretical model of MapReduce. Then we prove a general result on the

ability of a two-round MapReduce protocol to capture all of sublogarithmic space Tur-

ing machines. Finally, we prove a connection between MapReduce, the exponential

time hypothesis (ETH), and long-standing open conjectures about complexity hier-

3

archies within simultaneous time/space-bounded complexity classes (TISP). In par-

ticular, the exponential time hypothesis implies a hierarchy within linear-space TISP,

which in turn implies a hierarchy within MapReduce for each of the parameters of in-

terest.

In Chapter 4, we study the Neighbor Aided Network Installation Problem (NANIP),

which models disaster recovery in a network. This problem asks one to determine the

optimal ordering of nodes in a graph, not necessarily as a path, which minimizes the

cost of traversing the nodes in that order. The cost of traversing a node is a function

of the number of neighbors that have already been visited. The chapter presents three

contributions. First, we prove that NANIP is NP-hard even under convex cost func-

tions, has no FPTAS, and more generally cannot be approximated to within a factor of

(1 − n−c) for all c > 0. Second, we disprove a conjecture of Gutfraind et al. [49] on

the optimality of the greedy algorithm for “connected” solutions of NANIP, instead

showing that no connected algorithm can approximate NANIP to within a logarith-

mic multiplicative factor. The greedy algorithm specifically has a linear approximation

lower bound. Third, we develop a new integer programming formulation of NANIP

by adapting the formulation of Miller, Tucker, and Zemlin [77], and measure the im-

provement over the state of the art. [49]

0.1 Basic Definitions

An undirected graph G = (V,E) consists of a set of vertices V and a set of unordered

pairs called edges E ⊂ V × V. A directed graph gives orientation to the edges, i.e. the

edge set E are instead ordered pairs in V × V. The degree of a vertex in an undirected

4

graph is degG(v) = |{e ∈ E : v ∈ e}|, with in-degree and out-degree defined analo-

gously for directed graphs. Sometimes when there are multiple graphs we will specify

by denoting V = V(G),E = E(G). A path is an alternating list (v1, e1, v2, e2, . . . , ek−1, vk)

where ∀i, ei = (vi, vi+1). An undirected graph is connected if every pair of nodes

v,w ∈ V has a path connecting v to w.

A graph G = (V,E) is called k-colorable if there is an assignment f : V → {1, 2, . . . , k}

such that for every edge e = (u, v), f(u) ̸= f(v). I.e. if {1, . . . , k} are thought of

as colors, then no edge is monochromatic. The chromatic number of a graph, χ(G),

is the smallest integer k for which G is k-colorable. The complete graph Kn is the n-

vertex graph which has an edge between every pair of vertices. The CLIQUE problem

is the problem of determining, given an undirected graph G and an integer m as input,

whether G contains a subgraph isomorphic to Km.

The problem of boolean satisfiability is the decision problem asking for a given propo-

sitional formula ϕ, whether some assignment of its variables makes ϕ true. If there is

such an assignment, the formula is said to be satisfiable. A formula ϕ is said to be in

conjunctive normal form with clauses of size k, or k-CNF form, if it can be written as

ϕ = C1 ∧ · · · ∧ Cm, where each Ci is a disjunction of three literals. Boolean satisfiability

for k-CNF formulas is called k-satisfiability, or k-SAT.

As 3-SAT is a classical NP-hard problem [42], we use it to prove the hardness of

many problems (provided P ̸= NP) via so-called gadget reductions. A polynomial-time

reduction from problem (language) A to problem (language) B is a polynomial-time

computable function f : {0, 1}∗ → {0, 1}∗ such that x ∈ A if and only if f(x) ∈ B.

That is, x has a “yes” answer if and only if f(x) has a “yes” answer. A gadget reduction

5

is a type of reduction that is local in the sense that each bit of the output f(x) can only

depend on a bounded number of bits of the input x (rigorously, f is computable by

constant-depth NC circuits). Less formally, a gadget reduction from 3-SAT to a graph

problem requires one to, for each formula ϕ, construct a graph G via a collection of

subgraphs and pick an interpretation of truth/falsity such that

1. Some of the subgraphs correspond to literals of ϕ (literal gadget).

2. Some of the subgraphs ensure that negated literals from ϕ have negated interpre-

tations in G (negation gadget).

3. Some of the subgraphs correspond to clauses (clause gadget).

4. The interpretation for a clause gadget to be true is satisfied if and only if the in-

terpretation for the truth of one of the member literal gadgets is satisfied.

We do this in both Chapters 1 and 2, and design a new type of literal gadget for re-

ducing SAT problems to coloring problems, where a literal is represented by a pair of

vertices and is considered “true” if the two vertices have the same color.

0.2 Algorithmic Game Theory

Game theory generally studies strategies for competitive scenarios (games), and the

properties of various kinds of equilibria. In particular, a game theorist typically studies

game-theoretic models for real life scenarios, as well as the existence and uniqueness

of a strategy that is ‘optimal’ or ‘stable’ in some sense.

A classical theorem from game theory called fictitious play [88] gives an algorithmic

method to find an equilibrium strategy in a variety of settings [14, 79, 82]. However,

6

this algorithm is only guaranteed to converge, and may take exponentially long to do

so [28]. Algorithmic game theory distinguishes itself in part from classical game the-

ory in that it places a major emphasis on the computational complexity of finding op-

timal equilibrium strategies. Significant progress in this area has been in the definition

of the PPAD complexity class [87], which both encapsulates the complexity of com-

puting Nash equilibria in two-player games and connects this to complexity questions

in classical mathematical settings, such as computing Brouwer fixed points [24]. The

results in Chapter 1 are related to the flip-side of this question, when equilibria may

not exist. For most of the cases we consider, the complexity of deciding whether there

is an equilibrium is NP-hard.

For our anti-coordination game, it turns out that finding strict equilibria (where

a player will necessarily perform worse by deviating) is NP-hard, as well as finding

any equilibrium in a directed graph. Our NP-hardness results are gadget reductions

from boolean 3-satisfiability (3-SAT), the problem of determining whether a propo-

sitional formula in conjunctive normal form (with clauses of size 3) has a satisfying

assignment. A useful tool we use in these results is to represent each literal by a pair

of vertices, calling the literal “true” if the two agents represented by that literal choose

the same strategy. This technique is also used in Chapter 2 to reduce from “resilient”

satisfiability to resilient 3-coloring.

Another important angle is the measure of efficiency of equilibria in games with

many players. The central concern is that an equilibrium that players naturally reach

may result in a much lower social welfare than a non-equilibrium strategy, such as in

a prisoner’s dilemma. Here social welfare is defined as the sum of the payoffs for all

7

players, which is only interesting for games which are not zero-sum. The quantity that

measures efficiency is called the price of anarchy [68], and it measures the ratio be-

tween the social welfare of the best equilibrium and the maximal social welfare under

any strategy. We compute the price of anarchy for our anti-coordination game, which

approaches 1 as the number of players grows. Our computation and setting was later

generalized in[38].

Finally, the method of a potential function is an important technique that we use to

prove the existence of an equilibrium (and implicitly an algorithm for computing one)

in the simplest setting studied in Chapter 1. The idea here is to construct valuation ϕ

on the strategy profile of the players that satisfies two properties. First, when players

modify their strategies over time (imagining that they are playing a repeated game)

the value of ϕ provably increases, in our case monotonically. Second, a local maximum

of ϕ corresponds to the desired type of equilibrium. Games which lend themselves to

such analyses are called potential games, and these have been extensively studied in the

game theory literature. See, e.g., [79] for a generic classification theorem.

0.3 Graph Coloring and Resilience

One of the first important things one learns when studying graph theory is that graph

coloring is hard. Recall that coloring a graph with k colors assigning each vertex a

color (a number in {1, 2, . . . , k}) so that no edge is monochromatic. Deciding whether

a graph can be colored with k colors for any k ≥ 3 has no known polynomial time

algorithm and is a classical NP-hard problem [42].

One might naturally think graph coloring has a gradient of difficulty. Perhaps, as

8

graphs get more “complex” it becomes algorithmically harder to figure out how col-

orable they are. There are many well-known notions of simplicity for graphs, but they

rarely fall on a gradient. For example, here are some ways to make graph coloring easy:

• Restrict to planar graphs. Then deciding 4-colorability is easy because the an-

swer is always yes. [5, 6]

• Restrict to triangle-free planar graphs. Then finding a 3-coloring is in P. (There

are many algorithms, see e.g. [32].)

• Restrict to perfect graphs (which again requires knowledge about how colorable

it is).[46, 54]

• Restrict to graphs of tree-width or clique-width bounded by a constant. [20]

• Restrict to graphs that are characterized by omitting a certain kind of induced

subgraph (such as having no induced paths of length 4 or 5). [69]

It should be emphasized that these results are very difficult to compare. The proper-

ties are inherently binary (either perfect or imperfect, planar or not planar). Coloring

general graphs is much bleaker, where the focus has turned to approximations. A typ-

ical goal for an approximation algorithm would be to find an algorithm that can color

a graph G which has true chromatic number χ(G) using at most 2χ(G) colors. Garey

and Johnson proved this problem is hard [42]. This approximation lower bound was

improved by Hastad and Zuckerman to n1−ε for any ε > 0. [52, 106]

The next avenue is to assume the chromatic number of the input graph is known.

For example: given the promise that a graph G is 3-colorable, can one efficiently find

9

a coloring with 8 colors? The best would be to find a coloring with 4 colors, but this

is already known to be NP-hard. [48] The best known algorithms to find approximate

colorings of 3-colorable graphs regrettably depend on the size of the graph. The best

algorithm to date colors 3-colorable graphs with O(n0.19996) colors. [63]

The lower bounds are a bit more hopeful. It is known to be NP-hard to color a k-

colorable graph using 2
3√k colors if k is sufficiently large [56]. There are a handful of

other linear lower bounds that work for all k ≥ 3, but to the best of our knowledge this

is the best asymptotic result. The big open problem is to find an upper bound depend-

ing only on k. Even kkk colors would be considered progress.

Our topic of study in Chapter 2 refines the approximate coloring question in the

following sense. We introduce a parameter r ∈ N, and we make the assumption that

the input graph is k-colorable, and remains k-colorable under the adversarial addition

of r new edges. We call such graphs r-resiliently k-colorable.

The idea is that highly resilient instances are easy to color, and the learning about

the resilience boundary could provide a useful perspective on the general approximate

3-coloring question. Moreover, since the boundary is itself an NP-hardness boundary,

completely characterizing the complexity of resilient k-coloring gives a finer perspec-

tive on P vs. NP.

Following this thread, in addition to coloring, the main argument is that resilience

is a natural parameter for any combinatorial search problem. One can formulate a

resilient version of Hamiltonian path or 3D-matching or unique games. Indeed, in

Chapter 2 we completely characterize the complexity of resilient boolean satisfiabil-

ity, where resilience means a formula can be satisfied even under the operation of

10

fixing variables to truth values. In that case resilience does not introduce a difficulty

gradient, and r-resilient k-SAT is either NP-hard or vacuously empty. However, we

demonstrate that one can create resilience-preserving reductions between NP prob-

lems, specifically reducing resilient 1-resilient 6-SAT to 1-resilient 3-coloring, which

shows the latter is also NP-hard. The reduction works by constructing a graph in such

a way so that an edge added to this new graph corresponds to a weaker constraint on

the underlying SAT formula than fixing the truth value of a variable. This suggests that

there is a fruitful theory of resilience-preserving reductions, and it extends existing

tools for constructing NP-hardness reductions to the study of resilience.

0.4 MapReduce and Distributed Complexity

In Chapter 3 we turn to a model of computing based on the paradigm of MapRe-

duce [29]. This model distributes computation across a sublinear number of proces-

sors and rounds in such a way that no processor has random access to the entire input

in any round.

A central open problem related to MapReduce is whether one can determine if an

undirected graph is connected in a constant number of rounds. It can be solved on

MapReduce in O(log n) rounds [61], but in MapReduce rounds are the primary com-

plexity measure, leading one to the present problem. More generally, many problems

on sparse graphs have unresolved complexity for the same reason.

The conjecture is that graph connectivity cannot be solved in constant rounds. How-

ever, there are simply no tools available for proving a lower bound on the complexity

of a MapReduce problem. In the hopes of progress toward a lower bound, one would

11

naturally ask whether tools from classical complexity theory could be brought to bear.

As it turns out, our work is the first to give substantial connections between MapRe-

duce (and other modern distributed computing models) and classical complexity

classes for Turing machines. This was due in part to informal model definitions in the

literature, which we refine, and the alternative focus on upper bounds and algorithm

design in the general community.

The consequences of our work have interesting practical implications and the po-

tential for deep connections to other parts of classical complexity. That is, this work

does not just use complexity theory to understand MapReduce, it provides connec-

tions that go both ways, and answering questions about MapReduce could shed light

on conjectures about tradeoffs between time and space complexity. In the rest of this

section we will describe the techniques used in Chapter 3 and the basic complex-

ity classes involved. All of the results we describe in the remainder of this section

are common knowledge, and we refer the reader to the standard text of Arora and

Barak [7].

First, recall that TIME(f(n)) is the class of decision problems solvable on a Turing

machine using O(f(n)) steps, and SPACE(g(n)) is the class of problems solvable on

a Turing machine using O(g(n)) tape cells. The class TISP(f(n), g(n)) is the class of

problems solvable on a Turing machine in simultaneous time f(n) and space g(n).

Note that it is widely believed that TIME(f(n)) ∩ SPACE(g(n)) ̸= TISP(f(n), g(n)).

Very few facts are known about TISP. Further recall that NTIME(f(n)) is the set of

problems solvable on a nondeterministic Turing machine in O(f(n)) steps, and that

P = ∪iTIME(ni), NP = ∪iNTIME(ni), EXP = ∪iTIME(2ni), NEXP = ∪iNTIME(2ni).

12

One central idea studied in complexity theory is the notion of a hierarchy. The pres-

ence of a hierarchy in a complexity class means that algorithms that are allowed more

resources can solve more problems. For example, the widely known deterministic

time-hierarchy theorem states that for any function f(n) and any function g(n) which

grows sufficiently faster than f(n) (specifically, f(n) log f(n) = o(g(n))), Turing ma-

chines that are allowed g(n) time can solve problems that cannot be solved with f(n)

time. In other words, TIME(f(n)) ⊊ TIME(g(n)). In general, a hierarchy theorem

is a claim about an increasing family of complexity classes C parameterized by some

resource f(n), which has the form “For all functions g(n) sufficiently larger than f(n),

C(f(n)) ⊊ C(g(n)).”

While many hierarchy theorems are known, even the standard complexity classes

still have open questions related to hierarchies. For example, while there is a known

hierarchy theorem for TIME, there is no known hierarchy for TISP(−, g(n)), that is,

a time hierarchy theorem within a fixed space bound. Our work gives a new connec-

tion between this question and existing complexity hypothesis such as the Exponential

Time Hypothesis [58], which states that there exist problems (such as boolean satis-

fiability) that have no subexponential-time algorithms. Further, a hierarchy within

linear-space TISP implies a (slightly wider) hierarchy within MapReduce. We connect

these hypotheses to give a conditional hierarchy.

Padding is a central technique we use to prove our hierarchy theorems. Padding

allows one to use the assumption that two large complexity classes are not equal to

prove that two smaller complexity classes are not equal. As an illustrative example,

we prove that if EXP ̸= NEXP, then P ̸= NP. Suppose that P = NP and let L be a

13

language in NEXP decided by a nondeterministic Turing machine M in time 2nk . For

each string x ∈ L, form L′ = {x12|x|
k
: x ∈ L}, i.e., pad x with an exponential number

of 1’s at the end. Then an NP machine can simulate M by ignoring the padded part of

the input. This takes exponential time, but that runtime is polynomial in the size of the

padded input x12|x|
k
. Since P = NP, there is a deterministic Turing machine M′ that

solves L′, and M′ can be simulated by an EXP machine after adding padding, which

takes exponential time. So P = NP → EXP = NEXP. We use padding to establish our

hierarchy theorems in Chapter 3.

0.5 Neighbor Aid and Disaster Recovery

In the study of infrastructure networks, a great deal of importance is placed on the task

of disaster recovery. For example, if a hurricane damages the power grid in a region,

recovery workers must decide how best to restore the network by repairing each site.

Moreover, the cost of repairing a site is cheaper if nearby sites have already been recov-

ered because previously recovered nodes provide resources to the recovery effort. This

phenomenon is called neighbor aid by [49].

More abstractly, one can fix a network G and a function f : N → N representing

the cost of recovering a node v of G, where the input is the number of neighbors of v

that have already been recovered. Then the goal is to determine the optimal ordering

of the nodes to repair. This problem, introduced by [49], is called the Neighbor Aided

Network Installation Problem (NANIP).

Another angle is resource deployment. One can imagine a military deployment in

which a general wishes to conquer all of the cities in a network, and it is much easier

14

to invade a new city if many neighboring cities already house allied tanks. Moreover,

this highlights that a traversal of the network need not be “connected” in any way; an

optimal strategy may be to conquer two cities on opposite sides of the network and

proceed on two fronts. Indeed, we validate this intuition in Chapter 4 with a coun-

terexample to a conjecture of [49] and a logarithmic approximation-lower bound for

any “connected” traversal (we make this notion rigorous in Section 4.4).

We further refine the computational complexity of the NANIP problem, showing

that NANIP is NP-hard even if the cost function f is convex decreasing, and the hard-

ness reduction extends to a hardness of approximation lower bound.

0.6 Note

The works presented in this dissertation were published at computer science confer-

ences and mathematics journals during the course of the author’s graduate studies.

Specifically, the work in Chapter 1 was published as [72], Chapter 2 as [73], Chapter 3

as [39], and Chapter 4 as [50].

15

1
Anti-Coordination Games and Stable

Graph Colorings

In this chapter we study anti-coordination games played on graphs. In brief, this game

involves a set of n players V*, each of whom can choose an action from a finite set

{1, . . . , k}. The players are connected by directed or undirected edges E. To play the

game, the players choose actions simultaneously, and each player i is rewarded for

each neighbor j that chooses a different action from player i. The natural game-theoretic

question is to study the equilibria of this game. In this chapter we first show that it suf-
*In this chapter we use the terms ‘players,’ ‘agents,’ ‘nodes,’ and ‘vertices’ interchangeably.

16

fices to study pure equilibria, which are equivalent to a certain kind of graph coloring

that we call stable k-colorings. The directed version of the game allows one to encode

both coordination and anti-coordination.

The primary question tackled in this chapter is to determine the computational

complexity of finding stable colorings. The main results presented in this chapter are

that it is NP-hard to find strictly stable colorings in undirected graphs, and that it is

NP-hard to find stable colorings in directed graphs. We also provide a tight bound of

(k − 1)/k on the price of anarchy of this game. Stable colorings are equivalent to a

handful of other combinatorial notions, and they some open problems in these areas,

most notably the complexity of the strictly unfriendly partition problem.

1.1 Introduction and background

Anti-coordination games form some of the basic payoff structures in game theory.

Such games are ubiquitous; miners deciding which land to drill for resources, com-

pany employees trying to learn diverse skills, and airplanes selecting flight paths all

need to mutually anti-coordinate their strategies in order to maximize their profits or

even avoid catastrophe.

Two-player anti-coordination is simple and well understood. In its barest form,

the players have two actions, and payoffs are symmetric for the players, paying off 1

if the players choose different actions and 0 otherwise. This game has two strict pure-

strategy equilibria, paying off 1 to each player, as well as a non-strict mixed-strategy

equilibrium paying off an expected 1/2 to each player.

In the real world, however, coordination and anti-coordination games are more

17

complex than the simple two-player game. People, companies, and even countries play

such multi-party games simultaneously with one another. One straightforward way

to model this is with a graph, whose vertices correspond to agents and whose edges

capture their pairwise interactions. A vertex then chooses one of k strategies, trying to

anti-coordinate with all its neighbors simultaneously. The payoff of a vertex is the sum

of the payoffs of its games with its neighbors – namely the number of neighbors with

which it has successfully anti-coordinated. It is easy to see that this model naturally

captures many applications. For example countries may choose commodities to pro-

duce, and their value will depend on how many trading partners do not produce that

commodity.

In this chapter we focus on finding pure strategies in equilibrium, as well as their

associated social welfare and price of anarchy, concepts we shall presently define. We

look at both strict and non-strict pure strategy equilibria, as well as games on directed

and undirected graphs. Directed graphs characterize the case where only one of the

vertices is trying to anti-coordinate with another. The directed case turns out to not

only generalize the symmetric undirected case, but also captures coordination in addi-

tion to anti-coordination.

These problems also have nice interpretations as certain natural graph coloring and

partition problems, variants of which have been extensively studied. For instance, a

pure strategy equilibrium in an undirected graph corresponds to what we call a stable

k-coloring of the graph, in which no vertex can have fewer neighbors of any color dif-

ferent than its own. For k = 2 colors this is equivalent to the well-studied unfriendly

partition or co-satisfactory partition problem. The strict equilibrium version of this

18

problem (which corresponds to what we call a strictly stable k-coloring) generalizes

the strictly unfriendly partition problem. We establish both the NP-hardness of the de-

cision problem for strictly unfriendly partitions and NP-hardness for higher k.

1.1.1 Previous work

In an early work on what can be seen as a coloring game, Naor and Stockmeyer [83]

define a weak k-coloring of a graph to be one in which each vertex has a differently

colored neighbor. They give a locally distributed algorithm that, under certain condi-

tions, weakly 2-colors a graph in constant time.

Then, in an influential experimental study of anti-coordination in networks, Kearns et al. [64]

propose a true graph coloring game, in which each participant controlled the color of

a vertex, with the goal of coloring a graph in a distributed fashion. The players receive

a reward only when a proper coloring of the graph is found. The theoretical proper-

ties of this game are further studied by Chaudhuri et al. [23] who prove that in a graph

of maximum degree d, if players have d + 2 colors available they will w.h.p. converge

to a proper coloring rapidly using a greedy local algorithm. Our work is also largely

motivated by the work of Kearns et al., but for a somewhat relaxed version of proper

coloring.

Bramoullé et al. [18] also study a general anti-coordination game played on net-

works. In their formulation, vertices can choose to form links, and the payoffs of two

anti-coordinated strategies may not be identical. They go on to characterize the strict

equilibria of such games, as well as the effect of network structure on the behavior of

individual agents. We, on the other hand, consider an arbitrary number of strategies

19

but with a simpler payoff structure.

The game we study is related to the MAX-k-CUT game, in which each player (ver-

tex) chooses its place in a partition so as to maximize the number of neighbors in

other partitions. Hoefer [55], Monnot & Gourvès [45], research Nash equlibria and

coalitions in this context. Our Propositions 1 and 2 generalize known facts proved

there, and we include them for completeness.

This paper also has a strong relationship to unfriendly partitions in graph theory.

An unfriendly partition of a graph is one in which each vertex has at least as many

neighbors in other partitions as in its own. This topic has been extensively studied, es-

pecially in the combinatorics community [3, 19, 93]. While locally finite graphs admit

2-unfriendly partitions, uncountable graphs may not [93].

Friendly (the natural counterpart) and unfriendly partitions are also studied un-

der the names max satisfactory and min co-satisfactory partitions by Bazgan et al. [10],

who focus on partitions of size greater than 2. They characterize the complexity of de-

termining whether a graph has a k-friendly partition and asked about characterizing

k-unfriendly partitions for k > 2. Our notion of stable colorings captures unfriendly

partitions, and we also solve the k > 2 case.

A natural strengthening of the notion above yields strictly unfriendly partitions, de-

fined by Shafique and Dutton [92]. A strictly unfriendly partition requires each vertex

to have strictly more neighbors outside its partition than inside it. Shafique and Dut-

ton characterize a weaker notion, called alliance-free partition, but leave characteriz-

ing strictly unfriendly partitions open. Our notion of strictly stable coloring captures

strictly unfriendly partitions, giving some of the first results on this problem. Cao and

20

Yang [21] also study a related problem originating from sociology, called the matching

pennies game, where some vertices try to coordinate and others try to anti-coordinate.

They prove that deciding whether such a game has a pure strategy equilibrium is NP-

Hard. Our work on the directed case generalizes their notion (which they suggested

for future work). Among our results we give a simpler proof of their hardness result

for k = 2 and also tackle k > 2, settling one of their open questions.

There are a few related games on graphs that involve coloring, but they instead focus

on finding good proper colorings. In [86] Panagopoulou and Spirakis define a coloring

game in which the payoff for a vertex is either zero if it shares a color with a neighbor,

and otherwise the number of vertices in the graph with which it shares a color. They

prove pure Nash equilibria always exist and can be efficiently computed, and provide

nice bounds on the number of colors used. Chatzigiannakis, et al. [22] extend this line

of work by analyzing distributed algorithms for this game, and Escoffier, et al. [35]

improve their bounds.

1.1.2 Results

We provide proofs of the following, the last two being our main results.

1. For all k ≥ 2, every undirected graph has a stable k-coloring, and such a coloring

can be found in polynomial time.

Our notion of stable k-colorings is a strengthening of the notion of k-unfriendly

partitions of Bazgan et al. [10], solving their open problem number 15.

2. For undirected graphs, the price of anarchy for stable k-colorings is bounded by
k

k−1 , and this bound is tight.

21

3. In undirected graphs, for all k ≥ 2, determining whether a graph has a strictly

stable k-coloring is NP-hard.

For k = 2, this notion is equivalent to the notion that is defined by Shafique and

Dutton [92], but left unsolved.

4. For all k ≥ 2, determining whether a directed graph has even a non-strictly stable

k-coloring is NP-hard.

Because directed graphs also capture coordination, this solves two open prob-

lems of Cao and Yang [21], namely generalizing the coin matching game to more

than two strategies and considering the directed case.

1.2 Preliminaries and definitions

1.2.1 Stable Colorings

For an unweighted undirected graph G = (V,E), let C = {f | f : V → {1, . . . , k}}.

We call a function c ∈ C a coloring. We study the following anti-coordination game

played on a graph G = (V,E). In the game, all vertices simultaneously choose a color,

which induces a coloring c ∈ C of the graph. In a given coloring c, an agent v’s payoff,

μc(v), is the number of neighbors choosing colors different from v’s, namely

μc(v) :=
∑

{v,w}∈E

1{c(v)̸=c(w)}.

Note that in this game higher degree vertices have higher potential payoffs.

We also have a natural generalization to directed graphs. That is, if G = (V,E) is a

directed graph and c is a coloring of V, we can define the payoff μc(v) of a vertex v ∈ V

22

analogously as the sum over outgoing edges:

μc(v) :=
∑

(v,w)∈E

1{c(v)̸=c(w)}

Here a directed edge from v to w is interpreted as “v cares about w.” We can then de-

fine the social welfare and price of anarchy for directed graphs identically using this

payoff function.

Given a graph G, we define the social welfare of a coloring c to be

W(G, c) :=
∑
v∈V

μc(v).

We say a coloring c is stable, or in equilibrium, if no vertex can improve its payoff by

changing its color from c(v) to another color. We define Q to be the set of stable color-

ings.

We call a coloring function c strictly stable, or in strict equilibrium, if every vertex

would decrease its payoff by changing its color from c(v) to another color. If a coloring

function is stable and at least one vertex can change its color without decreasing its

payoff, then the coloring is non-strict.

We define the price of anarchy for a graph G to be

PoA(G) := maxc′∈CW(G, c′)
minc∈QW(G, c)

.

This concept was originally introduced by Koutsoupias and Papadimitriou in [68],

where they consider the ratio of social payoffs in the best and worst-case Nash equilib-

23

Figure 1.1: The strictly stable 2-coloring on the left attains a social welfare of 40 while the non-strictly
stable coloring on the right attains 42, the maximum for this graph.

ria. Much work has since focused on the price of anarchy, e.g. [41, 89].

1.2.2 Mixed and pure strategies

It is natural to consider both pure and mixed strategies for the players in our network

anti-coordination game. A pure strategy solution does not in general exist for every 2

player game, while a mixed strategy solution will. However, in this coloring game not

only will a pure strategy solution always exist, but for any mixed strategy solution there

is a pure strategy equilibrium solution which achieves a social welfare at least as good,

and where each player’s payoff is identical with its expected payoff under the mixed

strategy.

1.2.3 Strict and non-strict stability

It is worthwhile to note that a strictly stable coloring c need not provide the maximum

social welfare. In fact, it is not difficult to construct a graph for which a strictly stable

coloring exists yet the maximum social welfare is achieved by a non-strictly stable col-

oring, as shown in Figure 1.1.

24

1.3 Stable colorings

First we consider the problem of finding stable colorings in graphs. For the case k = 2,

this is equivalent to the solved unfriendly partition problem. For this case our algo-

rithm is equivalent to the well-studied local algorithm for MAX-CUT [33, 81]. Our

argument is a variant of a standard approximation algorithm for MAX-CUT, general-

ized to work with partitions of size k ≥ 2.

Proposition 1. For all k ≥ 2, every finite graph G = (V,E) admits a stable k-coloring.

Moreover, a stable k-coloring can be found in polynomial time.

Proof. Given a coloring c of a graph, define Φ(c) to be the number of properly-colored

edges. It is clear that this function is bounded and that social welfare is 2Φ(c). More-

over, the change in a vertex’s utility by switching colors is exactly the change in Φ, re-

alizing this as an exact potential game [80]. In a given coloring, we call a vertex v un-

happy if v has more neighbors of its color than of some other color. We now run the

following process: while any unhappy vertex exists, change its color to the color

c′(u) = argmin
m∈{1,...,k}

∑
v∈N(u)

1{c(v)=m}. (1.1)

As we only modify the colors of unhappy vertices, such an amendment to a coloring

increases the value of Φ by at least 1. After at most |E| such modifications, no vertex

will be unhappy, which by definition means the coloring is stable.

We note that because, in the case of k = 2, maximizing the social welfare of a stable

coloring is equivalent to finding the MAX-CUT of the same graph, which is known to

25

be NP-hard [42], we cannot hope to find a global optimum for the potential function.

However, we can ask about the price of anarchy, for which we obtain a tight bound.

The following result also appears, using a different construction, in [55], but we in-

clude it herein for completeness.

Proposition 2. The price of anarchy of the k-coloring anti-coordination game is at most
k

k−1 , and this bound is tight.

Proof. By the pigeonhole principle, each vertex can always achieve a k−1
k fraction of

its maximum payoff by choosing its color according to Equation 1.1. Hence, if some

vertex does not achieve this payoff then the coloring is not stable. This implies that the

price of anarchy is at most k
k−1 .

To see that this bound is tight take two copies of Kk on vertices v1, . . . , vk and vk+1, . . . , v2k

respectively. Add an edge joining vi with vi+k for i ∈ {1, . . . , k}. If each vertex vi and

vi+k is given color i this gives a stable k-coloring of the graph, as each vertex has one

neighbor of each of the k colors attaining the social welfare lower bound of 2(k−1
k)|E|.

If, however, the vertices vi+k take color i+ 1 for i ∈ {1, . . . , k− 1} and v2k takes color 1,

the graph achieves the maximum social welfare of 2|E|. This is illustrated for k = 5 in

Figure 1.2.

Figure 1.2: A graph achieving PoA of 5
4 , for k=5

26

1.4 Strictly Stable Colorings

In this section we show that the problem of finding a strictly stable equilibrium with

any fixed number k ≥ 2 of colors is NP-complete. We give NP-hardness reductions

first for k ≥ 3 and then for k = 2. The k = 2 case is equivalent to the strictly un-

friendly 2-partition problem [92], whose complexity we settle.

Theorem 1. For all k ≥ 2, determining whether a graph has a strictly stable k-coloring is

NP-complete.

Proof. This problem is clearly in NP. We now analyze the hardness in two cases.

1) k ≥ 3: For this case we reduce from classical k-coloring. Given a graph G, we pro-

duce a graph G′ as follows.

Start with G′ = G, and then for each edge e = {u, v} in G add a copy He of Kk−2 to

G′ and enough edges s.t. the induced subgraph of G′ on V(He) ∪ {u, v} is the complete

graph on k vertices. Figure 1.3 illustrates this construction.

Figure 1.3: The gadget added for each edge in G.

Now supposing that G is k-colorable, we construct a strictly stable equilibrium in G′

as follows. Fix any proper k-coloring ϕ of G. Color each vertex in G′ which came from

G (which is not in any He) using ϕ. For each edge e = (u, v) we can trivially assign the

remaining k− 2 colors among the vertices of He to put the corresponding copy of Kk in

a strict equilibrium. Doing this for every such edge results in a strictly stable coloring.

27

Indeed, this is a proper k-coloring of G′ in which every vertex is adjacent to vertices of

all other k− 1 colors.

Conversely, suppose G′ has a strictly stable equilibrium with k colors. Then no edge

e originally coming from G can be monochromatic. If it were, then there would be

k − 1 remaining colors to assign among the remaining k − 2 vertices of He. No matter

the choice, some color is unused and any vertex of He could change its color without

penalty, contradicting that G′ is in a strict equilibrium.

The only issue is if G originally has an isolated vertex. In this case, G′ would have an

isolated vertex, and hence will not have a strict equilibrium because the isolated vertex

may switch colors arbitrarily without decreasing its payoff. In this case, augment the

reduction to attach a copy of Kk−1 to the isolated vertex, and the proof remains the

same.

2) k = 2: We reduce from 3-SAT. Let ϕ = C1 ∧ · · · ∧ Ck be a boolean formula in 3-CNF

form. We construct a graph G by piecing together gadgets as follows.

For each clause Ci construct an isomorphic copy of the graph shown in Figure 1.4.

We call this the clause gadget for Ci. In Figure 1.4, we label certain vertices to show

how the construction corresponds to a clause. We call the two vertices labeled by the

same literal in a clause gadget a literal gadget. In particular, Figure 1.4 would corre-

spond to the clause (x∨y∨ z̄), and a literal assumes a value of true when the literal gad-

get is monochromatic. Later in the proof we will force literals to be consistent across

all clause gadgets, but presently we focus on the following key property of a clause gad-

get.

Lemma 1. Any strictly stable 2-coloring of a clause gadget has a monochromatic literal

28

Figure 1.4: The clause gadget for (x ∨ y ∨ z̄). Each literal corresponds to a pair of vertices, and a literal
being satisfied corresponds to both vertices having the same color.

gadget. Moreover, any coloring of the literal gadgets which includes a monochromatic

literal extends to a strictly stable coloring of the clause gadget (excluding the literal gad-

gets).

Proof. The parenthetical note will be resolved later by the high-degree of the vertices

in the literal gadgets. Up to symmetries of the clause gadget (as a graph) and up to

swapping colors, the proof of Lemma 1 is illustrated in Figure 1.5. The first five graphs

show the cases where one or more literal gadgets are monochromatic, and the sixth

shows how no strict equilibrium can exist otherwise. Using the labels in Figure 1.5,

whatever the choice of color for the vertex v1, its two uncolored neighbors must have

the same color (or else v1 is not in strict equilibrium). Call this color a. For v2, v3, use

the same argument and call the corresponding colors b, c, respectively. Since there are

only two colors, one pair of a, b, c must agree. WLOG suppose a = b. But then the two

vertices labeled by a and b which are adjacent are not in strict equilibrium.

Using Lemma 1, we complete the proof of the theorem. We must enforce that any

two identical literal gadgets in different clause gadgets agree (they are both monochro-

matic or both not monochromatic), and that any negated literals disagree. We intro-

duce two more simple gadgets for each purpose.

29

Figure 1.5: The first five figures show that a coloring with a monochromatic literal gadget can be ex-
tended to a strict equilibrium. The sixth (bottom right) shows that no strict equilibrium can exist if all
the literals are not monochromatic.

The first is for literals which must agree across two clause gadgets, and we call this

the literal persistence gadget. It is shown in Figure 1.6. The choice of colors for the lit-

erals on one side determines the choice of colors on the other, provided the coloring is

strictly stable. In particular, this follows from the central connecting vertex having de-

gree 2. A nearly identical argument applies to the second gadget, which forces negated

literals to assume opposite truth values. We call this the literal negation gadget, and it is

shown in Figure 1.6. We do not connect all matching literals pairwise by such gadgets

but rather choose one reference literal x′ per variable and connect all literals for x, x to

x′ by the needed gadget.

Figure 1.6: The literal persistence gadget (left) and literal negation gadget (right) connecting two clause
gadgets Ci and Cj. The vertices labeled x on the left are part of the clause gadget for Ci, and the vertices
labeled x on the right are in the gadget for Cj.

The reduction is proved in a straightforward way. If ϕ is satisfiable, then monochro-

30

matically color all satisfied literal gadgets in G. We can extend this to a stable 2-coloring:

all connection gadgets and unsatisfied literal gadgets are forced, and by Lemma 1 each

clause gadget can be extended to an equilibrium. By attaching two additional single-

degree vertices to each vertex in a literal gadget, we can ensure that the literal gadgets

themselves are in strict equilibrium and this does not affect any of the forcing argu-

ments in the rest of the construction.

Conversely, if G has a strictly stable 2-coloring, then each clause gadget has a monochro-

matic literal gadget which gives a satisfying assignment of ϕ. All of the gadgets have a

constant number of vertices so the construction is polynomial in the size of ϕ. This

completes the reduction and proves the theorem.

1.5 Stable colorings in directed graphs

In this section we turn to directed graphs. The directed case clearly generalizes the

undirected as each undirected edge can be replaced by two directed edges. Moreover,

directed graphs can capture coordination. For two colors, if vertex u wants to coor-

dinate with vertex v, then instead of adding an edge (u, v) we can add a proxy vertex

u′ and edges (u, u′) and (u′, v). To be in equilibrium, the proxy has no choice but to

disagree with v, and so u will be more inclined to agree with v. For k colors we can

achieve the same effect by adding an undirected copy of Kk−1, appropriately orienting

the edges, and adding edges (u, x), (x, v) for each x ∈ Kk−1. Hence, this model is quite

general.

Unlike in the undirected graph case, a vertex updating its color according to Equa-

tion 1.1 does not necessarily improve the overall social welfare. In fact, we cannot

31

guarantee that a pure strategy equilibrium even exists – e.g. a directed 3-cycle has no

stable 2-coloring, a fact that we will use in this section.

We now turn to the problem of determining if a directed graph has an equilibrium

with k colors and prove it is NP-hard. Indeed, for strictly stable colorings the answer

is immediate by reduction from the undirected case. Interestingly enough, it is also

NP-hard for non-strict k-colorings for any k ≥ 2.

Theorem 2. For all k ≥ 2, determining whether a directed graph has a stable k-coloring

is NP-complete.

Proof. This problem is clearly in NP. We again separate the hardness analysis into two

parts: k = 2 and k ≥ 3.

1) k = 2: We reduce from the balanced unfriendly partition problem. A balanced 2-

partition of an undirected graph is called unfriendly if each vertex has at least as many

neighbors outside its part as within. Bazgan et al. proved that the decision problem

for balanced unfriendly partitions is NP-complete [10]. Given an undirected graph G

as an instance of balanced unfriendly partition, we construct a directed graph G′ as

follows.

Start by giving G′ the same vertex set as G, and replace each undirected edge of G

with a pair of directed edges in G′. Add two vertices u, v to G′, each with edges to the

other and to all other vertices in G′. Add an additional vertex w with an edge (w, v),

and connect one vertex of a directed 3-cycle to u and to w, as shown in Figure 1.7.

An unbalanced unfriendly partition of G corresponds to a two-coloring of G in

which the colors occur equally often. Partially coloring G′ in this way, we can achieve

stability by coloring u, v opposite colors, coloring w the same color as u, and using this

32

Figure 1.7: The construction from balanced unfriendly partition to directed stable 2-coloring. Here u
and v “stabilize” the 3-cycle. A bold arrow denotes a complete incidence from the source to the target.

to stabilize the 3-cycle, as shown in Figure 1.7. Conversely, suppose G does not have a

balanced unfriendly partition and fix a stable 2-coloring of G′. WLOG suppose G has

an even number of vertices and suppose color 1 occurs more often among the vertices

coming from G. Then u, v must both have color 2, and hence w has color 1. Since u,w

have different colors, the 3-cycle will not be stable. This completes the reduction.

2) k ≥ 3: We reduce from the case of k = 2. The idea is to augment the construction

G′ above by disallowing all but two colors to be used in the G′ part. We call the larger

construction G′′.

We start with G′′ = G′ add two new vertices x, y to G′′ which are adjacent to each

other. In a stable coloring, x and y will necessarily have different colors (in our con-

struction they will not be the tail of any other edges). We call these colors 1 and 2, and

will force them to be used in coloring G′. Specifically, let n be the number of vertices

of G′, and construct n3 copies of Kk−2. For each vertex v in any copy of Kk−2, add the

edges (v, x), (v, y). Finally, add all edges (a, b) where a ∈ G′ and b comes from a copy

of Kk−2. Figure 1.8 shows this construction.

Now in a stable coloring any vertex from a copy of Kk−2 must use a different color

than both x, y, and the vertex set of a copy of Kk−2 must use all possible remaining k −

2 colors. By being connected to n3 copies of Kk−2, each a ∈ G′ will have exactly n3

neighbors of each of the k − 2 colors. Even if a were connected to all other vertices in

33

Figure 1.8: Reducing k colors to two colors. A bold arrow indicates complete incidence from the source
subgraph to the target subgraph.

G′ and they all use color 1, it is still better to use color 1 than to use any of the colors

in {3, . . . , k}. The same holds for color 2, and hence we force the vertices of G′ to use

only colors 1 and 2.

1.6 Discussion and open problems

In this chapter we defined new notions of graph coloring. Our results elucidated anti-

coordination behavior, and solved some open problems in related areas.

Many interesting questions remain. For instance, one can consider alternative pay-

off functions. For players choosing colors i and j, the payoff |i − j| is related to the

channel assignment problem [99]. In the cases when the coloring problem is hard, as

in our problem and the example above, we can find classes of graphs in which it is fea-

sible, or study random graphs in which we conjecture colorings should be possible to

find. Another variant is to study weighted graphs, perhaps with weights, as distances,

satisfying a Euclidian metric. Finally, one could find an appropriate generalization of

this game to hypergraphs and study equilibria in that setting.

34

2
Resilience and Resiliently Colorable

Graphs

An important goal in studying NP-complete combinatorial problems is to find precise

boundaries between tractability and NP-hardness. This is often done by adding con-

straints to the instances being considered until a polynomial time algorithm is found.

For instance, while SAT is NP-hard, the restricted 2-SAT and XOR-SAT versions are

decidable in polynomial time.

In this chapter we present a new angle for studying the boundary between NP-

hardness and tractability. We informally define the resilience of a constraint-based

35

combinatorial problem and we focus on the case of resilient graph colorability. Roughly

speaking, a positive instance is resilient if it remains a positive instance up to the ad-

dition of a constraint. For example, an instance G of Hamiltonian circuit would be

“r-resilient” if G has a Hamiltonian circuit, and G minus any r edges still has a Hamil-

tonian circuit. In the case of coloring, we say a graph G is r-resiliently k-colorable if

G is k-colorable and will remain so even if any r edges are added. One would imag-

ine that finding a k-coloring in a very resilient graph would be easy, as that instance is

very “far” from being not colorable. And in general, one can pose the question: how

resilient can instances be and have the search problem still remain hard?*

Most NP-hard problems have natural definitions of resilience. For instance, resilient

positive instances for optimization problems over graphs can be defined as those that

remain positive instances even up to the addition or removal of any edge. For satis-

fiability, we say a resilient instance is one where variables can be “fixed” and the for-

mula remains satisfiable. In problems like set-cover, we could allow for the removal of

a given number of sets. Indeed, this can be seen as a general notion of resilience for

adding constraints in constraint satisfaction problems (CSPs), which have an extensive

literature [71].†

Therefore we focus on a specific combinatorial problem, graph coloring. Resilience

is defined up to the addition of edges, and we first show that this is an interesting no-

tion: many famous, well studied graphs exhibit strong resilience properties. Then, per-

haps surprisingly, we prove that 3-coloring a 1-resiliently 3-colorable graph is NP-hard
*We focus on the search versions of the problems because the decision version on resilient instances

induces the trivial “yes” answer.
†However, a resilience definition for general CSPs is not immediate because the ability to add any

constraint (e.g., the negation of an existing constraint) is too strong.

36

– that is, it is hard to color a graph even when it is guaranteed to remain 3-colorable

under the addition of any edge. Briefly, our reduction works by mapping positive in-

stances of 3-SAT to 1-resiliently 3-colorable graphs and negative instances to graphs

of chromatic number at least 4. An algorithm which can color 1-resiliently 3-colorable

graphs can hence distinguish between the two. On the other hand, we observe that 3-

resiliently 3-colorable graphs have polynomial-time coloring algorithms (leaving the

case of 3-coloring 2-resiliently 3-colorable graphs tantalizingly open). We also show

that efficient algorithms exist for k-coloring
(k
2

)
-resiliently k-colorable graphs for all k,

and discuss the implications of our lower bounds.

This chapter is organized as follows. In the next two subsections we review the lit-

erature on other notions of resilience and on graph coloring. In Section 2.1 we char-

acterize the resilience of boolean satisfiability, which is used in our main theorem on

1-resilient 3-coloring. In Section 2.2 we formally define the resilient graph coloring

problem and present preliminary upper and lower bounds. In Section 2.3 we prove

our main theorem, and in Section 2.4 we discuss open problems.

2.0.1 Related work on resilience

There are related concepts of resilience in the literature. Perhaps the closest in spirit

is Bilu and Linial’s notion of stability [16]. Their notion is restricted to problems over

metric spaces; they argue that practical instances often exhibit some degree of stabil-

ity, which can make the problem easier. Their results on clustering stable instances

have seen considerable interest and have been substantially extended and improved [9,

12, 16]. Moreover, one can study TSP and other optimization problems over metrics

37

under the Bilu-Linial assumption [76]. A related notion of stability by Ackerman and

Ben-David [1] for clustering yields efficient algorithms when the data lies in Euclidian

space.

Our notion of resilience, on the other hand, is most natural in the case when the

optimization problem has natural constraints, which can be fixed or modified. Our

primary goal is also different – we seek to more finely delineate the boundary between

tractability and hardness in a systematic way across problems.

Property testing can also be viewed as involving resilience. Roughly speaking prop-

erty testing algorithms distinguish between combinatorial structures that satisfy a

property or are very far from satisfying it. These algorithms are typically given access

to a small sample depending on a parameter ε alone. For graph property testing, as

with resilience, the concept of being ε-far from having a property involves the addition

or removal of an arbitrary set of at most ε
(n
2

)
edges from G. Our notion of resilience

is different in that we consider adding or removing a constant number of constraints.

More importantly, property testing is more concerned with query complexity than

with computational hardness.

2.0.2 Previous work on coloring

As our main results are on graph colorability, we review the relevant past work. A

graph G is k-colorable if there is an assignment of k distinct colors to the vertices of

G so that no edge is monochromatic. Determining whether G is k-colorable is a classic

an NP-hard problem [62]. Many attempts to simplify the problem, such as assuming

planarity or bounded degree, still result in NP-hardness [27]. A large body of work

38

surrounds positive and negative results for explicit families of graphs. The list of fam-

ilies that are polynomial-time colorable includes triangle-free planar graphs, perfect

graphs and almost-perfect graphs, bounded tree- and clique-width graphs, quadtrees,

and various families of graphs defined by the lack of an induced subgraph [20, 34, 54,

67, 69].

With little progress on coloring general graphs, research has naturally turned to

approximation. In approximating the chromatic number of a general graph, the first

results were of Garey and Johnson, giving a performance guarantee of O(n/ log n) col-

ors [59] and proving that it is NP-hard to approximate chromatic number to within a

constant factor less than two [43]. Further work improved this bound by logarithmic

factors [13, 51]. In terms of lower bounds, Zuckerman [106] derandomized the PCP-

based results of Håstad [52] to prove the best known approximability lower-bound to

date, O(n1−ε).

There has been much recent interest in coloring graphs which are already known to

be colorable while minimizing the number of colors used. For a 3-colorable graph,

Wigderson gave an algorithm using at most O(n1/2) colors [103], which Blum im-

proved to Õ(n3/8) [17]. A line of research improved this bound still further to o(n1/5) [63].

Despite the difficulties in improving the constant in the exponent, and as suggested

by Arora [8], there is no evidence that coloring a 3-colorable graph with as few as

O(log n) colors is hard.

On the other hand there are asymptotic and concrete lower bounds. Khot [66]

proved that for sufficiently large k it is NP-hard to color a k-colorable graph with fewer

than kO(log k) colors; this was improved by Huang to 2
3√k [56]. It is also known that

39

for every constant h there exists a sufficiently large k such that coloring a k-colorable

graph with hk colors is NP-hard [30]. In the non-asymptotic case, Khanna, Linial, and

Safra [65] used the PCP theorem to prove it is NP-hard to 4-color a 3-colorable graph,

and more generally to color a k colorable graph with at most k + 2 ⌊k/3⌋ − 1 colors.

Guruswami and Khanna give an explicit reduction for k = 3 [48]. Assuming a variant

of Khot’s 2-to-1 conjecture, Dinur et al. prove that distinguishing between chromatic

number K and K′ is hard for constants 3 ≤ K < K′ [30]. This is the best conditional

lower bound we give in Section 2.2.3, but it does not to our knowledge imply Theo-

rem 4.

Without large strides in approximate graph coloring, we need a new avenue to ap-

proach the NP-hardness boundary. In this chapter we consider the coloring prob-

lem for a general family of graphs which we call resiliently colorable, in the sense that

adding edges does not violate the given colorability assumption.

2.1 Resilient SAT

We begin by describing a resilient version of k-satisfiability, which is used in proving

our main result for resilient coloring in Section 2.3.

Problem 1 (resilient k-SAT). A boolean formula ϕ is r-resilient if it is satisfiable and re-

mains satisfiable if any set of r variables are fixed. We call r-resilient k-SAT the problem

of finding a satisfying assignment for an r-resiliently satisfiable k-CNF formula. Likewise,

r-resilient CNF-SAT is for r-resilient formulas in general CNF form.

The following lemma allows us to take problems that involve low (even zero) re-

silience and blow them up to have large resilience and large clause size.

40

Lemma 2 (blowing up). For all r ≥ 0, s ≥ 1, and k ≥ 3, r-resilient k-SAT reduces to

[(r+ 1)s− 1]-resilient (sk)-SAT in polynomial time.

Proof. Let ϕ be an r-resilient k-SAT formula. For each i, let ϕi denote a copy of ϕ with

a fresh set of variables. Construct ψ =
∨s

i=1 ϕ
i. The formula ψ is clearly equivalent to

ϕ, and by distributing the terms we can transform ψ into (sk)-CNF form in time O(ns).

We claim that ψ is [(r+ 1)s− 1]-resilient. If fewer than (r+ 1)s variables are fixed, then

by the pigeonhole principle one of the s sets of variables has at most r fixed variables.

Suppose this is the set for ϕ1. As ϕ is r-resilient, ϕ1 is satisfiable and hence so is ψ.

As a consequence of the blowing up lemma for r = 0, s = 2, k = 3, 1-resilient

6-SAT is NP-hard (we reduce from this in our main coloring lower bound). Moreover,

a slight modification of the proof shows that r-resilient CNF-SAT is NP-hard for all

r ≥ 0. The next lemma allows us to reduce in the other direction, shrinking down the

resilience and clause sizes.

Lemma 3 (shrinking down). Let r ≥ 1, k ≥ 2, and q = min(r, ⌊k/2⌋). Then r-resilient

k-SAT reduces to q-resilient (⌈ k
2⌉+ 1)-SAT in polynomial time.

Proof. For ease of notation, we prove the case where k is even. For a clause C =
∨k

i=1 xi,

denote by C[: k/2] the sub-clause consisting of the first half of the literals of C, specif-

ically
∨k/2

i=1 xi. Similarly denote by C[k/2 :] the second half of C. Now given a k-SAT

formula ϕ =
∧k

j=1 Cj, we construct a (k2 + 1)-SAT formula ψ by the following. For each

j introduce a new variable zj, and define

ψ =
k∧
j=1

(Cj[: k/2] ∨ zj) ∧ (Cj[k/2 :] ∨ zj)

41

The formulas ϕ and ψ are logically equivalent, and we claim ψ is q-resilient. Indeed,

if some of the original set of variables are fixed there is no problem, and each zi which

is fixed corresponds to a choice of whether the literal which will satisfy Cj comes from

the first or the second half. Even stronger, we can arbitrarily pick another literal in the

correct half and fix its variable so as to satisfy the clause. The r-resilience of ϕ guaran-

tees the ability to do this for up to r of the zi. But with the observation that there are no

l-resilient l-SAT formulas, we cannot get k/2 + 1 resilience when r > k/2, giving the

definition of q.

Combining the blowing up and shrinking down lemmas, we get a tidy characteriza-

tion: r-resilient k-SAT is either NP-hard or vacuously trivial.

Theorem 3. For all k ≥ 3, 0 ≤ r < k, r-resilient k-SAT is NP-hard.

Proof. We note that increasing k or decreasing r (while leaving the other parameter

fixed) cannot make r-resilient k-SAT easier, so it suffices to reduce from 3-SAT to (k −

1)-resilient k-SAT for all k ≥ 3. For any r we can blow up from 3-SAT to r-resilient

3(r + 1)-SAT by setting s = r + 1 in the blowing up lemma. We want to iteratively

apply the shrinking down lemma until the clause size is s. If we write s0 = 3s and

si = ⌈si/2⌉+ 1, we would need that for some m, sm = s and that for each 1 ≤ j < m, the

inequality ⌊sj/2⌋ ≥ r = s− 1 holds.

Unfortunately this is not always true. For example, if s = 10 then s1 = 16 and

16/2 < 9, so we cannot continue. However, we can avoid this for sufficiently large r

by artificially increasing k after blowing up. Indeed, we just need to find some x ≥ 0

for which a1 =
⌈ 3s+x

2

⌉
+ 1 = 2(s− 1). And we can pick x = s− 6 = r− 5, which works

42

for all r ≥ 5. For r = 2, 3, 4, we can check by hand that one can find an x that works.‡

For r = 2 we can start from 2-resilient 9-SAT; for r = 3 we can start from 16-SAT; and

for r = 4 we can start from 24-SAT.

2.2 Resilient graph coloring and preliminary bounds

In contrast to satisfiability, resilient graph coloring has a more interesting hardness

boundary, and it is not uncommon for graphs to have relatively high resilience. In this

section we present some preliminary bounds.

2.2.1 Problem definition and remarks

Problem 2 (resilient coloring). A graph G is called r-resiliently k-colorable if G remains

k-colorable under the addition of any set of r new edges.

This notion is not vacuously trivial. Indeed, Figure 2.1 provides the resilience prop-

erties of some classic graphs. Moreover, Table 2.1 provides a count of the resilience

properties of all graphs on 6-8 vertices for a small number of colors. These were deter-

mined by exhaustive computer search.

There are a few interesting constructions to build intuition about resilient graphs.

First, it is clear that every k-colorable graph is 1-resiliently (k + 1)-colorable (just

add one new color for the additional edge), but for all k > 2 there exist k-colorable

graphs which are not 2-resiliently (k + 1)-colorable. Simply remove two disjoint edges

from the complete graph on k + 2 vertices. A slight generalization of this argument
‡The difference is that for r ≥ 5 we can get what we need with only two iterations, but for smaller r

we require three steps.

43

Figure 2.1: From left to right: the Petersen graph, 2-resiliently 3-colorable; the Dürer graph, 4-
resiliently 4-colorable; the Grötzsch graph, 4-resiliently 4-colorably; and the Chvátal graph, 3-resiliently
4-colorable. These are all maximally resilient (no graph is more resilient than stated) and chromatic (no
graph is colorably with fewer colors).

provides examples of graphs which are ⌊(k+ 1)/2⌋-colorable but not ⌊(k+ 1)/2⌋-

resiliently k-colorable for k ≥ 3. On the other hand, every ⌊(k+ 1)/2⌋-colorable graph

is (⌊(k+ 1)/2⌋ − 1)-resiliently k-colorable, since r-resiliently k-colorable graphs are

(r +m)-resiliently (k +m)-colorable for all m ≥ 0 (add one new color for each added

edge).

One expects high resilience in a k-colorable graph to reduce the number of colors

required to color it. While this may be true for super-linear resilience, there are easy

examples of (k− 1)-resiliently k-colorable graphs which are k-chromatic. For instance,

add an isolated vertex to the complete graph on k vertices.

2.2.2 Observations

We are primarily interested in the complexity of coloring resilient graphs, and so we

pose the question: for which values of k, r does the task of k-coloring an r-resiliently

k-colorable graph admit an efficient algorithm? The following observations aid us in

the classification of such pairs, which is displayed in Figure 2.2.

Observation 1. An r-resiliently k-colorable graph is r′-resiliently k-colorable for any r′ ≤

44

r 1 2 3 4
k
3 58.0 22.7 5.9 1.7
4 93.3 79.3 58.0 35.3
5 99.4 98.1 94.8 89.0
6 100.0 100.0 100.0 100.0

(a) n = 6 nodes

r 1 2 3 4
k
3 38.1 8.2 1.2 0.3
4 86.7 62.6 35.0 14.9
5 98.7 95.6 88.5 76.2
6 99.9 99.7 99.2 98.3

(b) n = 7 nodes

r 1 2 3 4
k
3 21.3 2.1 0.2 0.0
4 77.6 44.2 17.0 4.5

(c) n = 8 nodes

Table 2.1: The percentage of k-colorable graphs on n = (6, 7, 8) nodes which are r-resilient. All values
are rounded to the nearest tenth of a percent.

r. Hence, if k-coloring is in P for r-resiliently k-colorable graphs, then it is for s-resiliently

k-colorable graphs for all s ≥ r. Conversely, if k-coloring is NP-hard for r-resiliently k-

colorable graphs, then it is for s-resiliently k-colorable graphs for all s ≤ r.

Hence, in Figure 2.2 if a cell is in P, so are all of the cells to its right; and if a cell is

NP-hard, so are all of the cells to its left.

Observation 2. If k-coloring is in P for r-resiliently k-colorable graphs, then k′-coloring

r-resiliently k′-colorable graphs is in P for all k′ ≤ k. Similarly, if k-coloring is in NP-

hard for r-resiliently k-colorable graphs, then k′-coloring is NP-hard for r-resiliently k′-

colorable graphs for all k′ ≥ k.

Proof. If G is r-resiliently k-colorable, then we construct G′ by adding a new vertex v

with complete incidence to G. Then G′ is r-resiliently (k + 1)-colorable, and an algo-

rithm to color G′ can be used to color G.

45

Figure 2.2: The classification of the complexity of k-coloring r-resiliently k-colorable graphs. Left:
the explicit classification for small k, r. Right: a zoomed-out view of the same table, with the NP-hard
(black) region added by Proposition 6.

Observation 2 yields the rule that if a cell is in P, so are all of the cells above it; if a

cell is NP-hard, so are the cells below it. More generally, we have the following obser-

vation which allows us to apply known bounds.

Observation 3. If it is NP-hard to f(k)-color a k-colorable graph, then it is NP-hard to

f(k)-color an (f(k)− k)-resiliently f(k)-colorable graph.

This observation is used in Propositions 4 and 5, and follows from the fact that an

r-resiliently k-colorable graph is (r + m)-resiliently (k + m)-colorable for all m ≥ 0

(here r = 0,m = f(k)− k).

2.2.3 Upper and lower bounds

In this section we provide a simple upper bound on the complexity of coloring re-

silient graphs, we apply known results to show that 4-coloring a 1-resiliently 4-colorable

graph is NP-hard, and we give the conditional hardness of k-coloring (k−3)-resiliently

k-colorable graphs for all k ≥ 3. This last result follows from the work of Dinur et

al., and depends a variant of Khot’s 2-to-1 conjecture [30]; a problem is called 2-to-

1-hard if it is NP-hard assuming this conjecture holds. Finally, applying the result of

46

Huang [56], we give an asymptotic lower bound.

All our results on coloring are displayed in Figure 2.2. To explain Figure 2.2 more

explicitly, Proposition 3 gives an upper bound for r =
(k
2

)
, and Proposition 4 gives

hardness of the cell (4, 1) and its consequences. Proposition 5 provides the conditional

lower bound, and Theorem 4 gives the hardness of the cell (3, 1). Proposition 6 pro-

vides an NP-hardness result.

Proposition 3. There is an efficient algorithm for k-coloring
(k
2

)
-resiliently k-colorable

graphs.

Proof. If G is
(k
2

)
-resiliently k-colorable, then no vertex may have degree ≥ k. For if

v is such a vertex, one may add complete incidence to any choice of k vertices in the

neighborhood of v to get Kk+1. Finally, graphs with bounded degree k − 1 are greedily

k-colorable.

Proposition 4. 4-coloring a 1-resiliently 4-colorable graph is NP-hard.

Proof. It is known that 4-coloring a 3-colorable graph is NP-hard, so we may apply

Observation 3. Every 3-colorable graph G is 1-resiliently 4-colorable, since if we are

given a proper 3-coloring of G we may use the fourth color to properly color any new

edge that is added. So an algorithm A which efficiently 4-colors 1-resiliently 4-colorable

graphs can be used to 4-color a 3-colorable graph.

Proposition 5. For all k ≥ 3, it is 2-to-1-hard to k-color a (k − 3)-resiliently k-colorable

graph.

47

Proof. As with Proposition 4, we apply Observation 3 to the conditional fact that it is

NP-hard to k-color a 3-colorable graph for k > 3. Such graphs are (k − 3)-resiliently

k-colorable.

Proposition 6. For sufficiently large k it is NP-hard to 2
3√k-color an r-resiliently 2

3√k-

colorable graph for r < 2
3√k − k.

Proposition 6 comes from applying Observation 3 to the lower bound of Huang [56].

The only unexplained cell of Figure 2.2 is (3,1), which we prove is NP-hard as our

main theorem in the next section.

2.3 NP-hardness of 1-resilient 3-colorability

Theorem 4. It is NP-hard to 3-color a 1-resiliently 3-colorable graph.

Proof. We reduce 1-resilient 3-coloring from 1-resilient 6-SAT. This reduction comes

in the form of a graph which is 3-colorable if and only if the 6-SAT instance is satisfi-

able, and 1-resiliently 3-colorable when the 6-SAT instance is 1-resiliently satisfiable.

We use the colors white, black, and gray.

We first describe the gadgets involved and prove their consistency (that the 6-SAT

instance is satisfiable if and only if the graph is 3-colorable), and then prove the con-

struction is 1-resilient. Given a 6-CNF formula ϕ = C1 ∧ · · · ∧Cm we construct a graph

G as follows. Start with a base vertex b which we may assume w.l.o.g. is always colored

gray. For each literal we construct a literal gadget consisting of two vertices both adja-

cent to b, as in Figure 2.3. As such, the vertices in a literal gadget may only assume the

colors white and black. A variable is interpreted as true iff both vertices in the literal

48

Figure 2.3: The gadget for a literal. The two single-degree vertices represent a single literal, and are
interpreted as true if they have the same color. The base vertex is always colored gray. Note this gadget
comes from Kun et al. [72].

gadget have the same color. We will abbreviate this by saying a literal is colored true or

colored false.

We connect two literal gadgets for x, x by a negation gadget in such a way that the

gadget for x is colored true if and only if the gadget for x is colored false. The negation

gadget is given in Figure 2.4. In the diagram, the vertices labeled 1 and 3 correspond

to x, and those labeled 10 and 12 correspond to x. We start by showing that no proper

coloring can exist if both literal gadgets are colored true. If all four of these vertices

are colored white or all four are black, then vertices 6 and 7 must also have this color,

and so the coloring is not proper. If one pair is colored both white and the other both

black, then vertices 13 and 14 must be gray, and the coloring is again not proper. Next,

we show that no proper coloring can exist if both literal gadgets are colored false. First,

if vertices 1 and 10 are white and vertices 3 and 12 are black, then vertices 2 and 11

must be gray and the coloring is not proper. If instead vertices 1 and 12 are white and

vertices 3 and 10 black, then again vertices 13 and 14 must be gray. This covers all pos-

sibilities up to symmetry. Moreover, whenever one literal is colored true and the other

false, one can extend it to a proper 3-coloring of the whole gadget.

Now suppose we have a clause involving literals, w.l.o.g., x1, . . . , x6. We construct

the clause gadget shown in Figure 2.4, and claim that this gadget is 3-colorable iff at

least one literal is colored true. Indeed, if the literals are all colored false, then the ver-

49

Figure 2.4: Left: the gadget for a clause. Right: the negation gadget ensuring two literals assume oppo-
site truth values.

Figure 2.5: A valid coloring of the
clause gadget when one variable (in
this case x3) is true.

tices 13 through 18 in the diagram must be colored gray, and then the vertices 25, 26,

27 must be gray. This causes the central triangle to use only white and black, and so

it cannot be a proper coloring. On the other hand, if some literal is colored true, we

claim we can extend to a proper coloring of the whole gadget. Suppose w.l.o.g. that the

literal in question is x1, and that vertices 1 and 2 both are black. Then Figure 2.5 shows

how this extends to a proper coloring of the entire gadget regardless of the truth as-

signments of the other literals (we can always color their branches as if the literals were

false).

It remains to show that G is 1-resiliently 3-colorable when ϕ is 1-resiliently satisfi-

able. This is because a new edge can, at worst, fix the truth assignment (perhaps in-

directly) of at most one literal. Since the original formula ϕ is 1-resiliently satisfiable,

G maintains 3-colorability. Additionally, the gadgets and the representation of truth

were chosen so as to provide flexibility w.r.t. the chosen colors for each vertex, so many

edges will have no effect on G’s colorability.

50

First, one can verify that the gadgets themselves are 1-resiliently 3-colorable.§ We

break down the analysis into eight cases based on the endpoints of the added edge:

within a single clause/negation/literal gadget, between two distinct clause/negation/lit-

eral gadgets, between clause and negation gadgets, and between negation and lit-

eral gadgets. We denote the added edge by e = (v,w) and call it good if G is still 3-

colorable after adding e.

Literal Gadgets. First, we argue that e is good if it lies within or across literal gadgets.

Indeed, there is only one way to add an edge within a literal gadget, and this has the

effect of setting the literal to false. If e lies across two gadgets then it has no effect: if c

is a proper coloring of G without e, then after adding e either c is still a proper color-

ing or we can switch to a different representation of the truth value of v or w to make

e properly colored (i.e. swap “white white” with “black black,” or “white black” with

“black white” and recolor appropriately).

Negation Gadgets. Next we argue that e is good if it involves a negation gadget. Let

N be a negation gadget for the variable x. Indeed, by 1-resilience an edge within N is

good; e only has a local effect within negation gadgets, and it may result in fixing the

truth value of x. Now suppose e has only one vertex v in N. Figure 2.6 shows two ways

to color N, which together with reflections along the horizontal axis of symmetry have

the property that we may choose from at least two colors for any vertex we wish. That

is, if we are willing to fix the truth value of x, then we may choose between one of two

colors for v so that e is properly colored regardless of which color is adjacent to it.

Clause Gadgets. Suppose e lies within a clause gadget or between two clause gadgets.
§These graphs are small enough to admit verification by computer search.

51

Figure 2.6: Two distinct ways to color a negation gadget without changing the truth values of the liter-
als. Only the rightmost center vertex cannot be given a different color by a suitable switch between the
two representations or a reflection of the graph across the horizontal axis of symmetry. If the new edge
involves this vertex, we must fix the truth value appropriately.

Figure 2.7: An example of
an edge added between two
clauses C1,C2.

As with the negation gadget, it suffices to fix the truth value of one variable suitably so

that one may choose either of two colors for one end of the new edge. Figure 2.7 pro-

vides a detailed illustration of one case. Here, we focus on two branches of two sepa-

rate clause gadgets, and add the new edge e = (v,w). The added edge has the following

effect: if x is false, then neither y nor z may be used to satisfy C2 (as w cannot be gray).

This is no stronger than requiring that either x be true or y and z both be false, i.e., we

add the clause x ∨ (y ∧ z) to ϕ. This clause can be satisfied by fixing a single variable (x

to true), and ϕ is 1-resilient, so we can still satisfy ϕ and 3-color G. The other cases are

analogous.

This proves that G is 1-resilient when ϕ is, and finishes the proof.

2.4 Discussion and open problems

The notion of resilience introduced in this chapter leaves many questions unanswered,

both specific problems about graph coloring and more general exploration of resilience

52

in other combinatorial problems and CSPs.

Regarding graph coloring, our chapter established the fact that 1-resilience doesn’t

affect the difficulty of graph coloring. However, the question of 2-resilience is open,

as is establishing linear lower bounds without dependence on the 2-to-1 conjecture.

There is also room for improvement in finding efficient algorithms for highly-resilient

instances, closing the gap between NP-hardness and tractability.

On the general side, our framework applies to many NP-complete problems, includ-

ing Hamiltonian circuit, set cover, 3D-matching, integer LP, and many others. Each

presents its own boundary between NP-hardness and tractability, and there are un-

doubtedly interesting relationships across problems.

53

3
Computational Complexity and

MapReduce

In this chapter we study the MapReduce [29] complexity class (MRC) defined by Karloff et al. [61],

which is a formal complexity-theoretic model of MapReduce. We show that constant-

round MRC computations can decide regular languages and simulate sublogarith-

mic space-bounded Turing machines. In addition, we prove hierarchy theorems for

MRC under certain complexity-theoretic assumptions. These theorems show that

sufficiently increasing the number of rounds or the amount of time per processor

strictly increases the computational power of MRC. This work lays the foundation for

54

further analysis relating MapReduce to established complexity classes. These results

also hold for Valiant’s BSP model [98] of parallel computation and the MPC model of

Beame et al [11].

3.1 Introduction

MapReduce is a programming model originally developed to separate algorithm de-

sign from the engineering challenges of massively distributed computing. A program-

mer can separately implement a “map” function and a “reduce” function that satisfy

certain constraints, and the underlying MapReduce technology handles all the com-

munication, load balancing, fault tolerance, and scaling. MapReduce frameworks and

their variants have been successfully deployed in industry by Google [29], Yahoo! [95],

and many others.

MapReduce offers a unique and novel model of parallel computation because it al-

ternates parallel and sequential steps, and imposes sharp constraints on communica-

tion and random access to the data. This distinguishes MapReduce from classical the-

oretical models of parallel computation and this, along with its popoularity in indus-

try, is a strong motivation to study the theoretical power of MapReduce. From a the-

oretical standpoint we ask how MapReduce relates to established complexity classes.

From a practical standpoint we ask which problems can be efficiently modeled using

MapReduce and which cannot.

In 2010 Karloff et al. [61] initiated a principled theoretical study of MapReduce,

providing the definition of the complexity class MRC and comparing it with the classi-

cal PRAM models of parallel computing. But since this initial paper, almost all of the

55

work on MapReduce has focused on algorithmic issues.

Complexity theory studies the classes of problems defined by resource bounds on

different models of computation in which they are solved. A central goal of complex-

ity theory is to understand the relationships between different models, i.e. to see if

the problems solvable with bounded resources on one computational model can be

solved with a related resource bound on a different model. In this chapter we prove a

result that establishes a connection between MapReduce and space-bounded compu-

tation on classical Turing machines. Another traditional question asked by complexity

theory is whether increasing the resource bound on a certain computational resource

strictly increases the set of solvable problems. Such so-called hierarchy theorems exist

for time and space on deterministic and non-deterministic Turing machines, among

other settings. In this chapter we prove conditional hierarchy theorems for MapRe-

duce rounds and time.

First we lay a more precise theoretical foundation for studying MapReduce com-

putations (Section 3.3). In particular, we observe that Karloff et al.’s definitions are

non-uniform, allowing the complexity class to contain undecidable languages. We re-

formulate the definition of [61] to make a uniform model and to more finely track the

parameters involved (Section 3.3.2). In addition, we point out that the results in this

chapter hold for other important models of parallel computations, including Valiant’s

Bulk-Synchronous Processing (BSP) model [98] and the Massively Parallel Communi-

cation (MPC) model of Beame et al [11]. (Section 3.3.3). We then prove two main the-

orems: SPACE(o(log n)) has constant-round MapReduce computations (Section 3.6)

and, conditioned on a version of the Exponential Time Hypothesis, there are strict hi-

56

erarchies within MRC. In particular, sufficiently increasing time or number of rounds

increases the power of MRC (Section 3.7).

The sub-logarithmic space result is achieved by a direct simulation, using a two-

round protocol that localizes state-to-state transitions to the section of the input being

simulated, combining the sections in the second round. It is a major open problem

whether undirected graph connectivity (a canonical logarithmic-space problem) has a

constant-round MapReduce algorithm, and this result is the most general that can be

proven without a breakthrough on graph connectivity. The hierarchy theorem involves

proving a conditional time hierarchy within linear space achieved by a padding argu-

ment, along with proving a time-and-space upper and lower bounds on simulating

MRC machines within P. This hierarchy theorem is the first of its kind. We conclude

with a discussion and open questions raised by our work (Section 3.8).

3.2 Background and Previous Work

3.2.1 MapReduce

The MapReduce protocol can be roughly described as follows. The input data is given

as a list of key-value pairs, and over a series of rounds two things happen per round:

a “mapper” is applied to each key-value pair independently (in parallel), and then for

each distinct key a “reducer” is applied to all corresponding values for a group of keys.

The canonical example is counting word frequencies with a two-round MapReduce

protocol. The inputs are (index, word) pairs, the first mapper maps (k, v) 7→ (v, k), and

the first reducer computes the sum of the word frequencies for the given key. In the

second round the mapper sends all data to a single processor via (k, nk) 7→ (1, (k, nk)),

57

and the second processor formats the output appropriately.

One of the primary challenges in MapReduce is data locality. MapReduce was de-

signed for processing massive data sets, so MapReduce programs require that every

reducer only has access to a substantially sublinear portion of the input, and the strict

modularization prohibits reducers from communicating within a round. All commu-

nication happens indirectly through mappers, which are limited in power by the in-

dependence requirement. Finally, it’s understood in practice that a critical quantity to

optimize for is the number of rounds [61], so algorithms which cannot avoid a large

number of rounds are considered inefficient and unsuitable for MapReduce.

There are a number of MapReduce-like models in the literature, including the MRC

model of Karloff et al. [61], the “mud” algorithms of Feldman et al. [37], Valiant’s BSP

model [98], the MPC model of Beame et al. [11], and extensions or generalizations of

these, e.g. [44]. The MRC class of Karloff et al. is the closest to existing MapReduce

computations, and is also among the most restrictive in terms of how it handles com-

munication and tracks the computational power of individual processors. In their in-

fluential paper [61], Karloff et al. display the algorithmic power of MRC, and prove

that MapReduce algorithms can simulate CREW PRAMs which use subquadratic total

memory and processors. It is worth noting that the work of Karloff et al. did not in-

clude comparisons to the standard (non-parallel) complexity classes, which is the aim

of the present work.

Since [61], there has been extensive work in developing efficient algorithms in MapReduce-

like frameworks. For example, Kumar et al. [70] analyze a sampling technique allow-

ing them to translate sequential greedy algorithms into log-round MapReduce al-

58

gorithms with a small loss of quality. Farahat et al. [36] investigate the potential for

sparsifying distributed data using random projections. Kamara and Raykova [60] de-

velop a homomorphic encryption scheme for MapReduce. And much work has been

done on graph problems such as connectivity, matchings, sorting, and searching [44].

Chu et al. [25] demonstrate the potential to express any statistical-query learning al-

gorithm in MapReduce. Finally, Sarma et al. [90] explore the relationship between

communication costs and the degree to which a computation is parallel in one-round

MapReduce problems. Many of these papers pose general upper and lower bounds on

MapReduce computations as an open problem, and the results in this chapter are the

first to do so with classical complexity classes.

The study of MapReduce has resulted in a wealth of new and novel algorithms,

many of which run faster than their counterparts in classical PRAM models. As such,

a more detailed study of the theoretical power of MapReduce is warranted. These re-

sults contribute to this by establishing a more precise definition of the MapReduce

complexity class, proving that it contains sublogarithmic deterministic space, and

showing the existence of certain kinds of hierarchies.

3.2.2 Complexity

From a complexity-theory viewpoint, MapReduce is unique in that it combines bounds

on time, space and communication. Each of these bounds would be very weak on its

own: the total time available to processors is polynomial; the total space and com-

munication are slightly less than quadratic. In particular, even though arranging the

communication between processors is one of the most difficult parts of designing

59

MapReduce algorithms, classical results from communication complexity do not apply

since the total communication available is more than linear. These innocent-looking

bounds lead to serious restrictions when combined, as demonstrated by the fact that

it is unknown whether constant-round MRC machines can decide graph connectivity

(the best known result achieves a logarithmic number of rounds with high probabil-

ity [61]), although it is solvable using only logarithmic space on a deterministic Turing

machine.

We relate the MRC model to more classical complexity classes by studying simulta-

neous time-space bounds. TISP(T(n), S(n)) are the problems that can be decided by

a Turing machine which on inputs of length n takes at most O(T(n)) time and uses

at most O(S(n)) space. Note that in general it is believed that TISP(T(n), S(n)) ̸=

TIME(T(n)) ∩ SPACE(S(n)). The complexity class TISP is studied in the context of

time-space tradeoffs (see, for example, [40, 104]). Unfortunately much less is known

about TISP than about TIME or SPACE; for example there is no known time hierar-

chy theorem for fixed space. The existence of such a hierarchy is mentioned as an open

problem in the monograph of Wagner and Wechsung [101].

To prove the results about TISP that imply the existence of a hierarchy in MRC,

we use the Exponential Time Hypothesis (ETH) introduced by Impagliazzo, Paturi,

and Zane [57, 58], versions of which conjecture that 3-SAT does not have subexpo-

nential time algorithms. ETH and its siblings have been used to prove conditional

lower bounds for specific hard problems like vertex cover, and for algorithms in the

context of fixed parameter tractability (see, e.g., the survey of Lokshtanov, Marx and

Saurabh [75]). The first open problem mentioned in [75] is to relate ETH to some

60

other known complexity theoretic hypotheses, which we do with our TISP hierarchy.

We show in Lemma 5 that a weaker version of ETH directly implies a time-space

trade-off, eg. that there are problems solvable in, say, n6 time that cannot be solved in

simultaneous quadratic time and linear space*. This ‘weaker’ ETH is not a well-known

complexity theoretic hypothesis, but relative strengths of ETH, this weaker hypothesis,

and the statement of the lemma seem to be unknown.

3.3 Models

In this section we introduce the model we will use in this chapter, a uniform version of

Karloff ’s MapReduce Class (MRC), and contrast MRC to other models of parallel com-

putation, such as Valiant’s Bulk-Synchronous Parallel (BSP) model, for which these

results also hold.

3.3.1 MapReduce and MRC

The central piece of data in MRC is the key-value pair, which we denote by a pair of

strings ⟨k, v⟩, where k is the key and v is the value. An input to an MRC machine is a

list of key-value pairs ⟨ki, vi⟩Ni=1 with a total size of n =
∑N

i=1 |ki| + |vi|. The definitions

in this subsection are adapted from [61].

Definition 1. A mapper μ is a Turing machine† which accepts as input a single key-value

pair ⟨k, v⟩ and produces a list of key-value pairs ⟨k′1, v′1⟩, . . . , ⟨k′s, v′s⟩.
*The actual constants depend on the ETH constant
†The definitions of [61] were for RAMs. However, because we wish to relate MapReduce to classical

complexity classes, we reformulate the definitions here in terms of Turing machines.

61

Definition 2. A reducer ρ is a Turing machine which accepts as input a key k and a

list of values ⟨v1, . . . , vm⟩, and produces as output the same key and a new list of values

⟨v′1, . . . , v′M⟩.

Definition 3. For a decision problem, an input string x ∈ {0, 1}∗ to an MRC machine is

the list of pairs ⟨i, xi⟩ni=1 describing the index and value of each bit. We will denote by ⟨x⟩

the list ⟨i, xi⟩.

An MRC machine operates in rounds. In each round, a set of mappers running in

parallel first process all the key-value pairs. Then the pairs are partitioned (by a mech-

anism called “shuffle and sort” that is not considered part of the runtime of an MRC

machine) so that each reducer only receives key-value pairs for a single key. Then the

reducers process their data in parallel, and the results are merged to form the list of

key-value pairs for the next round. More formally:

Definition 4. An R-round MRC machine is an alternating list of mappers and re-

ducers M = (μ1, ρ1, . . . , μR, ρR). The execution of the machine is as follows. For each

r = 1, . . . ,R:

1. Let Ur−1 be the list of key-value pairs generated by round r − 1 (or the input pairs

when r = 1). Apply μr to each key-value pair of Ur−1 to get the multiset Vr =∪
⟨k,v⟩∈Ur−1

μr(k, v).

2. Shuffle-and-sort groups the values by key. Call each of the pieces Vk,r = {k, (vk,1, . . . , vk,sk)}.

3. Assign a different copy of reducer ρr to each Vk,r (run in parallel) and set Ur =∪
k ρr(Vk,r).

62

The output is the final set of key-value pairs. For decision problems, we define M

to accept ⟨x⟩ if in the final round UR = ∅. Equivalently we may give each reducer a

special accept state and say the machine accepts if at any time any reducer enters the

accept state. We say M decides a language L if it accepts ⟨x⟩ if and only if x ∈ L.

The central caveat that makes MRC an interesting class is that the reducers have

space constraints that are sublinear in the size of the input string. In other words,

no sequential computation may happen that has random access to the entire input.

Thinking of the reducers as processors, cooperation between reducers is obtained not

by message passing or shared memory, but rather across rounds in which there is a

global communication step.

In the MRC model we use in this chapter, we require that every mapper and reducer

arise as separate runs of the same Turing machine M. The Turing machine M(m, r, n, y)

will accept as input the current round number r, a bit m denoting whether to run the

r-th map or reduce function, the total number of rounds n, and the corresponding

input y. Equivalently, we can imagine a list of mappers and reducers in each round

μ1, ρ1, μ2, ρ2, . . . , where the descriptions of the μi, ρi are computable in polynomial

time in |i|.

Definition 5 (Uniform Deterministic MRC). A language L is said to be in MRC[f(n), g(n)]

if there is a constant 0 < c < 1, an O(nc)-space and O(g(n))-time Turing machine

M(m, r, n, y), and an R = O(f(n)), such that for all x ∈ {0, 1}n, the following holds.

1. Letting μr = M(1, r, n,−), ρr = M(0, r, n,−), the MRC machine MR = (μ1, ρ1, . . . , μR, ρR)

accepts x if and only if x ∈ L.

63

2. Each μr outputs O(nc) distinct keys.

This definition closely mirrors practical MapReduce computations: f(n) represents

the number of times global communication has to be performed, g(n) represents the

time each processor gets, and sublinear space bounds in terms of n = |x| ensure that

the size of the data on each processor is smaller than the full input.

Remark 1. By M(1, r, n,−), we mean that the tape of M is initialized by the string ⟨1, r, n⟩.

In particular, this prohibits an MRC algorithm from having 2Ω(n) rounds; the space con-

straints would prohibit it from storing the round number.

Remark 2. Note that a polynomial time Turing machine with sufficient time can triv-

ially simulate a uniform MRC machine. All that is required is for the machine to per-

form the key grouping manually, and run the MRC machine as a subroutine. As such,

MRC[poly(n), poly(n)] ⊆ P. We give a more precise computation of the amount of over-

head required in the proof of Lemma 6.

Definition 6. Define by MRCi the union of uniform MRC classes

MRCi =
∪
k∈N

MRC[logi(n), nk].

So in particular MRC0 =
∪

k∈N MRC[1, nk].

3.3.2 Nonuniformity

A complexity class is informally called uniform if the descriptions of the machines

solving problems in it do not depend on the length of an input instance. Classical

64

complexity classes defined by Turing machines with resource bounds, such as P, NP,

and SPACE(log(n)), are uniform. On the other hand, circuit complexity classes are

naturally nonuniform; a fixed Boolean circuit can only accept inputs of a single length.

There is ambiguity about the uniformity of MRC as defined in [61]. Since we wish to

relate the MRC model to classical complexity classes such as P and SPACE(log(n)),

making sure that the model is uniform is crucial. Indeed, innocuous-seeming changes

to the definitions above introduce nonuniformity (and in particular this is true of the

original MRC definition in [61]). In Section 3.4 we show that the nonuniform MRC

model defined in [61] allows MRC machines to solve undecidable problems in a loga-

rithmic number of rounds, including the halting problem. We introduce the uniform

version of MRC above to rule out such pathological behavior.

3.3.3 Other Models of Parallel Computation

Several other models of parallel computation have been introduced, including the BSP

model of Valiant [98] and the MPC model of Beame et. al. [11]. The main difference

between BSP and MapReduce is that in the BSP models the key-value pairs and the

shuffling steps needed to redistribute them are replaced with point-to-point messages.

Similarly to [61], in Valiant’s paper [98] there is also ambiguity about the uniformity

of the model. In this chapter, when we refer to BSP we mean a uniform deterministic

version of the model. We give the exact definition in Setion 3.4.

Goodrich et al. [44] and Pace [85] showed that MapReduce computations can be

simulated in the BSP model and vice versa, with only a constant blow-up in the com-

putational resources needed. This implies that our theorems about MapReduce auto-

65

matically apply to BSP.

Similarly, the MPC model uses point-to-point messages and Beame et. al.’s paper [11]

does not discuss the uniformity of the model. The main distinguishing charateris-

tic of the MPC model is that it introduces the number of processors p as an explicit

paramter. Setting p = O(nc), our results will also hold in this model.

There are other variants of these models, including the model that Andoni et. al. [4]

uses, which follows the MPC model but also introduces the additional constraint that

total space used across each round must be no more than O(n). It is straightforward to

check that the proofs of our results never use more than O(n) space, implying that our

results hold even under this more restrictive model.

3.4 Nonuniform MRC

In this section we show that the original definition of MRC [61] allows MRC ma-

chines to decide undecidable languages. This definition required a polylogarithmic

number of rounds, and also allowed completely different MapReduce machines for

different input sizes. For simplicity’s sake, we will allow a linear number of rounds,

and use our notation MRC[f(n), g(n)] to denote an MRC machine that operates in

O(f(n)) rounds and each processor gets O(g(n)) time per round. In particular, we

show that nonuniform MRC[n,
√
n] accepts all unary languages, i.e. languages of the

form L ⊆ {1n | n ∈ N}.

Lemma 4. Let L be a unary language. Then L is in nonuniform MRC[n,
√
n].

Proof. We define the mappers and reducers as follows. Let μ1 distribute the input as

contiguous blocks of
√
n bits, ρ1 compute the length of its input, μ2 send the counts

66

to a single processor, and ρ2 add up the counts, i.e. find n = |x| where x is the input.

Now the input data is reduced to one key-value pair ⟨⋆, n⟩. Then let ρi for i ≥ 3 be the

reducer that on input ⟨⋆, i− 3⟩ accepts if and only if 1i−3 ∈ L and otherwise outputs the

input. Let μi for i ≥ 3 send the input to a single processor. Then ρn+3 will accept iff x

is in L. Note that ρ1, ρ2 take O(
√
n) time, and all other mappers and reducers take O(1)

time. All mappers and reducers are also in SPACE(
√
n).

In particular, Lemma 4 implies that nonuniform MRC[n,
√
n] contains the unary

version of the halting problem. A more careful analysis shows all unary languages are

even in MRC[log n,
√
n], by having ρi+3 check 2i strings for membership in L.

3.5 Uniform BSP

We define the BSP model of Valiant [98] similarly to MRC, where essentially key-value

pairs are replaced with point-to-point messages.

A BSP machine with p processors is a list (M1, . . . ,Mp) of p Turing machines which

on any input, output a list ((j1, y1), (j2, y2), . . . , (jm, ym)) of messages to be sent to other

processors in the next round. Specifically, message yk is sent to prcessor jk. A BSP ma-

chine operates in rounds as follows. In the first round the input is partitioned into

equal-sized pieces x1,0, . . . , xp,0 and distributed arbitrarily to the processors. Then for

rounds r = 1, . . . ,R,

1. Each processor i takes xi,r as input and computes some number si of messages

Mi(xi,r) = {(ji,k, yi,k) : k = 1, . . . , si}.

67

2. Set xi,r+1 to be the set of all messages sent to i (as with MRC’s shuffle-and-sort,

this is not considered part of processor i’s runtime).

We say the machine accepts a string x if any machine accepts at any point before

round R finishes. We now define uniform deterministic BSP analogously to MRC.

Definition 7 (Uniform Deterministic BSP). A language L is said to be in BSP[f(n), g(n)]

if there is a constant 0 < c < 1, an O(nc)-space and O(g(n))-time Turing machine

M(p, y), and an R = O(f(n)), such that for all x ∈ {0, 1}n, the following holds: letting

Mi = M(i,−), the BSP machine M = (M1,M2, . . . ,Mnc) accepts x in R rounds if and

only if x ∈ L.

Remark 3. As with MRC, we count the size and number of each message as part of the

space bound of the machine generating/receiving the messages. Differing slightly from

Valiant, we do not provide persistent memory for each processor. Instead we assume that

on processor i, any memory cell not containing a message will form a message whose des-

tination is i. This is without loss of generality since we are not concerned with the cost of

sending individual messages.

3.6 Space Complexity Classes in MRC0

In this section we prove that small space classes are contained in constant-round MRC.

Again, the results in this section also hold for other similar models of parallel compu-

tation, including the BSP model and the MPC model. First, we prove that the class

REGULAR of regular languages is in MRC0. It is well known that SPACE(O(1)) =

REGULAR [94], and so this result can be viewed as a warm-up to the theorem that

68

SPACE(o(log n)) ⊆ MRC0. Indeed, both proofs share the same flavor, which we

sketch before proceeding to the details.

We wish to show that any given DFA can be simulated by an MRC0 machine. The

simulation works as follows: in the first round each parallel processor receives a con-

tiguous portion of the input string and constructs a state transition function using the

data of the globally known DFA. Though only the processor with the beginning of the

string knows the true state of the machine during its portion of the input, all proces-

sors can still compute the entire table of state-to-state transitions for the given portion

of input. In the second round, one processor collects the transition tables and chains

together the computations, and this step requires only the first bit of input and the list

of tables.

We can count up the space and time requirements to prove the following theorem.

Theorem 5. REGULAR ⊊ MRC0

Proof. Let L be a regular language and D a deterministic finite automaton recognizing

L. Define the first mapper so that the jth processor has the bits from j
√
n to (j + 1)

√
n.

This means we have K = O(
√
n) processors in the first round. Because the description

of D is independent of the size of the input string, we also assume each processor has

access to the relevant set of states S and the transition function t : S× {0, 1} → S.

We now define ρ1. Fix a processor j and call its portion of the input y. The processor

constructs a table Tj of size at most |S|2 = O(1) by simulating D on y starting from all

possible states and recording the state at the end of the simulation. It then passes Tj

and the first bit of y to the single processor in the second round.

In the second round the sole processor has K tables Tj and the first bit x1 of the input

69

string x (among others but these are ignored). Treating Tj as a function, this processor

computes q = TK(. . .T2(T1(x1))) and accepts if and only if q is an accepting state.

This requires O(
√
n) space and time and proves containment. To show this is strict,

inspect the prototypical problem of deciding whether the majority of bits in the input

are 1’s.

Remark 4. While the definition of MRC0 inclues languages with time complexity O(nk)

for all k ≥ 0, our Theorem 5 is more efficient than the definition implies: we show that

regular languages can be computed in MRC0 in time and space O(
√
n), with the option

of a tradeoff between time nε and space n1−ε.

One specific application of this result is that for any given regular expression, a two-

round MapReduce computation can decide if a string matches that regular expression,

even if the string is so long that any one machine can only store nε bits of it.

We now move on to prove SPACE(o(log n)) ⊆ MRC0. It is worth noting that this is

a strictly stronger statement than Theorem 5. That is, REGULAR = SPACE(O(1)) ⊊

SPACE(o(log n)). Several non-trivial examples of languages that witness the strictness

of this containment are given in [96].

The proof is very similar to the proof of Theorem 5: Instead of the processors com-

puting the entire table of state-to-state transitions of a DFA, the processors now com-

pute the entire table of all transitions possible among the configurations of the work

tape of a Turing machine that uses o(log n) space.

Theorem 6. SPACE(o(log n)) ⊆ MRC0.

Proof. Let L be a language in SPACE(o(log n)) and T a Turing machine recognizing

L in polynomial time and o(log(n)) space, with a read/write work tape W. Define the

70

first mapper so that the jth processor has the bits from j
√
n to (j + 1)

√
n. Let C be the

set of all possible configurations of W and let S be the states of T. Since the size of S is

independent of the input, we can assume that each processor has the transition func-

tion of T stored on it.

Now we define ρ1 as follows: Each processor j constructs the graph of a function

Tj : C × {L,R} × S → C × {L,R} × S, which simulates T when the read head

starts on either the left or right side of the jth
√
n bits of the input and W is in some

configuration from C. It outputs whether the read head leaves the y portion of the read

tape on the left side, the right side, or else accepts or rejects. To compute the graph of

Tj, processor j simulates T using its transition function, which takes polynomial time.

Next we show that the graph of Tj can be stored on processor j by showing it can be

stored in O(
√
n) space. Since W is by assumption size o(log n), each entry of the ta-

ble is o(log n), so there are 2o(log n) possible configurations for the tape symbols. There

are also o(log n) possible positions for the read/write head, and a constant number of

states T could be in. Hence |C| = 2o(log n)o(log n) = o(n1/3). Then processor j can store

the graph of Tj as a table of size O(n1/3).

The second map function μ2 sends each Tj (there are
√
n of them) to a single proces-

sor. Each is size O(n1/3), and there are
√
n of them, so a single processor can store all

the tables. Using these tables, the final reduce function can now simulate T from start-

ing state to either the accept or reject state by computing q = T∗
k(. . .T∗

2(T∗
1 (∅, L, initial)))

for some k, where ∅ denotes the initial configuration of T, initial is the initial state of T,

and q is either in the accept or reject state. Note T∗
j is the modification of Tj such that

if Tj(x) outputs L, then T∗
j (x) outputs R and vice versa. This is necessary because if the

71

read head leaves the jth
√
n bits to the right, it enters the j+ 1th

√
n bits from the left,

and vice versa. Finally, the reducer accepts if and only if q is in an accept state.

This algorithm successfully simulates T, which decides L, and only takes a constant

number of rounds, proving containment.

3.7 Hierarchy Theorems

In this section we prove two main results (Theorems 7 and 8) about hierarchies within

MRC relating to increases in time and rounds. They imply that allowing MRC ma-

chines sufficiently more time or rounds strictly increases the computing power of the

machines. The first theorem states that for all α, β there are problems L ̸∈ MRC[nα, nβ]

which can be decided by constant time MRC machines when given enough extra rounds.

Theorem 7. Suppose the ETH holds with constant c. Then for every α, β ∈ N there exists

a γ = O(α+ β) such that

MRC[nγ, 1] ̸⊆ MRC[nα, nβ].

The second theorem is analogous for time, and says that there are problems L ̸∈

MRC[nα, nβ] that can be decided by a one round MRC machine given enough extra

time.

Theorem 8. Suppose the ETH holds with constant c. Then for every α, β ∈ N there exists

a γ = O(α+ β) such that

MRC[1, nγ] ̸⊆ MRC[nα, nβ].

72

As both of these theorems depend on the ETH, we first prove a complexity-theoretic

lemma that uses the ETH to give a time-hierarchy within linear space TISP. Recall

that TISP is the complexity class defined by simultaneous time and space bounds. The

lemma can also be described as a time-space tradeoff. For some b > a we prove the

existence of a language that can be decided by a Turing machine with simultaneous

O(nb) time and linear space, but cannot be decided by a Turing machine in time O(na)

even without any space restrictions. It is widely believed such languages exist for ex-

ponential time classes (for example, TQBF, the language of true quantified Boolean

formulas, is a linear space language which is PSPACE-complete). We ask whether such

tradeoffs can be extended to polynomial time classes, and this lemma shows that in-

deed this is the case.

Lemma 5. Suppose that the ETH holds with constant c. Then for any positive integer a

there exists a positive integer b > a such that

TIME(na) ⊈ TISP(nb, n).

Proof. By the ETH, 3-SAT ∈ TISP(2n, n) \TIME(2cn). Let b := ⌈ a
c ⌉+ 2, δ := 1

2(
1
b +

c
a).

Pad 3-SAT with 2δn zeros and call this language L, i.e. let L := {x02δ|x| | x ∈ 3-SAT}.

Let N := n + 2δn. Then L ∈ TISP(Nb,N) since Nb > 2n. On the other hand, assume

for contradiction that L ∈ TIME(Na). Then, since Na < 2cn, it follows that 3-SAT ∈

TIME(2cn), contradicting the ETH.

There are a few interesting complexity-theoretic remarks about the above proof.

First, the starting language does not need to be 3-SAT, as the only assumption we

73

needed was its hypothesized time lower bound. We could relax the assumption to the

hypothesis that there exists a c > 0 such that TQBF, the PSPACE-complete language

of true quantified Boolean formulas, requires 2cn time, or further still to the following

complexity hypothesis.

Conjecture 1. There exist c′, c satisfying 0 < c′ < c < 1 such that TISP(2n, 2c′n) \

TIME(2cn) ̸= ∅.

Second, since TISP(na, n) ⊆ TIME(na), this conditionally proves the existence of

a hierarchy within TISP(poly(n), n). We note that finding time hierarchies in fixed-

space complexity classes was posed as an open question by [101], and so removing the

hypothesis or replacing it with a weaker one is an interesting open problem.

Using this lemma we can prove Theorems 7 and 8. The proof of Theorem 7 depends

on the following lemma.

Lemma 6. For every α, β ∈ N the following holds:

TISP(nα, n) ⊆ MRC[nα, 1] ⊆ MRC[nα, nβ] ⊆ TISP(nα+β+2, n2).

Proof. The first inequality follows from a simulation argument similar to the proof of

Theorem 6. The MRC machine will simulate the TISP(nα, n) machine by making one

step per round, with the tape (including the possible extra space needed on the work

tape) distributed among the processors. The position of the tape is passed between

the processors from round to round. It takes constant time to simulate one step of the

TISP(nα, n) machine, thus in nα rounds we can simulate all steps. Also, since the ma-

74

chine uses only linear space, the simulation can be done with O(
√
n) processors using

O(
√
n) space each. The second inequality is trivial.

The third inequality is proven as follows. Let T(n) = nα+β+2. We first show that

any language in MRC[nα, nβ] can be simulated in time O(T(n)), i.e. MRC[nα, nβ] ⊆

TIME(T(n)). The r-th round is simulated by applying μr to each key-value pair in

sequence, shuffle-and-sorting the new key-value pairs, and then applying ρr to each

appropriate group of key-value pairs sequentially. Indeed, M(m, r, n,−) can be simu-

lated naturally by keeping track of m and r, and adding n to the tape at the beginning

of the simulation. Each application of μr takes O(nβ) time, for a total of O(nβ+1) time.

Since each mapper outputs no more than O(nc) keys, and each mapper and reducer is

in SPACE(O(nc)), there are no more than O(n2) keys to sort. Then shuffle-and-sorting

takes O(n2 log n) time, and the applications of ρr also take O(nβ+1) time. So a round

takes O(nβ+1+n2 log n) time. Note that keeping track of m,r, and n takes no more than

the above time. So over O(nα) rounds, the simulation takes O(nα+β+1 + nα+2 log(n)) =

O(T(n)) time.

Now we prove Theorem 7.

Proof. By Lemma 5, there is a language L in TISP(nγ, n) \ TIME(nα+β+2) for some γ.

By Lemma 6, L ∈ MRC[nγ, 1]. On the other hand, because L ̸∈ TIME(nα+β+2) and

MRC[nα, nβ] ⊆ TIME(nα+β+2), we can conclude that L ̸∈ MRC[nα, nβ].

Next, we prove Theorem 8 using a padding argument.

Proof. Let T(n) = nα+β+2 as in Lemma 6. By Lemma 5, there is a γ such that TISP(nγ, n)\

TIME(T(n2)) is nonempty. Let L be a language from this set. Pad L with n2 zeros, and

75

call this new language L′, i.e. let L′ = {x0|x|2 | x ∈ L}. Let N = n + n2. There is

an MRC[1,Nγ] algorithm to decide L′: the first mapper discards all the key-value pairs

except those in the first n, and sends all remaining pairs to a single reducer. The space

consumed by all pairs is O(n) = O(
√
N). This reducer decides L, which is possible

since L ∈ TISP(nγ, n). We now claim L′ is not in MRC[Nα,Nβ]. If it were, then L′

would be in TIME(T(N)). A Turing machine that decides L′ in T(N) time can be mod-

ified to decide L in T(N) time: pad the input string with n2 ones and use the decider

for L′. This shows L is in TIME(T(n2)), a contradiction.

We conclude by noting explicitly that Theorems 7, 8 give proper hierarchies within

MRC, and that proving certain stronger hierarchies imply the separation of L and P.

Corollary 1. Suppose the ETH. For every α, β there exist μ > α and ν > β such that

MRC[nα, nβ] ⊊ MRC[nμ, nβ]

and

MRC[nα, nβ] ⊊ MRC[nα, nν].

Proof. By Theorem 8, there is some μ > α such that MRC[nμ, 1] ̸⊆ MRC[nα, nβ]. It is

immediate that MRC[nα, nβ] ⊆ MRC[nμ, nβ] and also that MRC[nμ, 1] ⊆ MRC[nμ, nβ].

So MRC[nα, nβ] ̸= MRC[nμ, nβ]. The proof of the second claim is similar.

Corollary 2. If MRC[poly(n), 1] ⊊ MRC[poly(n), poly(n)], then it follows that SPACE(log(n)) ̸=

P.

76

Proof.

SPACE(log(n)) ⊆ TISP(poly(n), log n) ⊆ TISP(poly(n), n) ⊆ MRC[poly(n), 1]

⊆ MRC[poly(n), poly(n)] ⊆ P.

The first containment is well known, the third follows from Lemma 6, and the rest

are trivial.

Corollary 2 is interesting because if any of the containments in the proof are shown

to be proper, then SPACE(log(n)) ̸= P. Moreover, if we provide MRC with a poly-

nomial number of rounds, Corollary 2 says that determining whether time provides

substantially more power is at least as hard as separating SPACE(log(n)) from P. On

the other hand, it does not rule out the possibility that MRC[poly(n), poly(n)] = P, or

even that MRC[poly(n), 1] = P.

3.8 Discussion and Open Problems

In this chapter we established the first general connections between MapReduce and

classical complexity classes, and showed the conditional existence of a hierarchy within

MapReduce. The results in this chapter also apply to variants of MapReduce, most no-

tably Valiant’s BSP model.

This work suggests some natural open problems. How does MapReduce relate to

other complexity classes, such as the circuit class uniform AC0? Can one improve the

bounds from Corollary 1 or remove the dependence on Hypothesis 1? Does Lemma 5

imply Hypothesis 1? Can one give explicit hierarchies for space or time alone, e.g.

77

MRC[nα, poly(n)] ⊊ MRC[nμ, poly(n)]?

We also ask whether MRC[poly(n), poly(n)] = P. In other words, if a problem has

an efficient solution, does it have one with using data locality? A negative answer im-

plies SPACE(log(n)) ̸= P which is a major open problem in complexity theory, and

a positive answer would likely provide new and valuable algorithmic insights. Finally,

while we have focused on the relationship between rounds and time, there are also

implicit parameters for the amount of (sublinear) space per processor, and the (sublin-

ear) number of processors per round. A natural complexity question is to ask what the

relationship between all four parameters are.

78

4
Network Installation Under Convex

Costs

In this chapter we study the Neighbor Aided Network Installation Problem (NA-

NIP) [49] which asks for a minimal cost ordering of the nodes of a graph, where the

cost of visiting a node is a function of the number of its neighbors that have already

been visited. This problem has applications in resource management and disaster re-

covery. In this chapter we analyze the computational complexity of NANIP. In partic-

ular we show that this problem is NP-hard even when restricted to convex decreasing

cost functions, give a linear approximation lower bound for the greedy algorithm, and

79

prove a general sub-constant approximation lower bound. Then we give a new inte-

ger programming formulation of NANIP and empirically observe its speedup over the

original integer program.

4.1 Introduction

We motivate our study with an example from infrastructure networks. It is well known

that many vital infrastructure systems can be represented as networks, including trans-

port, communication and power networks. Large parts of these networks can be severely

damaged in the event of a natural disaster. When faced with large-scale damage, au-

thorities must develop a plan for restoring the networks. A particularly challenging

aspect of the recovery is the lack of infrastructure, such as roads or power, necessary

to support the recovery operations. For example, to clear and rebuild roads, equip-

ment must be brought in, but many of the access roads are themselves blocked and

damaged. Abstractly, as the recovery progresses, previously recovered nodes provide

resources that help reduce the cost of rebuilding their neighbors. This phenomenon is

called neighbor aid.

A recently introduced model of neighbor aided recovery frames the problem of re-

covering an infrastructure network from a naturla disaster in terms of a convex dis-

crete optimization problem called the Neighbor Aided Network Installation Problemma

(NANIP) [49]. We will henceforth use the terms “recover”, “visit,” and “install” inter-

changeably. For simplicity, we assume that during the recovery of a network all of its

nodes and edges must be visited and restored. They asked how to optimize the recov-

ery schedule in order to minimize the total cost? This is also the question we address

80

herein.

In the NANIP problems, the cost of recovering a node depends only on the num-

ber of its already recovered neighbors, capturing the intuition that neighbor aid is

the determining factor of the cost of rebuilding a new node. NANIP offers a stylized

model for disaster recovery of networks (among other applications) but the interest

in disaster recovery of networks is not new. A partial list of existing studies include

[47, 84, 74, 2, 15, 26]. A common framework is to consider infrastructure systems as

a set of interdependent network flows, and formulate the problem of minimizing the

cost of repairing such damaged networks. Another class of models [100] develops a

stochastic optimization problem for stockpiling resources and then distributing them

following a disaster. More abstract problems related to NANIP are the single processor

scheduling problem [53], the linear ordering problem [78], and the study of tourna-

ments in graph theory [102].

NANIP assumes that certain tasks are dependent and cannot be performed in paral-

lel, but unlike many scheduling problems, there are no partial order constraints. Like

the traveling salesman problem (TSP) [91], the NANIP problem also asks for an op-

timal permutation of the vertices of the graph but, unlike in the case of the traveling

salesman problem, the cost associated with visiting a given node could depend on

all of the nodes visited before the given node. Another key difference between NA-

NIP and TSP is that in NANIP it is allowed to visit nodes that are not neighbors of

any previously-visited nodes. As we will see, such disconnected traversals provide

Ω(log(n)) multiplicative improvements over connected ones.

Since neighbor aid is assumed to reduce the cost of recovery, we are mainly inter-

81

ested in decreasing cost functions. Furthermore, since convexity for decreasing func-

tions captures the “law of diminishing returns”, i.e. that as the number of recovered

neighbors increases, the per-node value of the aid provided by one neighbor decreases,

convex decreasing functions are of special interest. Although [49] gave NP-hardness

of NANIP for general cost via a straightforward reduction from Maximum Indepen-

dent Set, the cost function used there was increasing, thus leaving the complexity of

the convex decreasing case an open question. In this chapter we show this problem is

NP-hard as well. We also provide a new convex integer programming formulation and

analyze the performance of the greedy algorithm, showing that its worst case approxi-

mation ratio is Θ(n).

4.2 Preliminaries

An instance of NANIP is specified by an undirected graph G = (V,E) and a real-

valued function f : N → R≥0. The function f represents the cost of installing a vertex

v, where the argument is the number of neighbors of v that have already been installed.

Hence, the domain of f is the non-negative integers, bounded by the maximum degree

of G (for terminology see [102]). The goal is to find a permutation of the nodes that

minimizes the total cost of the network installation. The cost of installing node vt ∈ V

under a permutation σ of V is given by

f(r(vt,G, σ)) ,

82

where r(vt,G, σ) is the number of nodes adjacent to vt in G that appear before vt in the

permutation σ. The total cost of installing G according to σ is given by

CG(σ) =
n∑
t=1

f(r(vt,G, σ)). (4.1)

The problem is illustrated in Fig. 4.1. Generally, the choice of f depends on the ap-

plication, and f will often be convex decreasing.

(a) Simple NANIP instance

WW

CL SL

RW

AW

HWLV

Q

JB

MB MR

JR

GR

LR

H

C

LB

GB MM

R

WB

MW

(b) Central Chicago “Loop”

Figure 4.1: Illustrations of NANIP. (a) Simple instance. When f(0) = 2, f(1) = 1 and f(k) = 0 for k ≥ 2,
the naive sequence σ = (A,B,C,D,E) gives cost of 4 = 2+ 1+ 1+ 0+ 0, but all optimal solutions (such
as (D,C,B,E,A)) have cost 3. (b) Actual metro stations and their connections in downtown Chicago
“Loop”. With the same f, any optimal sequences must visit CL station before at least one of its neighbors.

We assume that G is connected and undirected, unless we note otherwise. If G has

multiple connected components, NANIP could be solved on each component inde-

pendently without affecting the total cost.

We begin by quoting a preliminary lemma from [49] which establishes that all the

arguments used in calculating the node costs must sum to m, the number of edges in

83

the network.

Lemma 7 ([49]). For any network G, and any permutation σ of the nodes of G,

n∑
t=1

r(vt,G, σ) = m . (4.2)

One application of this lemma is the case of a linear cost function f(k) = ak + b, for

some real numbers a and b. With such a function the optimization problem is trivial

in that all installation permutations have the same cost.

In the next section we will prove hardness results about NANIP; let us recall some

relevant definitions.

Definition 8. An optimization problem is called strongly NP-hard if it is NP-hard and

the optimal value is a positive integer bounded by a polynomial of the input size.

Definition 9. An algorithm is an efficient polynomial time approximation scheme (EP-

TAS) for an optimization problem if, given a problem instance and an approximation

factor ε, it runs in time O(F(ε)nc) for some constant c and some function F and finds

a solution whose objective value is within an ε fraction of the optimum. An EPTAS is

called a fully polynomial time approximation scheme (FPTAS) it runs in polynomial in

the size of the problem instance and 1
ε
.

A strongly NP-hard optimization problem cannot have an FPTAS unless P=NP:

otherwise, if n denotes the input size and p denotes the polynomial such that the opti-

mum value is bounded by p(n), setting ε = 1
2p(n) for the FPTAS would yield an exact

polynomial time algorithm.

84

Some NP-hard problems become efficiently solvable if a natural parameter is fixed

to some constant. Such problems are called fixed parameter tractable.

Definition 10. FPT, the set of fixed parameter tractable problems, is the set of languages

L of the form ⟨x, k⟩ such that there is an algorithm running in time O(F(k)nc) for some

function F and constant c deciding whether ⟨x, k⟩ ∈ L.

An example of a fixed parameter tractable problem is the vertex cover problem

(where the parameter is the size of the vertex cover). Problems believed to be fixed

parameter intractable include the graph coloring problem (the parameter being the

number of colors) and the clique problem (with the size of the clique as parameter).

For parametrized languages, there is a natural fixed parameter tractable analogue of

polynomial time reductions. These so-called fpt-reductions are used to define hardness

for classes of parametrized languages, similarly to how NP-hardness is defined using

polynomial time reductions. One important class of parametrized languages is W[1].

For the definition of W[1] and for more background on parametrized complexity, we

refer the reader to the monograph of Downey and Fellows [31]. They proved that un-

der standard complexity-theoretic assumptions, W[1] is a strict superset of FPT; con-

sequently, W[1]-hard problems are fixed parameter intractable. We will use this fact to

show the fixed parameter intractability of NANIP.

4.3 Convex decreasing NANIP is NP-hard

We now consider the hardness of solving NANIP with convex decreasing cost func-

tions.

85

Theorem 9. The Neighbor Aided Network Installation Problem is strongly NP-hard when

f is convex decreasing; as a consequence it admits no FPTAS.

Proof. We reduce from CLIQUE, that is, the problem of deciding given a graph G =

(V,E) whether it contains as an induced subgraph the complete graph on k vertices.

Given a graph G = (V,E) with n = |V| and an integer k, we construct an instance of

NANIP on a graph G′ with a convex cost function f(i) as follows. Define G′ by adding

k new vertices u1, . . . , uk to G which are made adjacent to every vertex in V but not to

each other, establishing an independent set of size k. Define the cost function

f(i) = fk(i) =

k− i if i ≤ k

0 otherwise

Let M =
∑k

i=0 f(i) =
k(k+1)

2 . In a traversal σ whose first k vertices yield cost M, every

new vertex must be adjacent to every previously visited vertex, i.e. the vertices form a

k-clique. Moreover, M is the lower bound on the cost incurred by the first k vertices of

any traversal of G′.

Suppose that G has a clique of size k, and denote by v1, . . . , vk the vertices of the

clique, with vk+1, . . . , vn the remaining vertices of G. Then the following ordering is

a traversal of G′ of cost exactly M:

v1, . . . , vk, u1, . . . , uk, vk+1, . . . , vn .

Conversely, let w1, . . . ,wn+k be an ordering of the vertices of G′ achieving cost M.

Then by the above, the vertices w1, . . . ,wk must form a k-clique in G′. In the case these

86

k prefix vertices are all vertices of G we are done. Otherwise, the independence of the

ui’s implies that at most one ui is used in w1, . . . ,wk+1; using more would incur a total

cost greater than M. In this case the k−1 remaining vertices of the prefix form a (k−1)-

clique of G. Since it is NP-hard to approximate CLIQUE within a polynomial factor

[105], this proves the NP-hardness of convex decreasing NANIP.

Moreover, since the optimum value of a NANIP instance obtained by this reduction

is at most k2 which is upper bounded by n2, the size of the NANIP instance, it also fol-

lows that convex decreasing NANIP is strongly NP-hard and therefore does not admit

an FPTAS.

The cost function fk(i) used in the proof of Theorem 9 is parametrized by k. Call

NANIPk the subproblem of NANIP with cost functions of finite support where the

size of the support is k. Because we consider NANIPk a subproblem of general NANIP,

stronger parametrized hardness results for the former give insights about the latter.

Indeed, the following corollary is immediate.

Corollary 3. NANIPk is W[1]-hard.

Proof. CLIQUE is W[1]-complete when parametrized by the size of the clique. W[1]-

hardness is preserved by so-called fpt-reductions (see [31]), and the reduction from

the proof of Theorem 9 is such a reduction.

In particular, standard complexity assumptions imply from this that NANIPk is not

fixed-parameter tractable and has no efficient polynomial-time approximation scheme

87

(EPTAS). Now we will show that the same reduction can be used to obtain a stronger

approximation lower bound of (1 + n−c) for all c > 0. First a lemma.

Lemma 8. Let G′ and f constructed as in the proof of Theorem 9, and let σ denote a

(not necessarily optimal) NANIP traversal. Suppose V denote the vertices of G and U

denote the vertices of the independent set. If σ′ is obtained from σ by moving the U to po-

sitions k+ 1, . . . , 2k (without changing the precedence relations of the vertices in V), then

CG′(σ′) ≤ CG′(σ).

Proof. Consider the positions in σ of the first k vertices from G, and let i1, . . . , ik be the

positions of the vertices from U. Call u1 = σ(i1), . . . , uk = σ(ik).

Case 1: i1 > k. In this case all the ui are free (since they are all connected to σ(1), . . . , σ(k)),

as are all vertices visited after σ(ik)). If i1 > k + 1, apply the cyclic permutation γ1 =

(k+ 1, k+ 2, . . . , i1) to move u1 to position k+ 1. The cost of visiting u1 is still zero, and

the cost of the other manipulated vertices does not increase because they each gain one

previously visited neighbor. Now repeat this manipulation with γs = (k + s, k + s +

1, . . . , is) for s = 2, . . . , k. An identical argument shows the cost never increases, and at

the end we have precisely σ′.

Case 2: i1 ≤ k. In this case u1 is not free since it has fewer than k installed neighbors.

By moving some nodes from V before the nodes U, we will make the ui’s free with-

out increasing the cost of the moved nodes too much, and thus reduce the problem

to Case 1. Let j be the index of the first v ∈ V that occurs after i1. Apply the cyclic

permutation ξ = (i1, i1 + 1, . . . , j) to move v before u1. The cost of v increases by

at most j − i1 (and this is not tight since it is possible that j > k + 1). But since all

σ(i1), σ(i1 + 1), . . . , σ(j − 1) ∈ U, and they each gain a neighbor as a result of applying

88

ξ, so their total cost decreases by exactly j− i1, and the total cost of σ does not increase.

Now repeatedly apply ξ (using the new values of i1, j) until i1 = k + 1. Then apply case

1 to finish.

Theorem 10. For all c > 0, there is no efficient (1 + n−c)-approximation algorithm for

NANIP on graphs with n vertices with convex decreasing cost functions, unless P = NP.

Proof. It is NP-hard to distinguish a clique number of at least 2R from a clique number

of at most 2δR in graphs on 2(1+δ)R vertices (δ > 0) [105]. We will reduce this problem

to finding an (1+n−c)-approximation for NANIP. In particular, we will show that there

is no efficient C-approximation approximation algorithm for NANIP, where

C =
k

k+ 1

(
1 +

1
k2ε

)

and k = n1/(1+δ).

This is equivalent to the statement of the theorem since by setting ε = c/(2 + 2δ),

we get that there is no efficient n1+δ

n1+δ+1(1 + n−c) < (1 + n−c)-approximation algorithm

for NANIP.

Let G be a graph on n = 2(1+δ)R vertices containing a k-clique where k = n1/(1+δ) =

2R and construct G′ from G by adding a k-independent set as before, with f(i) = max(k−

i, 0). Suppose we have an efficient C-approximation algorithm for NANIP. After run-

ning it on input (G′, k), modify the output sequence according to the previous lemma.

Then all the nodes after the first k are free, since after the first k vertices the vertices

of U will follow, which are all connected to the first k vertices and are therefore free,

89

and after them every vertex will have at least k neighbors (the k vertices in U) and

hence will be free too. Thus the cost of the sequence is determined by the first k ver-

tices. Since they all have fewer than k preceding neighbors, the cost function for them

is linear, implying that the total cost of the sequence depends only on the number of

edges in between the first k vertices.

The cost of the optimal NANIP sequence in G′ is k(k + 1)/2, thus the cost of the

sequence returned by the approximation algorithm is at most

k
k+ 1

(
1 +

1
k2ε

)
· k(k+ 1)

2
=

1
2
(k2 + k2−2ε).

Since
1
2
(k2 + k2−2ε) = (−1)(1 − k−2ε)

k2

2
+ k2,

it follows by [49], Corollary 2, that there are more than (1 − k−2ε)k2/2 edges between

the first k vertices.

Turán’s theorem [97] states that, a graph on k vertices that does not contain an (r +

1)-clique can have at most (1 − 1
r)k

2/2 edges. The contrapositive implies that the in-

duced subgraph on the first k vertices of the NANIP sequence contains a (k2ε − 1)-

clique. Since k2ε − 1 > 2δR, this means that in a graph that contains a 2R clique, we

can use the C-approximation algorithm for the NANIP instance constructed from

the graph to find a clique that is larger than 2δR, thus distinguishing between a clique

number of at least 2R from a clique number of at most 2δR. Thus we reduced this NP-

hard problem to C-approximating NANIP, which proves the NP-hardness of the latter

problem.

90

4.4 Greedy analysis for convex NANIP

In this section we discuss the approximation guarantees of the greedy algorithm on

convex NANIP. The greedy algorithm is defined to choose the cheapest cost vertex

at every step, breaking ties arbitrarily. If the cost function is decreasing, then after an

arbitrarily chosen first vertex, the cheapest cost vertex will always have an already in-

stalled neighbor. Therefore the greedy algorithm always produces a connected traver-

sal of a connected graph, in the sense that every prefix of the final traversal induces a

connected subgraph. We call an algorithm which always produces a connected traver-

sal a connected algorithm.

Previous studies of related problems in optimal networks suggested that there is a

transition in the structure of the solution as the cost function is made convex. Indeed,

it is easy to see that under a non-convex decreasing cost function it is often optimal to

use non-connected solutions.

In the convex case, many small instances have optimal solutions that are connected.

Therefore, our next theorem shows a rather surprising result, that optimal recovery

sometimes requires disconnected solutions, even on convex cost functions. Connected

solutions can perform quite badly, having a cost that is a Ω(log n) multiple of the opti-

mum.

Theorem 11. Connected algorithms have an approximation ratio Ω(log(n)) for convex

NANIP problems.

Proof. We construct a particular instance for which a connected algorithm incurs cost

Ω(log(n)) while the optimal route has constant cost. Define the graph B(m) to be a

91

complete binary tree T with m levels, and a pair of vertices u, v such that the leaves of

T and {u, v} form the complete bipartite graph K2m−1,2. As an example, B(3) is given in

Figure 4.2.

u

v

B(m) B(m)

Figure 4.2: Left: the graph B(3); Right: two B(m) pieced together to force a connected algorithm to
incur Ω(log(n)) cost.

Define the cost function f(n) such that f(0) = 2, f(1) = 1, and f(n) = 0 for all

n ≥ 2. For this cost function it is clear that the minimum cost of a traversal of B(m)

is exactly 4 by first choosing the two vertices of B(m) that are not part of the tree, and

then traversing the rest of the tree at zero cost. However, if a connected algorithm were

forced to start at the root of the tree, it would incur cost Ω(m) = Ω(log(n)) since

every vertex would have at most one visited neighbor.

To force such an algorithm into this situation we glue two copies of B(m) together

so that their trees share a root. Then any connected ordering must start in one of the

two copies, and to visit the other copy it must pass through the root, incurring a total

cost of Ω(log(n)). On the other hand, the optimal traversal has total cost 8.

Further, the greedy algorithm, which simply chooses the cheapest vertex at each step

and breaks ties arbitrarily, gives a Θ(n) approximation ratio in the worst case. To see

92

this, note that in the construction from the theorem the only way a connected algo-

rithm can achieve the logarithmic lower bound is by traveling directly from the root to

the leaves. But by breaking ties arbitrarily, the greedy algorithm may visit every inte-

rior node in the tree before reaching the leaves, thus incurring a linear cost overall.

4.5 Integer programming for NANIP

In this section we describe a new integer programming (IP) formulation of the NANIP

problem by adding in Miller-Tucker-Zemlin-type subtour elimination constraints [77].

An IP, of course, does not give a polynomial time algorithm, but can be sufficiently

fast for some instances of practical interest. We then show that this formulation, ex-

perimentally, improves on the previous formulation by [49].

4.5.1 A new integer program

In what follows we will assume that the cost function f is a continuous convex decreas-

ing function R≥0 → R≥0 rather than one N → R≥0. It is necessary to extend f to a

continuous function for the LP relaxation to be well-defined. While there are many

ways to do so, formulating the IP for a general continuous f encapsulates all of them.

For an undirected graph G = (V,E) on n = |V| vertices, and introduce the arc

set A by replacing each undirected edge with two directed arcs. For all (i, j) ∈ A de-

fine variables eij ∈ {0, 1}. The choice eij = 1 has the interpretation that i is traversed

before j in a candidate ordering of the vertices, or that one chooses the directed edges

(i, j) and discards the other. In order to maintain consistency of the IP we impose the

constraint eij = 1 − eji for all edges (i, j) with i < j. Finally, we wish to enforce that

93

choosing values for the eij corresponds to defining a partial order on V (i.e., that the

subgraph of chosen edges forms a DAG). We use the subtour elimination technique of

Miller, Tucker, and Zemlin [77] and introduce variables ui for i = 1, . . . , n with the

constraints

ui − uj + 1 ≤ n(1 − eij) ∀(i, j) ∈ A

0 ≤ ui ≤ n i = 1, . . . , n
(4.3)

Thus, if i is visited before j then ui ≥ uj − 1. Now denote by di =
∑

(j,i)∈E eji, which

is the number of neighbors of vi visited before vi in a candidate ordering of V. The ob-

jective function is the convex function
∑

i f(di), and putting these together we have the

following convex integer program:

min
∑
i

f(di)

s.t. di =
∑
(j,i)∈A

eji i = 1, . . . , n

eij = 1 − eji (i, j) ∈ A, i < j
ui − uj + 1 ≤ n(1 − eij) (i, j) ∈ A
0 ≤ ui ≤ n i = 1, . . . , n
eij ∈ {0, 1} (i, j) ∈ A

Figure 4.3: The integer program for NANIP.

The integer program has a natural LP relaxation by replacing the integrality con-

straints with 0 ≤ eij ≤ 1. Because f is only evaluated at integer points, it is possible

94

to replace f(di) with a real-valued variable bound by a set of linear inequalities, as de-

tailed in [49].

4.5.2 Experimental results

We compared the new IP formulation to the formulation of [49] in the algebraic opti-

mization framework. For the comparison, we constructed random connected graphs

by first constructing a random tree and then randomly inserting the desired num-

ber of edges. For each graph size and order, we constructed 5 graphs and reported

the average running time of the two algorithms. Simulations were run on IBM ILOG

CPLEX 12.4 solver running with a single thread on Intel(R) Core(TM) i5 CPU U 520

@ 1.07GHz with 3.84E6 kB of random access memory.

From the computational experiments it is clear that the MTZ-type formulation gives

significant improvements. For instance, the solve time seems to not depend on the

number of nodes in the graph (Fig. 4.4(a)), unlike in the previous formulation. We are

also able to solve NANIP instances on 45 edges in under an hour, whereas the previous

formulation solved only 30 edge graphs in that span of time (Fig. 4.4(b)).

4.6 Conclusion

We analyzed the recently introduced Neighbor-Aided Network Installation Problem.

We proved the NP-hardness of the problem for the practically most relevant case of

convex decreasing cost functions, addressing an open problem raised in [49]. We then

showed that the worst case approximation ratio of the natural greedy algorithm is

Θ(n). We also gave a new IP formulation for optimally solving NANIP, which out-

95

(a)
10 15 20 25 30

Nodes
0

500

1000

1500

2000

2500

3000

3500

Ru
nn

in
g

tim
e

(s
ec

)

Previous NANIP IP
NANIP IP with MTZ

(b)
15 20 25 30 35 40 45

Edges
0

500

1000

1500

2000

2500

3000

3500

Ru
nn

in
g

tim
e

(s
ec

)

Previous NANIP IP
NANIP IP with MTZ

Figure 4.4: A comparison of the formulations in [49] and our new IP formulation with MTZ-type con-
straints. This graph plots running time vs. (a) number of nodes and, (b) number of edges in the target
graph. In (a) the number of edges was kept at 30 throughout, while in (b) the number of nodes was 15
throughout.

performs previous formulations.

The approximability of NANIP remains an open problem. In particular, it is still

not known whether an efficient o(n) approximation algorithm exists for general con-

vex decreasing cost functions. One obstacle to finding a good rounding algorithm is

that the IP we presented has an infinite integrality gap. As proof, the graph Kn with

the function f(i) = max(0, n/2 − i) has OPT = Ω(n2) but the linear relaxation has

96

OPTLP = 0. So an approximation algorithm via LP rounding would require a different

IP formulation.

97

Cited Literature

[1] Margareta Ackerman and Shai Ben-David. Clusterability: A theoretical study.
Journal of Machine Learning Research - Proceedings Track, 5:1–8, 2009.

[2] M.M. Adibi and L.H. Fink. Power system restoration planning. IEEE Transac-
tions on Systems, 9(1):22 –28, 1994.

[3] R. Aharoni, E. C. Milner, and K. Prikry. Unfriendly partitions of a graph. J.
Comb. Theory, Ser. B, 50(1):1–10, 1990.

[4] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavt-
sev. Parallel algorithms for geometric graph problems. In STOC, pages 574–583,
2014.

[5] Kenneth Appel, Wolfgang Haken, et al. Every planar map is four colorable. part
i: Discharging. Illinois Journal of Mathematics, 21(3):429–490, 1977.

[6] Kenneth Appel, Wolfgang Haken, John Koch, et al. Every planar map is four
colorable. part ii: Reducibility. Illinois Journal of Mathematics, 21(3):491–567,
1977.

[7] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[8] Sanjeev Arora and Rong Ge. New tools for graph coloring. In APPROX-
RANDOM, pages 1–12, 2011.

[9] Pranjal Awasthi, Avrim Blum, and Or Sheffet. Center-based clustering under
perturbation stability. Inf. Process. Lett., 112(1-2):49–54, 2012.

[10] C. Bazgan, Z. Tuza, and D. Vanderpooten. Satisfactory graph partition, variants,
and generalizations. Eur. J. Oper. Res., 206(2):271–280, 2010.

98

[11] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for par-
allel query processing. In PODS, pages 273–284, 2013.

[12] Shalev Ben-David and Lev Reyzin. Data stability in clustering: A closer look.
Theoretical Computer Science, 558(0):51 – 61, 2014. Algorithmic Learning The-
ory.

[13] Bonnie Berger and John Rompel. A better performance guarantee for approxi-
mate graph coloring. Algorithmica, 5(3):459–466, 1990.

[14] Ulrich Berger. Fictitious play in 2× n games. Journal of Economic Theory,
120(2):139–154, 2005.

[15] P. Bertoli, R. Cimatti, J. Slaney, and S. Thibaux. Solving power supply restoration
problems with planning via symbolic model checking. In AIPS-02 Workshop on
Planning via Model-Checking, pages 576–580, 2002.

[16] Yonatan Bilu and Nathan Linial. Are stable instances easy? Combinatorics,
Probability & Computing, 21(5):643–660, 2012.

[17] Avrim Blum. New approximation algorithms for graph coloring. J. ACM,
41(3):470–516, 1994.

[18] Y. Bramoullé, D. López-Pintado, S. Goyal, and F. Vega-Redondo. Network for-
mation and anti-coordination games. Int. J. GameTheory, 33(1):1–19, 2004.

[19] H. Bruhn, R. Diestel, A. Georgakopoulos, and P. Sprüssel. Every rayless graph
has an unfriendly partition. Combinatorica, 30(5):521–532, 2010.

[20] Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied
Mathematics, 127(3):415–429, 2003.

[21] Z. Cao and X. Yang. The fashion game: Matching pennies on social networks.
SSRN, 2012.

[22] I. Chatzigiannakis, C. Koninis, P. N. Panagopoulou, and P. G. Spirakis. Dis-
tributed game-theoretic vertex coloring. In OPODIS’10, pages 103–118, 2010.

99

[23] K. Chaudhuri, F. C. Graham, and M. Shoaib Jamall. A network coloring game.
In WINE, pages 522–530, 2008.

[24] Xi Chen and Xiaotie Deng. On the complexity of 2d discrete fixed point prob-
lem. Theoretical Computer Science, 410(44):4448–4456, 2009.

[25] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary R. Bradski,
Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on mul-
ticore. In NIPS, pages 281–288, 2006.

[26] Carleton Coffrin, Pascal Van Hentenryck, and Russell Bent. Strategic stockpil-
ing of power system supplies for disaster recovery. In Power and Energy Society
General Meeting, 2011 IEEE, pages 1–8. IEEE, 2011.

[27] David P. Dailey. Uniqueness of colorability and colorability of planar 4-regular
graphs are np-complete. Discrete Mathematics, 30(3):289 – 293, 1980.

[28] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a nash equilibrium. SIAM Journal on Computing,
39(1):195–259, 2009.

[29] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, 2008.

[30] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for ap-
proximate coloring. SIAM J. Comput., 39(3):843–873, 2009.

[31] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013.

[32] Zdeněk Dvořák, Ken-ichi Kawarabayashi, and Robin Thomas. Three-coloring
triangle-free planar graphs in linear time. ACM Transactions on Algorithms
(TALG), 7(4):41, 2011.

[33] R. Elsässer and T. Tscheuschner. Settling the complexity of local max-cut (al-
most) completely. In ICALP (1), pages 171–182, 2011.

100

[34] David Eppstein, Marshall W. Bern, and Brad L. Hutchings. Algorithms for col-
oring quadtrees. Algorithmica, 32(1):87–94, 2002.

[35] B. Escoffier, L. Gourvès, and J. Monnot. Strategic coloring of a graph. In
CIAC’10, pages 155–166, Berlin, Heidelberg, 2010. Springer-Verlag.

[36] Ahmed K. Farahat, Ahmed Elgohary, Ali Ghodsi, and Mohamed S. Kamel. Dis-
tributed column subset selection on mapreduce. In ICDM, pages 171–180,
2013.

[37] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and
Zoya Svitkina. On distributing symmetric streaming computations. ACM
Transactions on Algorithms, 6(4), 2010.

[38] Michal Feldman and Ophir Friedler. A unified framework for strong price of
anarchy in clustering games. In Automata, Languages, and Programming, pages
601–613. Springer, 2015.

[39] Benjamin Fish, Jeremy Kun, Ádám Dániel Lelkes, Lev Reyzin, and György
Turán. On the computational complexity of mapreduce. In Distributed Comput-
ing - 29th International Symposium, pages 1–15, 2015.

[40] Lance Fortnow. Time-space tradeoffs for satisfiability. J. Comput. Syst. Sci.,
60(2):337–353, 2000.

[41] D. Fotakis, S. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. Spirakis.
The structure and complexity of nash equilibria for a selfish routing game. In
ICALP, pages 123–134, Malaga, Spain, 2002.

[42] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[43] Michael R. Garey and David S. Johnson. The complexity of near-optimal graph
coloring. J. ACM, 23(1):43–49, 1976.

[44] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching,
and simulation in the mapreduce framework. In ISAAC, pages 374–383, 2011.

101

[45] L. Gourvès and J. Monnot. On strong equilibria in the max cut game. In In:
Proc. of WINE 2009, Springer LNCS, pages 608–615, 2009.

[46] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization, volume 2. Springer Science & Business Media,
2012.

[47] Sudipto Guha, Anna Moss, Joseph (Seffi) Naor, and Baruch Schieber. Efficient
recovery from power outage (extended abstract). In STOC, pages 574–582, New
York, NY, USA, 1999. ACM.

[48] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a
3-colorable graph. SIAM J. Discrete Math., 18(1):30–40, 2004.

[49] Alexander Gutfraind, Milan Bradonjić, and Tim Novikoff. Modelling the neigh-
bour aid phenomenon for installing costly complex networks. Journal of Com-
plex Networks, 2014.

[50] Alexander Gutfraind, Jeremy Kun, Ádám Dániel Lelkes, and Lev Reyzin. Net-
work installation under convex costs. Journal of Complex Networks, 2015.

[51] Magnús M. Halldórsson. A still better performance guarantee for approximate
graph coloring. Inf. Process. Lett., 45(1):19–23, 1993.

[52] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182:105–142, 1999.

[53] Michael Held and Richard M. Karp. A dynamic programming approach to
sequencing problems. In ACM ’61: Proceedings of the 1961 16th ACM national
meeting, pages 71.201–71.204, New York, NY, USA, 1961. ACM.

[54] Chính T. Hoàng, Frédéric Maffray, and Meriem Mechebbek. A characterization
of b-perfect graphs. Journal of GraphTheory, 71(1):95–122, 2012.

[55] M. Hoefer. Cost sharing and clustering under distributed competition. PhD thesis,
Universität Konstanz, Germany, 2007.

102

[56] Sangxia Huang. Improved hardness of approximating chromatic number. CoRR,
abs/1301.5216, 2013.

[57] Russell Impagliazzo and Ramamohan Paturi. The complexity of k-sat. 2012
IEEE 27th Conference on Computational Complexity, 0:237, 1999.

[58] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems
have strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530,
2001.

[59] David S. Johnson. Worst case behavior of graph coloring algorithms. In Proc.
5th Southeastern Conf. on Comb., GraphTheory and Comput., pages 513–527,
1974.

[60] Seny Kamara and Mariana Raykova. Parallel homomorphic encryption. In
Financial Cryptography Workshops, pages 213–225, 2013.

[61] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computa-
tion for mapreduce. In SODA ’10, pages 938–948, Philadelphia, PA, USA, 2010.
Society for Industrial and Applied Mathematics.

[62] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[63] Ken-ichi Kawarabayashi and Mikkel Thorup. Coloring 3-colorable graphs with
o(n1/5) colors. In STACS, volume 25, pages 458–469, 2014.

[64] M. Kearns, S. Suri, and N. Montfort. A behavioral study of the coloring problem
on human subject networks. Science, 313:2006, 2006.

[65] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approxi-
mating the chromatic number. Combinatorica, 20(3):393–415, 2000.

[66] Subhash Khot. Improved inaproximability results for maxclique, chromatic
number and approximate graph coloring. In FOCS, pages 600–609, 2001.

103

[67] Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs
with fixed clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003.

[68] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS, pages
404–413, Trier, Germany, 4–6 March 1999.

[69] Daniel Král, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity
of coloring graphs without forbidden induced subgraphs. In WG, pages 254–
262, 2001.

[70] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast
greedy algorithms in mapreduce and streaming. In SPAA ’13, pages 1–10, New
York, NY, USA, 2013. ACM.

[71] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI
magazine, 13(1):32, 1992.

[72] Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable
graph colorings. In SAGT, pages 122–133, 2013.

[73] Jeremy Kun and Lev Reyzin. On coloring resilient graphs. In Mathematical
Foundations of Computer Science, pages 517–528, 2014.

[74] E.E. Lee, J.E. Mitchell, and W.A. Wallace. Restoration of services in interde-
pendent infrastructure systems: A network flows approach. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(6):1303
–1317, Nov 2007.

[75] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on
the exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

[76] Matús Mihalák, Marcel Schöngens, Rastislav Srámek, and Peter Widmayer. On
the complexity of the metric tsp under stability considerations. In SOFSEM,
pages 382–393, 2011.

104

[77] Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer program-
ming formulation of traveling salesman problems. Journal of the ACM (JACM),
7(4):326–329, 1960.

[78] J.E. Mitchell and B. Borchers. Solving real-world linear ordering problems us-
ing a primal-dual interior point cutting plane method. Annals of Operations
Research, 62(1):253–276, 1996.

[79] Dov Monderer and Lloyd S Shapley. Potential games. Games and economic
behavior, 14(1):124–143, 1996.

[80] Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic
Behavior, 14(1):124 – 143, 1996.

[81] B. Monien and T. Tscheuschner. On the power of nodes of degree four in the
local max-cut problem. In CIAC, pages 264–275, 2010.

[82] John H Nachbar. “evolutionary” selection dynamics in games: Convergence and
limit properties. International journal of game theory, 19(1):59–89, 1990.

[83] M. Naor and L. Stockmeyer. What can be computed locally? In STOC, pages
184–193. ACM, 1993.

[84] Sarah G Nurre and TC Sharkey. Restoring infrastructure systems: An integrated
network design and scheduling problem. In Proceedings of the 2010 Industrial
Engineering Research Conference, 2010.

[85] Matthew Felice Pace. BSP vs MapReduce. In Proceedings of the International
Conference on Computational Science, pages 246–255, 2012.

[86] P. N. Panagopoulou and P. G. Spirakis. A game theoretic approach for efficient
graph coloring. In ISAAC ’08, pages 183–195, 2008.

[87] Christos H Papadimitriou. On the complexity of the parity argument and
other inefficient proofs of existence. Journal of Computer and system Sciences,
48(3):498–532, 1994.

105

[88] Julia Robinson. An iterative method of solving a game. Annals of mathematics,
pages 296–301, 1951.

[89] T. Roughgarden and É. Tardos. How bad is selfish routing? J. ACM, 49(2):236–
259, March 2002.

[90] Anish Das Sarma, Foto N. Afrati, Semih Salihoglu, and Jeffrey D. Ullman. Up-
per and lower bounds on the cost of a map-reduce computation. In PVLDB’13,
pages 277–288, 2013.

[91] A. Schrijver. On the history of combinatorial optimization (till 1960). Hand-
books in Operations Research and Management Science, 12:1–68, 2005.

[92] K. Shafique and R. D. Dutton. Partitioning a graph into alliance free sets. Dis-
crete Mathematics, 309(10):3102–3105, 2009.

[93] S. Shelah and E. C. Milner. Graphs with no unfriendly partitions. A tribute to
Paul Erdös, pages 373–384, 1990.

[94] J. C. Shepherdson. The reduction of two-way automata to one-way automata.
IBM J. Res. Dev., 3(2):198–200, April 1959.

[95] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mohammed G. Khatib, Xubin He, and
Michael Factor, editors, MSST, pages 1–10. IEEE Computer Society, 2010.

[96] A. Szepietowski. Turing Machines with Sublogarithmic Space. Ernst Schering
Research Foundation Workshops. Springer, 1994.

[97] Paul Turán. On an extremal problem in graph theory. Matematikai és Fizikai
Lapok, 48:436–452, 1941.

[98] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, 1990.

[99] J. van den Heuvel, R. A. Leese, and M. A. Shepherd. Graph labeling and radio
channel assignment. J. GraphTheory, 29(4):263–283, December 1998.

106

[100] P. Van Hentenryck, R. Bent, and C. Coffrin. Strategic planning for disaster re-
covery with stochastic last mile distribution. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Problems,
volume 6140 of LNCS, pages 318–333. Springer Berlin / Heidelberg, 2010.

[101] K. Wagner and G. Wechsung. Computational Complexity. Mathematics and its
Applications. Springer, 1986.

[102] Douglas B. West. Introduction to GraphTheory. Pearson Prentice Hall, New
Jersey, 2001.

[103] Avi Wigderson. Improving the performance guarantee for approximate graph
coloring. J. ACM, 30(4):729–735, 1983.

[104] Ryan Williams. Time-space tradeoffs for counting NP solutions modulo inte-
gers. Computational Complexity, 17(2):179–219, 2008.

[105] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. In STOC, pages 681–690. ACM, 2006.

[106] David Zuckerman. Linear degree extractors and the inapproximability of max
clique and chromatic number. Theory of Computing, 3(1):103–128, 2007.

107

A
Source code listings

For completeness we provide the source code used in Chapter 2. There were three as-

pects for which a computer search helped:

1. To determine the resilience of famous graphs.

2. To provide the tables of resilience properties for small graphs, Table 2.1.

3. To double-check the resilience properties of the gadgets in Theorem 4.

Note that the computational search for the third item is not necessary, as the sketch

given in the proof of Theorem 4 can be turned into a small set of cases to check by

hand. However, by providing it here we hope to reinforce the certainty of the result.

108

The full source code and datasets used is also available on Github at

https://github.com/j2kun/resilient-coloring-code

109

Listing A.1: The sourcecode for computing resilience by brute force and heuristically-guided search.
1 import itertools
2 import random
3 import parameters
4 from gradient import localMaximum
5
6 def memoize(f):
7 cache = {}
8
9 def memoizedFunction(*args):

10 if args not in cache:
11 cache[args] = f(*args)
12 return cache[args]
13
14 memoizedFunction.cache = cache
15 return memoizedFunction
16
17
18 def getGraphs(filename):
19 with open(filename, 'r') as graphFile:
20 lines = graphFile.readlines()
21
22 pairs = lambda L: tuple(L[i:i+2] for i in range(0, len(L)-1, 2))
23 intEdges = lambda L: tuple((int(i), int(j)) for i,j in L)
24
25 graphStrings = [(info.strip().split(), pairs(edges.strip().split()))
26 for (info, edges) in pairs(lines)]
27
28 graphInfo = tuple((int(x[0]), int(x[1])) for x,_ in graphStrings)
29 graphEdges = tuple(intEdges(edgeList) for _,edgeList in graphStrings)
30
31 return tuple(zip(graphInfo, graphEdges))
32
33
34 def properColoring(edges, colors):
35 for e in edges:
36 if colors[e[0]] == colors[e[1]]:
37 return False
38 return True
39
40
41 def numBadEdges(edges, colors):
42 count = 0
43 for e in edges:
44 if colors[e[0]] == colors[e[1]]:
45 count += 1
46 return count
47
48
49 def allColorings(n, k):
50 return itertools.product(range(k),repeat=n)
51
52 def anyColoring(n,k):
53 return tuple(random.choice(range(k)) for _ in range(n))
54
55 def vertexNeighbors(c,i,k):
56 newColors = set(range(k)) - set([c[i]])

110

57 return (tuple(newColor if index == i else color
58 for (index,color) in enumerate(c))
59 for newColor in newColors)
60
61 def neighboringColorings(c, k):
62 return (x for i in range(len(c)) for x in vertexNeighbors(c, i, k))
63
64
65 @memoize
66 def hasProperColoring(g, k):
67 # extend this to return the coloring
68 ((n, _), edgeList) = g
69 for coloring in allColorings(n, k):
70 if properColoring(edgeList, coloring):
71 return True
72 return False
73
74
75 def allEdges(n):
76 return ((i,j) for i in range(n) for j in range(n) if i < j)
77
78
79 def sortEdges(edgeList):
80 return tuple(tuple(sorted(e)) for e in edgeList)
81
82
83 def isResilient(g, resilience, k):
84 (n,m), edgeList = g
85 count = 0
86 edges = sortEdges(edgeList)
87 edgesToCheck = itertools.combinations(set(allEdges(n))
88 - set(edges), resilience)
89
90 for newEdges in edgesToCheck:
91 newGraph = ((n, m + len(newEdges)), edges + newEdges)
92 if not hasProperColoring(newGraph, k):
93 return False
94 count += 1
95 if count % 1000 == 0:
96 print(count)
97
98 return True
99

100
101 def tryProveResilience(g, resilience, k, leftVertices=[],

rightVertices=[]):
102 (n,m), edgeList = g
103 count = 0
104 edges = sortEdges(edgeList)
105 print(edges)
106 neighbors = lambda c: neighboringColorings(c,k)
107 numSteps = 10000
108
109 if leftVertices == []:
110 edgeSet = itertools.combinations(set(allEdges(n)) - set(edges),

resilience)
111 else: # "bipartite" edges

111

112 edgeSet = itertools.combinations([(i,j) for i in leftVertices
113 for j in rightVertices if i != j], resilience)
114
115 for newEdges in edgeSet:
116 newGraph = ((n, m + len(newEdges)), tuple(edges) + newEdges)
117 fitness = lambda c: -numBadEdges(newGraph[1], c)
118
119 numAttempts = 0
120 while fitness(localMaximum(anyColoring(n, k), fitness, neighbors,

numSteps)) != 0:
121 numAttempts += 1
122 if numAttempts > 20000:
123 print(newEdges)
124 return False
125
126 count += 1
127 if count % 10000 == 0:
128 print(count)
129
130 return True
131
132
133 def resilienceProfile(graphs, k, resilienceCap=4):
134 # continue computing with only those graphs who passed 1-resilience
135 counts = []
136 goodGraphs = graphs
137
138 for i in range(1, 1 + resilienceCap):
139 goodGraphs = [g for g in goodGraphs if isResilient(g, i, k)]
140 counts.append(len(goodGraphs))
141
142 return counts
143
144
145 def analyze(filename, maxk=6):
146 graphs = getGraphs(filename)
147
148 print("Percentage␣of␣k-colorable␣graphs␣which␣are␣

n-resilient".center(40))
149 print(filename)
150 print("")
151
152 print('k\\n' + ''.join([("%d" % i).rjust(8) for i in range(1,5)]))
153 print('␣␣' + "-"*40)
154
155 for k in range(3, maxk+1):
156 kColorableGraphs = [g for g in graphs if hasProperColoring(g, k)]
157 # print('%d %d-colorable graphs' % (len(kColorableGraphs), k))
158 counts = resilienceProfile(kColorableGraphs, k)
159
160 row = [c * 100.0 / len(kColorableGraphs) for c in counts]
161 print(str(k) + '␣␣␣' + ''.join([("%.1f" % x).rjust(8) for x in row]))
162
163 print("")
164
165
166 def combineGraphs(G, H):

112

167 gDim, gEdges = G
168 hDim, hEdges = H
169 offset = gDim[0]
170
171 leftVertices = range(gDim[0])
172 rightVertices = range(offset + 1, offset + hDim[0])
173
174 combinedGraph = ((gDim[0] + hDim[0], gDim[1] + hDim[1]),
175 gEdges + tuple((i + offset, j + offset) for (i,j) in

hEdges))
176 return combinedGraph, leftVertices, rightVertices
177
178
179 def checkInterEdgeResilience(G, H, resilience, k):
180 unionGraph, gVertices, hVertices = combineGraphs(G, H)
181 return tryProveResilience(unionGraph, resilience,
182 k, leftVertices=gVertices, rightVertices=hVertices)
183
184
185 if __name__ == "__main__":
186 pass
187 analyze(parameters.filename, maxk=parameters.tableMaxK)
188
189 for filename in ['graph6.txt', 'graph7.txt', 'graph8.txt']:
190 analyze('data/' + filename, maxk=3)
191
192
193 # graphs have the form ((n, m), (e1, e2, ...))
194 petersen = ((10,15), ((0,1), (1,2), (2,3), (3,4), (4,5), (5,6), (6,7),
195 (7,8), (8,0), (0,9), (3,9), (6,9), (2,7), (4,8), (5,1)))
196
197 durer = ((12,18), ((1,2), (2,3), (3,4), (4,5), (5,6), (6,1),
198 (1,7), (2,8), (3,9), (4,10), (5,11), (6,0), (8,10),
199 (8,0), (9,7), (9,11), (10,0), (11,7)))
200
201 grotzsch = ((11,20), ((1,3), (1,5), (1,7), (1,9), (1,0), (2,3),
202 (3,4), (4,5), (5,6), (6,7), (7,8), (8,9), (9,10),
203 (10,0), (2,0), (2,6), (2,8), (4,8), (4,10), (6,10)))
204
205 chvatal = ((12,24), ((1,2), (2,3), (3,4), (1,4), (1,5), (1,6),
206 (2,7), (2,8), (3,9), (3,10), (4,11), (4,0), (5,0),
207 (5,9), (5,10), (6,7), (6,9), (6,10), (7,0), (7,11),
208 (8,0), (8,11), (8,9), (10,11)))
209
210 k33 = ((15,18), ((0,1), (0,2), (0,3), (1,4), (2,5), (3,6), (4,7),
211 (4,11), (5,8), (5,12), (6,9), (6,13), (7,10), (8,10),
212 (9,10), (11, 14), (12,14), (13,14)))
213
214 print(isResilient(k33, 2, 3))
215 print(tryProveResilience(petersen, 2, 3))
216 print(tryProveResilience(durer, 4, 4))
217 print(tryProveResilience(grotzsch, 4, 4))
218 print(tryProveResilience(chvatal, 3, 4))
219
220 negationGadget = ((15,25),
221 ((0,1), (0,3), (0,12), (1,2), (1,10), (2,4), (2,13), (3,4), (3,5),
222 (4,5), (5,6), (6,7), (6,8), (7,8), (7,9), (8,11), (9,10), (9,12),

113

223 (10,11), (11,13), (12,13), (0,14), (2,14), (9,14), (11,14)))
224
225
226 clauseGadget = ((31,44),
227 ((1,13), (2,13), (3,14), (4,14), (5,15), (6,15), (7,16), (8,16),
228 (9,17), (10,17), (11,18), (12,18), (13,19), (14,20), (15,21),
229 (16,22), (17,23), (18,24), (19,20), (19,25), (20,25), (21,26),
230 (21,22), (22,26), (23,24), (23,27), (24,27), (25,28), (27,0), (29,0),
231 (28,29), (28,0), (1,30), (2,30), (3,30), (4,30), (5,30), (6,30),
232 (7,30), (8,30), (9,30), (10,30), (11,30), (12,30)))
233
234
235 negationClauseDisconnected = ((46,69),
236 ((1,13), (2,13), (3,14), (4,14), (5,15), (6,15), (7,16), (8,16),
237 (9,17), (10,17), (11,18), (12,18), (13,19), (14,20), (15,21),
238 (16,22), (17,23), (18,24), (19,20), (19,25), (20,25), (21,26),
239 (21,22), (22,26), (23,24), (23,27), (24,27), (25,28), (27,0), (29,0),
240 (28,29), (28,0), (1,30), (2,30), (3,30), (4,30), (5,30), (6,30),
241 (7,30), (8,30), (9,30), (10,30), (11,30), (12,30), (31,32), (31,34),
242 (31,43), (32,33), (32,41), (33,35), (33,44), (34,35), (34,36),
243 (35,36), (36,37), (37,38), (37,39), (38,39), (38,40), (39,42),
244 (40,41), (40,43), (41,42), (42,44), (43,44), (31,45), (33,45),
245 (40,45), (42,45)))
246
247 negationClauseConnected = ((45,69),
248 ((1,13), (2,13), (3,14), (4,14), (5,15), (6,15), (7,16), (8,16),
249 (9,17), (10,17), (11,18), (12,18), (13,19), (14,20), (15,21),
250 (16,22), (17,23), (18,24), (19,20), (19,25), (20,25), (21,26),
251 (21,22), (22,26), (23,24), (23,27), (24,27), (25,28), (27,0), (29,0),
252 (28,29), (28,0), (1,30), (2,30), (3,30), (4,30), (5,30), (6,30),
253 (7,30), (8,30), (9,30), (10,30), (11,30), (12,30), (1,31), (1,33),
254 (1,42), (31,2), (31,40), (2,34), (2,43), (33,34), (33,35), (34,35),
255 (35,36), (36,37), (36,38), (37,38), (37,39), (38,41), (39,40),
256 (39,42), (40,41), (41,43), (42,43), (1,44), (2,44), (39,44),
257 (41,44)))
258
259 clauseClauseDisconnected = ((61, 88),
260 # first half
261 ((1, 13), (2, 13), (3, 14), (4, 14), (5, 15), (6, 15), (7, 16), (8,
262 16), (9, 17), (10, 17), (11, 18), (12, 18), (13, 19), (14, 20), (15,
263 21), (16, 22), (17, 23), (18, 24), (19, 20), (19, 25), (20, 25), (21,
264 26), (21, 22), (22, 26), (23, 24), (23, 27), (24, 27), (25, 28), (27,
265 0), (29, 0), (28, 29), (28, 0), (1, 30), (2, 30), (3, 30), (4, 30),
266 (5, 30), (6, 30), (7, 30), (8, 30), (9, 30), (10, 30), (11, 30), (12,
267 30),
268 # second half
269 (32, 44), (33, 44), (34, 45), (35, 45), (36, 46), (37, 46), (38, 47),
270 (39, 47), (40, 48), (41, 48), (42, 49), (43, 49), (44, 50), (45, 51),
271 (46, 52), (47, 53), (48, 54), (49, 55), (50, 51), (50, 56), (51, 56),
272 (52, 57), (52, 53), (53, 57), (54, 55), (54, 58), (55, 58), (56, 59),
273 (58, 31), (60, 31), (59, 60), (59, 31), (32, 30), (33, 30), (34, 30),
274 (35, 30), (36, 30), (37, 30), (38, 30), (39, 30), (40, 30), (41, 30),
275 (42, 30), (43, 30)))
276
277 clauseClauseConnected = ((61, 88),
278 # first half
279 ((1, 13), (2, 13), (3, 14), (4, 14), (5, 15), (6, 15), (7, 16), (8,

114

280 16), (9, 17), (10, 17), (11, 18), (12, 18), (13, 19), (14, 20), (15,
281 21), (16, 22), (17, 23), (18, 24), (19, 20), (19, 25), (20, 25), (21,
282 26), (21, 22), (22, 26), (23, 24), (23, 27), (24, 27), (25, 28), (27,
283 0), (29, 0), (28, 29), (28, 0), (1, 30), (2, 30), (3, 30), (4, 30),
284 (5, 30), (6, 30), (7, 30), (8, 30), (9, 30), (10, 30), (11, 30), (12,
285 30),
286
287 # second half
288 (1, 44), (2, 44), (34, 45), (35, 45), (36, 46), (37, 46), (38, 47),
289 (39, 47), (40, 48), (41, 48), (42, 49), (43, 49), (44, 50), (45, 51),
290 (46, 52), (47, 53), (48, 54), (49, 55), (50, 51), (50, 56), (51, 56),
291 (52, 57), (52, 53), (53, 57), (54, 55), (54, 58), (55, 58), (56, 59),
292 (58, 31), (60, 31), (59, 60), (59, 31), (1, 30), (2, 30), (34, 30),
293 (35, 30), (36, 30), (37, 30), (38, 30), (39, 30), (40, 30), (41, 30),
294 (42, 30), (43, 30)))
295
296 print(tryProveResilience(negationGadget, 1, 3))
297 print(tryProveResilience(clauseGadget, 1, 3))
298 print(tryProveResilience(negationClauseDisconnected, 1, 3,
299 leftVertices=range(31), rightVertices=range(31,46)))
300 print(tryProveResilience(negationClauseConnected, 1, 3,
301 leftVertices=range(31), rightVertices=[1,2] + range(31,45)))
302 print(tryProveResilience(clauseClauseConnected, 1, 3,
303 leftVertices=range(31), rightVertices=[1,2] + range(31,61)))
304 print(tryProveResilience(clauseClauseDisconnected, 1, 3,
305 leftVertices=range(31), rightVertices=range(31,61)))

115

Listing A.2: A simple gradient ascent algorithm
1 # localMax: 'a, ('a -> number), 'a -> ['a], int -> 'a
2 def localMaximum(posn, fitness, neighbors, numSteps):
3 value = fitness(posn)
4 nbrs = iter(neighbors(posn))
5
6 for step in range(numSteps):
7 try:
8 nextPosn = nbrs.next()
9 except:

10 break
11
12 nextValue = fitness(nextPosn)
13
14 if nextValue > value:
15 posn, value = nextPosn, nextValue
16 nbrs = iter(neighbors(posn))
17
18 return posn

116

	Introduction
	Basic Definitions
	Algorithmic Game Theory
	Graph Coloring and Resilience
	MapReduce and Distributed Complexity
	Neighbor Aid and Disaster Recovery
	Note

	Anti-Coordination Games and Stable Graph Colorings
	Introduction and background
	Previous work
	Results

	Preliminaries and definitions
	Stable Colorings
	Mixed and pure strategies
	Strict and non-strict stability

	Stable colorings
	Strictly Stable Colorings
	Stable colorings in directed graphs
	Discussion and open problems

	Resilience and Resiliently Colorable Graphs
	Related work on resilience
	Previous work on coloring

	Resilient SAT
	Resilient graph coloring and preliminary bounds
	Problem definition and remarks
	Observations
	Upper and lower bounds

	NP-hardness of 1-resilient 3-colorability
	Discussion and open problems

	Computational Complexity and MapReduce
	Introduction
	Background and Previous Work
	MapReduce
	Complexity

	Models
	MapReduce and MRC
	Nonuniformity
	Other Models of Parallel Computation

	Nonuniform MRC
	Uniform BSP
	Space Complexity Classes in MRC0
	Hierarchy Theorems
	Discussion and Open Problems

	Network Installation Under Convex Costs
	Introduction
	Preliminaries
	Convex decreasing NANIP is NP-hard
	Greedy analysis for convex NANIP
	Integer programming for NANIP
	A new integer program
	Experimental results

	Conclusion

	References
	Appendix Source code listings

