
Analyzing Margins in Boosting

Lev Reyzin

Princeton University Class of 2005, BSE

Senior Independent Work

Advised by Professor Robert Schapire

Abstract

While the success of boosting or voting methods has been evident from experi-
mental data [11], questions about why boosting does not overfit on training data
remain. One idea about the effectiveness of boosting was given by Schapire et
al. in which they presented an explanation of why the test error of a boosting
classifier does not increase with its size by looking at margins. They showed
that boosting increases the margins of training examples effectively and that
this increase in margins is related to the auspicious performance of AdaBoost
[12]. Breiman invented ArcGv, an algorithm that increases margins even more
aggressively than AdaBoost, yet does not perform better. He claimed this con-
tradicts Schapire’s margins explanation, since all else being equal a higher mar-
gins distribution did not in this case indicate better results [1]. In this paper, we
experimentally examine Breiman’s results by comparing the margins and per-
formance of AdaBoost and ArcGv. We also analyze our approaches and show
that our results partially contradict Breiman’s findings. We also explore some
other voting algorithms’ performance and present some studies only indirectly
related to this problem. We also present possibilities for further research and
experimentation in this area, which it is our intention to continue pursuing.

1 Introduction and Previous Work

The problem of machine learning with regard to data classification can usually
be expressed in the following way. Given already-classified data on which an
algorithm can be trained, predict the classifications of future data. The data
that the algorithm trains on is called training data. The data that needs to be
classified is called test data. The algorithm that classifies the test data is called
a classifier. The test error is the percent of test data misclassified.

If many classifiers are consistent with the training data, Occam’s razor states
that we should choose the simplest one. This intuitively makes sense because
it is the role of a classifier to find patterns in training data instead of being so
complex as to be adjusted to fit the training data [9]. When too complicated

1

a classifier is used and thus does not predict well on test examples, it overfits

the training data. This is generally true for most algorithms, yet in the case of
boosting this intuition fails.

1.1 Boosting

Freund and Schapire’s AdaBoost [4] is a type of boosting algorithm that uses
the combined vote of weak learners. Weak learners are themselves classifiers,
but they are usually very simple classifiers that are not made to reduce the
training error to zero. The idea being that while each individual weak learner
is innacurate, their weighted vote will be. As the number of boosting rounds
increases, the overall classifier becomes more complicated, since it becomes the
combined vote of more weak classifiers, and the training error falls. Even after
the training error reaches zero AdaBoost’s test error continues to fall [11]. This
violates the expectation that AdaBoost would overfit on the training data.

Boosting works in the following way (borrowed from the formula-
tion by Schapire)[11]:

Given a binary dataset, let Dt be the vector of weights dt that represent
the weights of the N training examples, where dt(i) is the weight at time t of
example i. For all i from 1 to N , initialize D1(i) = 1/N . Let αt represent
the weight of ht, the hypothesis generated at time t. Loop t from 1 to T , the
number of rounds of boosting. On each iteration, do the following:
find ht with minimum error with respect to Dt, then set αt, the weight of the
hypothesis by the rules of the boosting algorithm being used.

αt = f(h1,2,...,t, α1,2,...,t−1, x1,2,...,N , y1,2,...,N , Dt) (1)

Then, for each i from 1 to N update the distribution D for the next time
step by

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

(2)

where Zt is the normalizing vector. So, now that ht and its corresponding αt

are calculated, continue with the loop.
When the training stage ends, the final combined classifier H predicts ac-

cording to the following rule on datapoint x:

H(x) = sign(
T∑

t=1

αtht(x)) (3)

1.2 Margins

Notice that the vote of the combined classifier is binary. If the result of the
summation from the equation above is positive, the datapoint is classified into
one category. If it is negative, the datapoint is classified into another. The

2

amount of confidence in the final classification decision is lost in the binary
output of the classifier.

However, the measure of confidence can be extracted by looking at the sum-
mation itself. If all of the classifiers voted in the same way, the sum would be
positive or negative

∑T

t=1 αt hence, we can define the “confidence” as

confidencef (x) = |

∑T

t=1 αtht(x)
∑T

t=1 αt

| (4)

The margin can now be defined as that value multiplied by 1 if the classification
was correct and by −1 otherwise. This is equivalent to

marginf (x, y) = y

∑T

t=1 αtht(x)
∑T

t=1 αt

(5)

where y is the sign of the actual label.
A margin can be described in the following way. A high (positive) margin

means that the classifier predicted correctly and with high confidence. A large
negative margin means that the classifier mispredicted, yet was confident in its
prediction. Margins express the confidence of the predictor in their size and
its correctness with their signs. Margins are usually measured over training
data, but we measured them for test data as well. The training margins can be
measured once a final classifier has been determined, and it is run once again on
the training data. If the dataset is seperable, as in if the training error reaches
zero, then the training margins will all be positive. Whether this is possible or
not relies on the dataset, the weak learner, and the boosting algorithm used.

In a paper by Schapire, Freund, Bartlett, and Lee, it was shown that a bound
on the test error can be derived from [12] the margins distribution. While this
bound is loose, as in algorithms perform with error well under this cap, it was a
relation of the margins to the test error. In their paper, they said that given this
connection, higher margins will be responsible for better classification. Breiman
challenged this claim by finding a boosting algorithm he claims does not hold
to this rule. His algorithm is described later in the paper.

In this paper we will present and evaluate these claims. This work is im-
portant because such a comparative experimental of margins has not yet been
done, and its results will shed light on better understanding the algorithms’ per-
formances. We will study both AdaBoost and Breiman’s algorithm, ArcGv, but
using different weak learners. We will show that his findings do not necessarily
contradict Schapire’s claim and that further study yields results consistent with
his mathematical claims, but not supporting his experimental data.

2 The Algorithms

In this section, we will present the boosting algorithms that have been studied.
These are not the only boosting algorithms in existence, but they are the ones
at the focus of our work.

3

2.1 AdaBoost

AdaBoost [4] is the boosting algorithm most widely used, and the term “boost-
ing” is often used to mean “AdaBoost.” In AdaBoost, the boosting framework
is used, and αt is set in the following way [11]

αt =
1

2
log

1 − εt

εt

(6)

where εt is the sum of all of the weights at time t of the misclassified examples
by hypothesis ht

εt =

N∑

n=1

d(t)
n I(yn 6= ht(xn)) (7)

2.2 ArcGv

ArcGv was first introduced by Breiman as an algorithm that increases margins
more aggressively than AdaBoost. Breiman showed that ArcGv will have a
greater smallest margin than AdaBoost [1]. This algorithm was reformulated
by Meir et al. [7]
In ArcGv, the αt is set in the following manner

αt =
1

2
log

1 + γt

1 − γt

−
1

2
log

1 + %

1 − %
(8)

where we define
γt = 1 − 2εt

1 (9)

now let % be the minimum margin of the hypotheses 2

% = min
n=1,...,N

ynft−1(xn) (10)

where

fi(x) =

∑i

t=1 αtht(x)
∑i

r=1 αr

(11)

now αt can be expressed in a manner that would make it easy to compute

αt =
1

2
log

1 − εt

εt

−
1

2
log

1 + %

1 − %
(12)

This algorithm is ArcGv.

In Meir’s reformulation of ArcGv, Meir used a slightly different setting of %
[7], mainly

% = max (%t−1, min
n=1,...,N

ynft−1(xn)) (13)

1γt is also called the edge [7]
2In his original formulation of the algorithm, Breiman [1] used the notion of top instead of

margins, where top, t̄ = 1

2
−

1

2
%. He originally set α to 1

2
log(1−εt

εt

t̄t

1−t̄t
), which is mathemati-

cally equivalent to our expression

4

we will call this modified version of ArcGv, ArcGvMax to emphasize the
“max” term.

The ArcGv algorithm was designed to maximize the minimum margin on
training data.

2.3 Boosting on a Smooth Margin: Coordinate Assent

In their paper, Rudin et al. defined an algorithm called Coordinate Assent
Boosting that aimed to maximize the margin explicitly. [8]

Their algorithm defined a Smooth Margin function, G, reformulated to be
computed iteratively as

G =

∑N

i=1 e−yi

P

t

t′=1
α

t′ h
t′(xi)

∑j=t

j=1 αj

(14)

using the boosting framework described in 1.1, setting α by equation (12) with
% set to G gives the Coordinate Assent algorithm below

αt =
1

2
log

1 − εt

εt

−
1

2
log

1 + G

1 − G
(15)

This algorithm, as presented in [8] uses AdaBoost’s update rule until the
value of G becomes positive. We use this rule from the beginning, though an
exprimental comparison of the two may be interesting.

3 Approach

Our approach was to implement the algorithms above and to look at their mar-
gins distributions and performance on test data. Our goal was to test Breiman’s
theory, so we first focused on implementing AdaBoost and ArcGv, but we used
decision stumps as a weak learner.

3.1 Choosing a Weak Learner: Decision Stumps and De-

cision Trees

In this section, we will present the various weak learners considered or used in
our approach.

Decision stumps work in the following way: given all labeled weighted
training data, find the optimal attribute to decide on. This is the task of finding
the single attribute of the datapoints which best correlates, directly or inversely,
with the training labels. Since this process is weighted, as the weights of the
datapoints change, different attributes will give the best weighted results.

Decision trees work with the same idea, only they split on an attribute
given some criterion. The decision tree algorihtm Breiman employed is called
CART (Classification and Regression Trees) and was presented in his book by
that name [2]. The splitting criterion used by this algorithm is called the Gini

5

index. Then, the tree is not just grown to one node as in decision stumps, but
to more levels, given the specification. Then, usually the tree is pruned so that
it is not complicated enough to overfit the training data.

The Gini Index is a measure of the impurity of a given split. The impurity
of a split, t, is

i(t) = 2p(1|t)p(2|t) (16)

So, in binary classification, the impurity of a split is the proportion of labels
of class 1 of a split times the proportion of labels of class 2 of a split. The
imurity of a split is the average of the impurities of both sides of a split. The
object is to choose a split of least impurity at each level. The CART algorithm
uses the Gini index splitting critereon and prunes the tree to find the best tree
of k nodes [2].

Our work focused on using decision stumps instead of decision trees. we
felt it was more important to look at the behavior of boosting algorithms using
stumps for several reasons. Primarily, decision stumps are a simpler algorithm
and thereby have certain properties. For example, decision stumps evaluate the
optimal case in the sense that it is always possible to find a decision stump that
splits the training data optimally because there are one as many possible splits
as there are attributes, times 2, for direct and inverse correlation of the label
with the attribute. So, if a is the number of attributes, at the formation of each
hypothesis, only 2a attributes need to be considered. However, it is harder to
find the optimal decision tree. This is an exponential computation, and there
are important mathematical properties that are not present in the non-optimal
case.

3.2 Measuring Test Error

The first and perhaps the most obvious approach to measuring the difference
between two algorithms would involve looking at how well they predict on the
various datasets. We wanted to vary both the number of training examples and
the number of boosting rounds to see how well each algorithm predicts.

Obviously, since both Schapire’s and Breiman’s claims say something about
the test error’s relationship to the margins distributions, it was important to
measure the test errors to see any correlations.

3.3 Looking at Margins

It was important to measure the margins distributions with respect to some of
the same experiments for which the test errors were measured. Given that we
had access to labels of test examples, we also looked at the margins distribu-
tions over both training and test data to see the differences in the distributions
depending on whether the algorithm was trained on that data or not. (Training
margins are the ones normally examined) In particular, we wanted to test the
following:

6

Whether ArcGv has the same test error and margins distribution
as ArcGvMax. When breiman suggested the ArcGv algorithm, it was written
in a form equivalent to ArcGv presented in this paper. Meir could prove the
same results, but using ArcGvMax, which includes the extra term. We suspected
that the distributions would look almost identical since in order for the minimum
% to decrease, its

min
n=1,...,N

ynft−1(xn)

term must decrease with the formation of a new hypothesis. However, the
argmin of that term would be the example most often misclassified, and the
chances of the next hypothesis misclassifying it were low since new hypotheses
focus on classifying the most misclassified data correctly. There is still a pos-
sibility of another term becoming smaller than the previous min, but that is
also unlikely since the object of the boosting algorithms is to continue driving
training data misclassifications down. Yet, we wanted to find out experimen-
tally (and confirm or disprove our belief) if the max term had any impact on the
predictions, their corectness, or the confidence in them. Hence, we examined
the margins distributions of the two.

Seeing how the test and training margins differ for various learning
algorithms. Since it was included in our experiments to look at both training
and test data margins, we wanted to see if and how the training and test margins
were correlated for the various algorithms. We expected that the overall margins
distributions to be shifted rightward for training data compared to test data
since algorithms are more likely to predict better on the data they are trained
on. In fact, we know that if the data is seperable, boosting can drive training
error to 0, but that does not mean it will predict perfectly on test data. However,
we did not know if the two margins curves for a given algorithm were similar.
We plotted the two against each other to observe any correlation.

Comparing AdaBoost and ArcGv (and Coordinate Assent). We
wanted to see whether the correlations Breiman noted between the error and
margins of ArcGv and AdaBoost hold over decision stumps. This is the main
stud presented in this paper. We also compared the margins distributions with
those of Coordinate Assent. The studies involved both test and training margins
and were analyzed to shed light on Breiman’s claim.

4 Methodology

The implementations of the algorithms relied on that they were all boosting
algorithms. Hence, we first implemented the boosting framework as described
in Section 1.1. Then, each algorithm needed to be reformulated in a format
such that it would fit the framework and all that needed to be changed was the
setting of the alpha. This was presented in section 2 in equation (1). Finally,
they were tested on various datasets. Implementation detrails and descriptions
of the datasets are presented below.

7

4.1 DataSets

All of the datasets [10] were converted to a format using binary attributes and
binary labels. They are listed from easiest to hardest to predict on, as evidenced
in our experiments.
OCR 17 - Given pixel locations of images, classifying them as ones or sevens.
This is called an OCR task (Optical Character Recognition).
OCR 49 - A similar OCR task, differentiating fours from nines.
DNA - Given DNA sequences, predict whether they are “splice” or “non-splice.”
Census - Given binary data against individuals’ location, marital status, age,
etc., classify them into income categories of making > 50k or ≤ 50k per year.

4.2 Algorithm Implementations

The implementation of AdaBoost involved setting α as in equation (6). The im-
plementation of Coordinate Assent involved setting α by equation (15). AcrGv
can be inplemented by using equation (12), but a more efficient solution is
possible.

4.2.1 ArcGv - An Efficient Implementation

If the algorithm using the general boosting framework is followed, with αt set
by (12), the time required to do the task for T boosting steps and N examples
takes looking at the misclassification of each hypothesis on each example to
find ε by (7) is O(NT). The time to determine % by (10) is O(NT 2). This
is because for each new hypothesis, one must look at how all of the previous
hypotheses performed on each example. So, the running time of the brute-force
implementation is O(NT 2).

Yet, given O(N) space we can reduce the time complexity. By allocating a
vector of size N , R, where in equation (11) instead of doing the full summation,
we can store the following

Rt(n) =

t∑

t′=1

αt′ht′(xn) (17)

and keep track of the sum of the alphas in αsum. We can then find the solution
to (10), below

% = min
n=1,...,N

ynft−1(xn)

recursively by the following algorithm in computing

fi(xn) =
Rt−1(n) + αihi

αsum + αi

(18)

and updating αsum and the vector, R for each example, n

Rt(n) = Rt−1(n) + aihi

This way, ArcGv can be implemented by doing a constant number of computa-
tions for N examples for T rounds, reducing the running time to O(NT).

8

4.2.2 Decision Tree Pruning - An Dynamic Programming Solution

There also exists a known efficient solution to the CART decision tree weak
learner. This can be used to reduce the computation of which k nodes of a
grown tree to select on to polynomial. This still does not give the optimal
solution because the tree being pruned is not an optimally generated tree to
begin with, but instead uses the Ginny index to select attributes.

Given a tree, to find an optimal subtree of k nodes, define f(n, k) to be the
error rate for the split on node n of the best subtree rooted at n of size ≤ k.
Define e(n) to be the error if n is the node, n, is a leaf. Let

f(n, k) = min (e(n), f(n0, k
′) + f(n, k − k′ − 1)) (19)

This recursive procedure finds the minimum error (defined by some function)
and considers leaving each node encountered as a leaf or splitting on it. This
seems like an exponential computation, but it has a dynamic programming
solution [6]. One can define a k by n matrix and since for any call to f(x,y), x
≤ n and y ≤ n, the functions called recursively need only be computed at most
nk times. This reduces the brute force exponential algorithm to a polynomial
time one [3].

The implementation of decision stubs involves generating the tree at depth
1, and for that, it is efficient to try all possibilities. In our experimentss, we
only used decision stubs, but Breiman’s work is based on finding best decision
tree subtrees of size k [2] [1].

5 Results

In this section, we will present the results of all of the experiments set up in the
Approach section. We will also present tangental findings not included in our
initial approach. All algorithms herein used Decision Stumps as weak learners.

5.1 Test Errors and Training Set Size

The following test errors were measured for the following algorithms, varying
the size of the training set, but keeping the number of boosting rounds constant
across all algorithms.

Figure 1: Test errors for the OCR 17 dataset with 100 rounds of boosting

9

Figure 2: Test errors for the OCR 49 dataset with 100 rounds of boosting

Figure 3: Test errors for the DNA dataset with 100 rounds of boosting

Figure 4: Test errors for the Census dataset with 100 rounds of boosting

This experiment was designed to test whether there was a significant differ-
ence between the algorithms’ test errors and to see if there is any difference the
rate at which the test errors fall for the algorithms. As expected, the test errors
fell for all four algorithms as the training set and the error rates fell dramatically
with initial increases but then continued falling at slower rates.

As for a comparison of the test errors, AdaBoost seemed to slightly outper-
form the other algorithms on most tasks, but the difference was not strong and
may not be significant. ArcGv sometimes outperformed Coordinate Assent, and
Corrdinate Assent sometimes outperformed ArcGv depending on the dataset.

5.2 ArgGv and ArcGvMax

Our comparison of the margins distributions yields the following results. This
graph is representative of the similarity in the margins distributions of the two.

10

Figure 5: Test error margins v frequency plots for 100 rounds of boosting on
the OCR 17 task

There was no noticable difference in the prediction rates of ArcGv and Ar-
cGvMax, nor was there a noticable difference in their test margins distributions,
meaning they were equally confident and correct in their predictions. Given this
evidence, we concluded that we could not find that the max term had any af-
fect on ArcGv and from this point forward, we only used ArcGv as Breiman
formulated it. This result was expected, as discussed in Section 3.3.

5.3 Test Errors and Boosting Rounds

To perform the main part of our experiment, we needed to obtain the test errors
for AdaBoost and ArcGv as a function of the number of rounds of boosting of
the various datasets. For all of these experiments, 1500 training examples were
used. Hence, this data differs from the data in Section 5.1 because of the
different number of training examples used.

Figure 6: Test errors for the OCR 17 dataset

11

Figure 7: Test errors for the OCR 49 dataset

Figure 8: Test errors for the DNA dataset

Figure 9: Test errors for the Census dataset

Here, we notice that AdaBoost and ArcGv outperform each other, depend-
ing on the dataset and the slight advantage AdaBoost seemed to have is not
present when the number of boosting rounds was increased. AdaBoost, how-
ever, still performed better on the OCR 17 task, especially with great numbers of
boosting rounds. Hence, we cannot contradict Breiman’s result that AdaBoost
outperforms ArcGv [1], especially since we used a different weak learner.

One interesting result to note is that both algorithms seemed to overfit on
the DNA dataset as the number of boosting rounds increased. Such a result was
unexpected since AdaBoost has been observed to usually overfit after a greater
number of boosting rounds [5]. After studying this phenomenon, we discovered
that for the DNA dataset, the algorithms quickly begin to produce weak learners
(Decision Stumps) whose error rates on the weighted training data set become
closer and closer to .5 (yet remained below). So, while each new weak learner

12

continued to try to classify the datapoints the previous ones misclassified, the
overall predictor became worse, which is exactly the case of overfitting. We,
however, do not know what properties of the DNA dataset caused this to occur.

5.4 The Margins of AdaBoost and ArcGv

The margins distributions are at the heart of this study. We computed the
margins distributions for all four datasets with 1500 training examples and for
various rounds of boosting. We computed margins for both training and text
predictions.

5.4.1 Margins on Training Data

The following were margins taken on training examples after the final classifier
was determined. We will only show the data for one of the datasets for space
considerations and describe any relevant differences between these results and
the results for the other datasets later on.

Figure 10: Training margins frequency disribution, left, and cumulative distri-
bution, right, for 50 rounds of boosting

Figure 11: Training margins frequency disribution, left, and cumulative distri-
bution, right, for 100 rounds of boosting

13

Figure 12: Training margins frequency disribution, left, and cumulative distri-
bution, right, for 500 rounds of boosting

Figure 13: Training margins frequency disribution, left, and cumulative distri-
bution, right, for 1000 rounds of boosting

Figure 14: Training margins frequency disribution, left, and cumulative distri-
bution, right, for 5000 rounds of boosting

These results make the cornerstone of our conclusions. As we can see, sev-
eral interesting patterns can be observed in the comparison of AdaBoost and
ArcGv. Even though it is hard to see on these plots, ArcGv always has a higher

14

minimum margin than AdaBoost, as Breiman showed [1], but the cumulative
margins distributions for AdaBoost are still to the right of ArcGv’s, which is the
opposite result of Breiman’s [1]. Even though the minimum margin is higher
for ArcGv, it does not mean that its margins need also be higher for the entire
distribution, which they were not. In fact, while ArcGv experimentally had the
higher minimum margin, it is AdaBoost that consistently had the higher max-
imum margin. This seems consistent with Schapire’s margins explanation [12]
assuming that AbaBoost outperforms ArcGv. However, AdaBoost had higher
training margins even in the datasets where it performed slightly worse.

The second and perhaps more interesting result is that the margins distri-
butions for AdaBoost and ArcGv converged to be the same as the number of
boosting rounds increased.3 We are not sure why this is the case, yet it appears
to hold true over many datasets.

One analysis shows the following. Since in equation (10), % is set to be
the minimum margin of the hypotheses, as the number of rounds of boosting
increases, the smaller the chance that the a new hypothesis will make a difference
in the mininum margin. Hence, as N increases, αt tends toward

αt =
1

2
log

1 − εt

εt

−
1

2
log

1 + C1

1 − C1

αt =
1

2
log

1 − εt

εt

− C2 (20)

where C1 and C2 are constants. This may seem promising since it may seem
that in the long run ArcGv is a constant term different from AdaBoost, only
the constant term does not remain so in the computation of the distribution
(2). The computation becomes the following when substituting for α in ArcGv

Dt+1(i) =
Dt(i)exp(−(1

2 log 1−εt

εt

− C)yiht(xi))

Zt

Dt+1(i) =
Dt(i)exp(−(1

2 log 1−εt

εt

)yiht(xi) − C(yiht(xi)))

Zt

(21)

While in AdaBoost, the α setting is simply

Dt+1(i) =
Dt(i)exp(−(1

2 log 1−εt

εt

)yiht(xi))

Zt

(22)

This means that ArcGv, in the limit of increasing the number of boosting rounds,
contains the extra C(yiht(xi)) term, which while in the exponentiation, is no
longer a constant away from Adaboost, and disproves this easy explanation.
However, this intuition may still have something to do with why the two algo-
rithms converge in their margins distributions.

Finally, despite the overfitting that occurred with the DNA dataset, the
margins distributions for the DNA dataset still followed the same pattern as
they did for the OCR 17 data in the figures above.

3This was only not clear to be the case for the Census dataset, though there is experimental
evidence that the two distributions may converge. This may be tied to the Census dataset
not being seperable for this algorithm.

15

5.5 Margins on Test Data

The following data are the margins on the predictions on the test data. We
will again use the OCR 17 task as the representative dataset so that we can see
correlations between the training and test margins. We have used the same set
of numbers of boosting rounds as for the Margins on Training Data section, and
we tested all results on a set of 3000 test examples. Any differences between
this representative dataset and others will be described later.

Figure 15: Test margins frequency disribution, left, and cumulative distribution,
right, for 50 rounds of boosting

Figure 16: Test margins frequency disribution, left, and cumulative distribution,
right, for 100 rounds of boosting

16

Figure 17: Test margins frequency disribution, left, and cumulative distribution,
right, for 500 rounds of boosting

Figure 18: Test margins frequency disribution, left, and cumulative distribution,
right, for 1000 rounds of boosting

Figure 19: Test margins frequency disribution, left, and cumulative distribution,
right, for 5000 rounds of boosting

These results mirrored the results of the experiments looking at training
margins, only with a couple differences. The margins distributions again con-
verged. However, the margins for test data are smaller because this was not

17

the data trained on, and hence there are negative margins as well since some
classifications of test data would obviously be incorrect.

Furthermore, while the frequency distributions for training margins were
missing their left tail, these looked more like a gaussian curve. This held for
other datasets as well.

5.6 Margins of Coordinate Assent

Again, some representative data plots are used for the coordinate assent algo-
rithm, labeled as “Smooth” because it uses the smooth margin function.

Figure 20: Test margins frequency disribution, left, and cumulative distribution,
right, for 100 rounds of boosting on OCR 49

Figure 21: Test margins frequency disribution, left, and cumulative distribution,
right, for 1000 rounds of boosting on OCR 17

While it would have been nice to observe difinitive rules for Coordinate As-
sent, unfortunately this algorithm seemed to behave less predictably than the
other two. In the dataplots, one can see that the Coordinate Assent algorithm
sometimes acted like ArcGv and sometimes like AdaBoost in its margins distri-
butions. In fact, for OCR 17 data, its cumulative margins distribution was to

18

the right of AdaBoost’s, something we have not seen for ArcGv. However, our
studies of Coordinate Assent margins were limited, so we could not make many
conclusions based on our experiments about the behavior of this algorithm. One
thing no note is that its margins distribution also seemed to converge with Ad-
aBoost and ArcGv’s margins distributions as the number of boosting rounds
increased.

6 Discussion

This research has shown that looking at margins distributions to analyze the
behavior of boosting algorithms can yield interesting results that are sometimes
not intuitive. We have also reason to believe that this method is promising in
seeing the correlation between the margins distribution and the test error of an
algorithm.

We have tested select boosting algorithms under different conditions, includ-
ing variations in the training set size, number of boosting rounds, and datasets.
We also looked at training and test margins distributions. We came upon some
results, including the convergence of the distributions with an increase in boost-
ing rounds, the equivalence of ArcGv and ArcGvMax, an unexpected case where
AbaBoost overfit quickly, and most importantly, a contradiction to the claim
that margins distributions are higher for ArcGv.

While we have been able to cast doubt on Breiman’s claim [1], we also see
there is more work to be done in this area. Mainly, this experiment should be
repeated using CART Decision Trees [2], as described in the approach section.
Further, these experiments should also be repeated on the same datasets that
were used in Breiman’s experiments to evaluate his claim that he found an in-
verse correlation between algorithm performance and its margins distributions.
It is also probably worthwhile to explore the differences in the margins distri-
butions between the seperable and non-separable cases since our results suggest
such an approach may be fruitful.

Finally, the results in this paper should be replicated and tested with more
datasets and different implementations. Any intuitive explanations we may
come up with to explain the behavior of these algorithms may also lead to new
ideas about how to describe their behavior more rigorously.

In doing this research, we were able to learn about the difficulty of approach-
ing such a problem and choosing which features were relevant to look at. Given
the degrees of freedom in various parameters, there are countless experiments
that can be performed, and it is always hard to evaluate which would be the
most promising. In this case, any results we would come up with became inter-
esting because they shed light on this problem by looking at a case not analyzed
before, but it is not always true in research. It was also interesting to see how
much relevant information there existed and how much previous work had been
done in this area and how difficult and rewarding it is to work on research
problems.

19

7 Conclusion

We have seen that margins play a role in the analysis of boosting algorithms’
behavior, yet we also know that doing such an approach can leave us with many
unanswered questions about why an algorithm performs as well as it does. We
have seen that looking at margins distributions can lead us to both make claims
and cast doubts about how AdaBoost and ArcGv perform. It is also clear,
however, that an experimental approach to this problem, while vital, will not
solve all open questions about these algorithms and that more mathematical
analysis of these results is also needed.

Acknowledgements

I would like to thank my advisor for this project, Robert Schapire for not only
suggesting this topic, but also for his extremely helpful advice and input into
this project. He has generated or informed me of many of the ideas I have used
in this paper, including the reformulation of ArcGv and Coordinate Assent, the
dynamic programming solution to CART, and an explanation of the overfitting
on the DNA dataset, among others. This paper could not have materialized
without his help.

References

[1] Leo Breiman. Prediction games and arcing algorithms. Neural Computa-

tion, 11(7):1493–1517, 1999.

[2] Leo Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification

and Regression Trees. Wadsworth, 1984.

[3] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leis-
erson. Introduction to Algorithms. McGraw-Hill Higher Education, 2001.

[4] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. J. Comput. Syst. Sci.,
55(1):119–139, 1997.

[5] W. Jiang. Does boosting overfit: Views from an exact solution. Technical
Report 00-04, Department of Statistics, Northwestern University, Septem-
ber 2000.

[6] Xiao-Bai Li, James Sweigart, James Teng, Joan Donohue, and Lori
Thombs. A dynamic programming based pruning method for decision trees.
INFORMS J. on Computing, 13(4):332–344, 2001.

[7] Ron Meir and Gunnar Ratsch. An introduction to boosting and leveraging.
pages 118–183, 2003.

20

[8] Cynthia Rudin, Robert E. Schapire, and Ingrid Daubechies. Boosting based
on a smooth margin. In COLT, pages 502–517, 2004.

[9] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-

proach. Pearson Education, 2003.

[10] Robert Schapire. Princeton class notes for computer science 402. machine
learning, 2004.

[11] Robert E. Schapire. The boosting approach to machine learning: An
overview, December 19 2001.

[12] Robert E. Schapire, Yoav Freund, Peter Barlett, and Wee Sun Lee. Boost-
ing the margin: A new explanation for the effectiveness of voting meth-
ods. In ICML ’97: Proceedings of the Fourteenth International Conference

on Machine Learning, pages 322–330. Morgan Kaufmann Publishers Inc.,
1997.

21

