
Learning Graphs via Queries

690 Report

Lev Reyzin

July 11, 2007

Abstract

In this report1 , we explore various aspects of query learning. We focus

on learning hidden structures given various queries. In Chapter 1, we consider

learning evolutionary trees given distance queries. In Chapter 2 we focus on

learning and verifying general graph structures with various queries. In Chapter

3 we are interested in learning circuits with value-injection queries.

Chapter 1 is based on a paper coauthored with Nikhil Srivastava, entitled

“On the Longest Path Algorithm for Reconstructing Trees from Distance Ma-

trices.” This paper appears in Information Processing Letters, 2007 [35].

Chapter 2 is based on a paper coauthored with Nikhil Srivastava, entitled

“Learning and Verifying Graphs using Queries with a Focus on Edge Counting.”

This paper has been submitted to the Symposium on Algorithmic Learning

Theory, 2007 [34].

Chapter 3 is based on a paper coauthored with Dana Angluin, James Aspnes,

and Jiang Chen, entitled “Learning Large-Alphabet and Analog Circuits with

Value Injection Queries.” This paper appears in the Conference on Learning

Theory, 2007 [5].

1I would especially like to thank Dana Angluin for being such a great advisor for this 690
project (and in general). I would also like to thank Nikhil Srivastava for the close collaborations
on two papers, as well as my other co-authors - Jim Aspnes and Jiang Chen

Contents

1 Evolutionary Tree Reconstruction 3

1.1 Introduction and Background . 3

1.2 A Counterexample . 6

1.3 Analysis of the Topological Case 8

2 Learning and Verifying Graphs via Queries 10

2.1 Introduction . 11

2.2 Previous Work . 13

2.3 Graph Learning . 14

2.4 Graph Verification . 21

2.4.1 Relation to Fingerprinting 24

2.5 Discussion . 27

3 Learning Large-Alphabet Circuits 29

3.1 Introduction . 29

3.2 Preliminaries . 31

3.2.1 Circuits . 31

3.2.2 Experiments on circuits 32

3.2.3 The learning problem . 33

3.3 Learning Large-Alphabet Circuits with Distinguishing Paths . . . 33

1

3.3.1 Preliminaries . 34

3.3.2 The Algorithm . 35

3.3.3 Correctness and Running Time 37

3.3.4 Running Time . 38

2

Chapter 1

Evolutionary Tree

Reconstruction

Chapter Summary

Culberson and Rudnicki [16] gave an algorithm that reconstructs a degree d

restricted tree from its distance matrix. According to their analysis, it runs in

time O(dn logd n) for topological trees. However, this turns out to be false; in

this chapter, we show that the algorithm takes Θ(n3/2
√

d) time in the topological

case, giving tight examples.

1.1 Introduction and Background

In [16], Culberson and Rudnicki consider the problem of reconstructing a degree

d restricted weighted tree given its distance matrix D. If the tree has n vertices,

D is an n × n matrix where each entry dij ∈ R≥0 gives the the weight of the

(unique) path between vertices i and j. They describe an algorithm which

finds the longest path in the tree, divides the remaining vertices into subtrees

according to where they connect to this path, and then recurses on the subtrees.

Their algorithm relies on three key ideas:

3

1. The longest path in a subtree can be computed in linear time. Simply pick

an arbitrary vertex r and find the distances from r to every other vertex.

Let u be the farthest vertex from r, and repeat to find the farthest vertex

v from u. Then πuv is the longest path in the tree, and we have looked at

only two columns of D.

2. Given a longest path πuv and distances computed in step (1), every other

vertex z can be placed either on πuv or on a subtree rooted at a known

vertex w (a ‘hub’) on πuv, with no additional queries to D. To be precise,

z is in the subtree rooted at w iff dzu − dzv = dwu − dwv.

3. No further queries to D involving any hub w need be made, since for every

vertex z in w’s subtree, we have dzw = dzu − dwu. This means that we

can effectively forget about vertices that occur on the longest path, as far

as queries to D are concerned.

The algorithm presented in [16] is equivalent to what is described above,

with minor simplifications. We will call this algorithm LongestPath.

In their analysis, Culberson and Rudnicki refer to the lookups to D in step

(1) as ‘hub computations’ and establish that the running time is dominated by

them. They claim that for topological trees (where all edge weights are 1), the

running time of the algorithm is O(dn logd n). Their claim rests on the following

argument:

Since once a vertex...is located on a path in the tree it no longer

participates in such computations in other partitions, the number of

computations is maximized when the longest path in every subtree

is minimized. When the maximum degree is restricted, this leads to

balanced trees where all internal vertices are of maximum degree.

4

Figure 1.1: Tree that minimizes the longest path in every subtree, from [16].

So according to [16], the worst case for degree four is the kind of tree shown

in Figure 1.1.

Yet, this proof is incorrect. In section 1.2, we construct a topological tree

on which the algorithm takes Ω(n3/2
√

d) time, contradicting the claim in [16].

In section 1.3 we present a revised analysis of LongestPath, showing that

Θ(n3/2
√

d) is tight for the topological case.

It is worth noting that other algorithms exist that achieve the O(dn logd n)

bound, which was also shown to be a lower bound in [30]. A quite different

algorithm called DeepestPoint1, discovered by Hein [23], reconstructs both

general and topological trees in O(dn logd n) time. Further, variants of this

problem have been studied in the experiment model for constructing evolu-

1In constructing DeepestPoint[23], Hein mentions in passing that an algorithm recursively

placing longest paths would run in Ω(n
3

2)

5

Figure 1.2: A counterexample to the O(dn logd n) analysis of [16], the tree Gi.

tionary trees by Kannan et al. [27], Brodal et al. [14], and Lingas et al. [31].

Notwithstanding, LongestPath is one of the first algorithms claimed to run

in sub-quadratic time for tree reconstruction and also one of the simplest. This

paper presents a correct analysis of it.

1.2 A Counterexample

While the tree in Figure 1.1 does minimize the lengths of the longest paths, it

also ‘nicely’ splits the remaining vertices. Here, we take the opposite approach

and consider a family of trees where removing the longest path always leaves

the remaining vertices in a single subtree, as shown in Figure 1.2. Notice that

Gi has 1 + 3 +(2i − 1) = i2 vertices and a longest path of length 2i − 1

(perpendicular to the horizontal ’stem’) – that is, the tree on n vertices has

a longest path of length 2i − 1 = O(
√

n) and a stem of length i = O(
√

n).

Removing the longest path which is centered on the stem from Gi gives Gi−1.

6

For a tree of size n, finding a longest path lying vertically along the spine

takes Ω(n) queries to D and leaves a subtree of size Ω(n−√
n). Hence, the total

running time is at least

T (n) ≥ n + T (n−
√

n)

T (1) = 0.

The recurrence is solved easily by substitution:

T (n) ≥ n + (n −
√

n) + (n −
√

n −
√

n −
√

n) . . .

≥ n + (n −
√

n) + (n −
√

n −
√

n) . . .

= n + (n −
√

n) + (n − 2
√

n) . . . (n −
√

n ·
√

n)

=
√

n · n −
√

n ·
√

n(
√

n + 1)

2

to get T (n) = Ω(n3/2).

All vertices in the above example are of degree at most 3. For the general

degree d case, we consider trees G′
i that have d

2 − 1 copies of each path on

the stem. Observe that |G′
i| = Ω(d|Gi|) (since a linear number of vertices are

copied Ω(d) times), so that longest paths in G′
i are of length O(

√

n
d). Since

all longest paths of a given length intersect at only one vertex (which is on the

stem), LongestPath does not split them into smaller parts by placing them

in separate subtrees. This gives the following recurrence:

T (n) ≥ n + T

(

n −
√

n

d

)

T (1) = 0

which has the solution T (n) = Ω(n3/2
√

d), showing that the O(dn logd n) anal-

ysis of [16] is incorrect.

7

1.3 Analysis of the Topological Case

Say that a subtree is at phase j if it is obtained by recursing j times. Consider all

subtrees T1 . . . Tk at a particular phase, with a total of n vertices. The number

of queries to D used to find a longest path in Ti is just O(|Ti|), so the total

number of queries used in the phase is
∑

i O(|Ti|) = O(n), i.e., linear in the

total number of nodes. Thus we can bound the running time of LongestPath

by n×(number of phases).

The correct analysis of LongestPath relies on following observation:

Lemma 1. Suppose π is a longest path in a subtree T , and S is the set of

longest paths in T that are edge-disjoint with π. Then all paths in S ∪{π} share

a single vertex.

Proof. Suppose π1 and π2 are longest paths in T . Assume they do not intersect.

Find the shortest path π′ that connects π1 and π2 (we can do this since T is a

tree). But now we can construct a path longer than π1: take the longer halves

of π1 and π2 and join them with π′.

Thus every two longest paths in T intersect. Moreover, if π1 and π2 are edge-

disjoint, they must intersect at a unique vertex: they cannot intersect at two

consecutive vertices because then they would share an edge, and they cannot

intersect at two non-consecutive vertices because that would imply a cycle in T .

Suppose π′ ∈ S, and let π and π′ intersect at v. Suppose π′′ ∈ S does not

pass through v; then, it must intersect π at a single vertex w 6= v. Also, π′′

intersects π′ at some vertex u not on π by the claim above. But now u, v, w lie

on a cycle, which is impossible.

Lemma 2. If the longest path at a phase has length l, then there are at most

O(dl) phases remaining before the algorithm terminates.

8

Proof. Suppose the longest path π chosen by LongestPath has length l. Any

longest paths that share an edge with π will be split into smaller paths, each

of length at most l − 1, for the next phase. By lemma 1 all longest paths that

are edge-disjoint from π must pass through a single vertex, which has degree at

most d. Thus there are at most d such paths, and after d phases, the longest

path remaining will be of length at most l − 1. Therefore, after dl phases, all

longest paths are of length 0, and LongestPath terminates.

Theorem 3. LongestPath runs in O(n3/2
√

d) time.

Proof. If at any phase the longest path is of length at most
√

n
d , then by lemma

2 the number of phases remaining is O(d
√

n
d). Since each phase takes linear

time, the total time starting from such a phase is O(nd
√

n
d) = O(n3/2

√
d).

So assume the input has a longest path of length l >
√

n
d . How many

phases can go by without l falling below
√

n
d ? If l ≥

√

n
d then at least

√

n
d

vertices are removed in each phase; thus, the number of such phases is at most

n/
√

n
d =

√
dn. Again, each phase takes linear time, so we reach a phase with

l ≤
√

n
d in time O(n3/2

√
d), as desired.

9

Chapter 2

Learning and Verifying

Graphs via Queries

Chapter Summary

In this chapter, we consider the problem of learning and verifying hidden graphs

and their properties given query access to the graphs. We analyze various

queries (edge detection, edge counting, shortest path), but we focus mainly on

edge counting queries. We give an algorithm for learning graph partitions using

O(n log n) edge counting queries. We introduce a problem that has not been

considered, verifying graphs with edge counting queries, and give a randomized

algorithm with error ǫ for graph verification using O(log(1/ǫ)) edge counting

queries. We examine the current state of the art and add some original results

for edge detection and shortest path queries to give a more complete picture of

the relative power of these queries to learn various graph classes. Finally, we

relate our work to Freivalds’ ‘fingerprinting technique’ – a probabilistic method

for verifying that two matrices are equal by multiplying them by random vectors.

10

2.1 Introduction

Graph learning appears in many different contexts. Suppose we are presented

with a circuit containing a set of chips on a board. We can test the resistance

between two chips with an ammeter. In as few measurements as possible, we

want to learn whether the entire circuit is connected, or whether we need to

power the components separately. This can be seen as a graph learning problem,

in which the chips are vertices of a hidden graph and the ammeter measurements

are queries into the graph, which tell whether a pair of vertices is connected by

a path. If we are given a strong enough ammeter to tell not only whether two

chips are connected, but also how far apart they are in the underlying circuit,

we get the stronger ‘shortest path’ queries.

In a different setting [7], testing which pairs of chemicals react in a solution

is modeled by ‘edge detection’ queries. Here, vertices correspond to chemicals,

edges designate chemical reactions, and a set of chemicals ‘reacts’ iff it induces

an edge. Applications of this model extend to bioinformatics, where learning

a hidden matching [4] turns out to be useful in DNA sequencing. With each

setup we have different tools and target concepts to learn.

Our goal is to explore several graph-learning problems and queries. We

consider the following types of queries, defined on graphs G = (V, E):

• Edge detection query (ED): Check if there is edge between any two

vertices in S ⊆ V . This model has applications in genome sequencing and

was studied in [3, 4, 7, 8, 21].

• Edge counting query (EC): Return the number of edges in the sub-

graph induced by S ⊆ V . This has extensive uses in bioinformatics and

was studied in [13, 22].

• Shortest Path query (SP): Return the length of shortest path in G

11

between two vertices; if no path exists, return ∞. This is the canonical

model in the evolutionary tree literature; see [23, 30, 35].

The second kind of task we consider is graph verification. Suppose we are

interested in learning the structure of some protein networks, and after months

of careful measurement, we complete our learning task. If we then find out

there is a small chance we made a mistake in our measurements or if we have

reason to believe our equipment may have been broken during experimentation,

can we verify the structures we’ve learned more efficiently than learning them

over again? This is a natural question to ask, especially since real world data

is often noisy, or we sometimes have reason to mistrust results we are given.

Every learning problem induces a new verification problem.

We consider different classes of graphs for our learning and verification tasks.

The first class is arbitrary graphs, where there are no restrictions on the

topology of the graph. Any algorithm that learns or verifies an arbitrary graph

can also be used for more restricted settings. We also consider learning trees,

where we know the graph we are trying to learn is a tree, but we are not aware

of its topology. This is a natural setting for learning structures we know not

to have underlying cycles, for example evolutionary trees. Finally, we consider

the problem of learning the partition of a graph into connected components.

Here, we do not restrict the underlying class of graphs, but instead relax the

learning problem. This is a natural question in settings where different partitions

represent qualitative differences, for example in electrical networks, a power

generator in one partition cannot power any nodes outside its own partition.

Note that this also subsumes the natural question of whether or not a graph is

connected.

In this paper we fill in some gaps in the literature on these problems and

introduce the verification task for these queries. We also introduce the problem

12

of learning partitions and present results in the EC query case. We then show

what problems remain open. After presenting a summary of the past work done

on these problems, we divide our results into two sections: Graph Learning and

Graph Verification.

2.2 Previous Work

In one of the earliest works in graph discovery, Hein [23] tackles the problem of

learning a degree d restricted tree with SP queries. He describes an O(dn lg n)

algorithm that builds the tree by inserting one node at a time, in a carefully

chosen order under which each insertion takes O(d lg n) queries. Among other

results, King et al. [30] provide a matching lower bound by showing that solving

this problem requires solving multiple partition problems whose difficulty they

then analyze.

Angluin and Chen [7] show that O(lg n) adaptive ED queries per edge are

sufficient to learn an arbitrary hidden graph. Their algorithm repeatedly di-

vides the graph into independent subgraphs (i.e., it colors the graph), so as to

eliminate interference to ED queries from previously discovered edges, and uses

a variant of binary search to find new edges within each subgraph. It is worth

noting that this is not far from an information-theoretic lower bound of Ω(ǫ lg n)

ED queries per edge for the family of graphs with n2−ǫ edges. A later paper [8]

generalizes these results to hypergraphs using different techniques.

The work of Angluin and Chen is preceded by a few papers [3, 4, 21] that

tackle learning restricted families of graphs, such as stars, cliques, and match-

ings. Alon et al. [4] provide lower and upper bounds of .32
(

n
2

)

and (1/2+o(1))
(

n
2

)

respectively on learning a matching using nonadaptive ED queries, and a tight

bound of Θ(n lg n) ED queries in expectation if randomization is allowed. Alon

and Asodi [3] prove similar bounds for the classes of stars and cliques. Grebinski

13

and Kucherov [21] study reconstructing Hamiltonian paths with ED queries. It

turns out that many of these results are subsumed by those of [7] if we ignore

constant factors.

Grebinski and Kucherov [22] also study the problem of learning a graph us-

ing EC queries and give tight bounds of Θ(dn) and Θ(n2/ lg n) nonadaptive

queries for d-degree-bounded and general graphs respectively. They also prove

tight Θ(n) bounds for learning trees. Their constructions make heavy use of

separating matrices. In [13], Grebinski and Kucherov present a survey on learn-

ing various restricted cases of graphs, including Hamiltonian cycles, matchings,

stars, and k−degenerate graphs, with ED and EC queries.

In the graph verification setting, Beerliova et al. [12] consider the problem of

discovering and verifying networks using distance queries. In this setting, which

models discovering nodes on the internet, the learner can query a vertex, and

the answer to the query is the set of all edges whose endpoints have different

graph-theoretic distance from the query vertex. They show there is no o(log n)

competitive algorithm unless P = NP .

Both the learning and verification tasks also bear some relation to the field

of Property Testing, where the object is to examine small parts of the adjacency

matrix of a graph to determine a global property of the graph. For a survey of

this area, see [20].

2.3 Graph Learning

We first note that EC queries are at least as strong as ED queries and that

the problem of learning an arbitrary graph is at least as hard as learning trees

or partitions. Hence, in this paper, any lower bounds for stronger queries and

easier targets apply to weaker queries and harder target classes. Conversely,

any upper bounds we establish for weaker queries and harder problems apply

14

for stronger queries and more restricted classes.

We first establish that Θ(n2) SP and ED queries is essentially tight for

learning arbitrary graphs and partitions.

Proposition 4. Ω(n2) SP queries are needed to learn the partition of a hidden

graph on n vertices.

Proof. We prove this by an adversarial argument; the adversary simply answers

‘∞’ (i.e., not connected) for all pairs of vertices i, j. If fewer than
(

n
2

)

queries are

made, then some pair i, j is not queried, and the algorithm cannot differentiate

between the graph with no edges and the graph with a single edge {i, j} (for

which SP(i, j) = 1). But these graphs have different partitions.

If k is the number of components in a graph, there is an obvious algorithm

that does better for k < n, even without knowledge of k:

Proposition 5. O(nk) SP queries are sufficient to determine the partition of

a hidden graph on n vertices, if k is the number of components in the graph.

Proof. We use a simple iterative algorithm:

• Step 1: Place 1 in its own component.

• Step i > 1: Query SP(i, w) for an item w from each existing component;

if SP(i, w) 6= ∞ , place i in the corresponding component and move to

the next step. Otherwise, create a new component containing i and move

to the next step.

Correctness is trivial. For complexity, note that there at most k components

at any step (since there are at most k components at phase n and components

are never destroyed); hence n vertices take at most nk queries.

15

Proposition 6. Ω(n2) ED queries are needed to learn the partition of a hidden

graph on n vertices.

Proof. Consider the class of graphs on n vertices consisting of two copies of

K n
2
, which we will call C1 and C2, and one possible edge between C1 and C2.

If there is an edge, all the vertices are in a single component; otherwise there

are two components. Any algorithm that learns the partition must distinguish

between the two cases. Observe that an ED query on a set S containing more

than one vertex from either C1 or C2 will not yield any information since an

edge is guaranteed to be present in S and any such query will be answered with

a ‘yes’. Hence, all informative queries must contain one vertex from C1 and one

vertex from C2. An adversary can keep on answering ‘no’ to all such queries,

and unless all possible pairs are checked, an edge may be present between C1

and C2. Hence, the algorithm cannot tell whether the graph has one component

or two until it asks all ≈ (n
2)2 = Ω(n2) queries.

It turns out that EC queries are considerably more powerful than ED queries

for this problem.

Proposition 7. Ω(n) EC queries are needed to learn the partition of a hidden

graph on n vertices.

Proof. We use an information-theoretic argument. The number of partitions of

an n element set is given by the Bell number Bn; according to de Bruijn [17]:

lnBn = Ω(n lnn)

Since each EC query gives a lg(
(

n
2

)

) = 2 lg n bit answer, we need Ω(lg(Bn)
2 lg n) =

Ω(n lg n
lg n) = Ω(n) queries.

16

Theorem 8. O(n lg n) EC queries are sufficient to learn the partition of a

hidden graph on n vertices.

Proof. Consider the following n−phase algorithm, in which the components of

G[1 . . . i] are determined in phase i.

• Phase 1: Set C = {c1} with c1 = {1}. C will keep track of the components

c1, c2, . . . known at any phase, and we will let C + v denote {v}∪⋃

ci∈C ci.

• Phase (i+1): Let v = (i+1), and query EC(C+v). If EC(C+v) = EC(C)

(i.e., there are no edges between v and C), add a new component c = {v}

to C.

Otherwise, split C into roughly equal halves C1 and C2 and query EC(C1 +

v),EC(C2 + v). Pick any half h ∈ {1, 2} for which EC(Ch + v) > EC(Ch)

and repeat recursively until EC({cj}+v) > EC(cj) for a single component

cj ∈ C1. This implies that there are edges between cj and v; we will call

cj a live component.

Repeat on C \ {cj} to find another live component cj′ , if it exists; repeat

again on C \{cj, cj′} and so on until no further live components remain (or

equivalently, no new edges are found). Remove all live components from

C and add a new component {v} ∪ ⋃

live cj
cj .

Correctness is simple, by induction on the phase: we claim that C contains

the components of G[1 . . . i] at the end of phase i. This is trivial for i = 1.

For i > 1, suppose C = {c1, . . . , cm} at the beginning of phase i, and by the

inductive hypothesis C contains precisely the components of G[1 . . . (i−1)]. The

components that do not have edges to v are unaffected by its introduction in

G[1 . . . i], and these are not changed by the algorithm. All other components

1Notice that this is essentially a binary search.

17

are connected to v and therefore to each other in G[1 . . . i]; but these are marked

‘live’ and subsequently merged into a single component at the end of the phase.

This completes the proof.

To analyze complexity, we use a “potential argument.” Let ∆i denote the

increase in the number of components in C during phase i. There are three

cases:

• ∆i = 1: There are no live components (v has no edges to any component

in C), and this is determined with a single EC(C + v) query.

• ∆i = 0: There is exactly 1 live component (v connects to exactly one

member of C). Since there are at most n components to search, it takes

O(lg n) queries to find this component.

• ∆i < 0: There are k > 1 live components with edges to v, bringing the

number of components down by k − 1.2 Finding each one takes O(lg n)

queries, for a total of O(k lg n) = O((−∆i + 1) lg n).

The total number of queries is

∑

i:∆i=1

1 +
∑

i:∆i=0

(lg n) +
∑

i:∆i<0

O((−∆i + 1) lg n)

The first two sums are bounded by O(n lg n) since there are n phases, and the

last one becomes

O(n lg n) + O(lg n)
∑

∆i<0

(−∆i).

But
∑

∆i<0(−∆i), the total decrease in the number of components, cannot be

greater than n since the total increase is bounded by n (one new component per

phase) and the final number of components is nonnegative. So the total number

of queries is O(n lg n), as desired.

2The k components previously in C are replaced by a single component, hence ∆i =
−(k − 1).

18

To see that this analysis is tight, consider the case where G has exactly n/2

components, with ∆i = 1 for i < n/2, ∆i = 0 for i ≥ n/2. The first n/2 phases

take only O(n/2) queries, but the remaining n/2 take O(lg(n/2)) queries each,

for a total of O(n/2 lg(n/2) + n/2) = O(n lg n) queries.

Proposition 9. O(|E| lg n) EC queries are sufficient to learn a hidden graph

on n vertices.

Proof. The algorithm of Angluin and Chen ([7]) achieves this since ED ≤ EC,

but we present a simpler method here that exploits the counting ability of EC.

The key observation is that we can learn the degree of any vertex v in two

queries:

d(v) = EC(V) − EC(V \ {v})

We use this to find all of the neighbors of v, using a binary search similar to

that in the algorithm of theorem 8. Split V \ {v} into halves V1, V2 and query

EC(V1 +v),EC(Vi +v). Pick a half such that EC(Vi +v) > EC(Vi) and recurse

until EC(w + v) > 0 for some vertex w. This implies that w is a neighbor of

v. Repeat the procedure on V \ {w, v} to find more neighbors, and so on, until

d(v) neighbors are found.

We can reconstruct the graph by finding the neighbors of each vertex; this

uses a total of

∑

v

d(v) lg n = lg n
∑

v

d(v) = 2|E| lg n = O(|E| lg n)

queries, as desired.

It follows from the above proof that the degree sequence of a graph can be

19

computed in 2n queries, and consequently any property that is determined by

it takes only linear queries.

Proposition 10. Ω(n2) SP queries are needed to learn a hidden tree.

Proof. Consider a graph G on 2n+1 vertices, which are of three kinds: a single

center vertex s, n ‘inner’ vertices x1 . . . xn, and n ‘outer’ vertices y1 . . . yn. The

center and inner vertices form a star (with edges {xi, s}) and the outer vertices

are matched with the inner vertices (for each yi there is a unique xji
such that

{xji
, yi} is an edge; no xji

is repeated).

Suppose a learning algorithm knows that G is a quasi-star. There are only

three kinds of SP queries: SP(s, xi) = 1, SP(s, yi) = 2, and

SP(xi, yj) =











1 if {xi, yj} is an edge

3 otherwise

The only query that gives any information is the last kind, and the problem

reduces to that of learning a matching using E queries, which we know by [4]

takes Ω(n2) queries.

Query partition graph tree
ED Θ(n2) Θ(|E| lg n), Θ(n2)[7] Θ(n lg n)

EC O(n lg n) O(|E| lg n), O(n2

lg n), O(dn)[7, 22] Θ(n)

Ω(n) Ω(dn), Ω(n2

lg n)[22]

SP Θ(nk) Θ(n2) Θ(n2), Θ(dn lg n) [23, 30]

Table 2.1: Summary of results. n denotes the number of vertices, |E| the number
of edges, d the degree restriction, and k the number of components.

Table 1 shows the known bounds for the problems we consider. We can see

20

that tight asymptotic bounds exist for all of these learning problems, except for

learning partitions with EC.

We note that learning a tree becomes significantly easier when the degrees

of its vertices are restricted, and in many cases, knowing a bound on the degree

of a graph can help with the learning problem.

2.4 Graph Verification

In this setting, a verifier is presented a graph G(V, E) and asked to check whether

it is the same as a hidden graph G∗(V, E∗), given query access to G∗. In this

section, we explore the complexity of graph verification using various queries.

Mainly, we show that while verifying unrestricted graphs is hard using SP and

ED queries, there is a fast randomized algorithm that uses EC queries.

Proposition 11. Verifying an arbitrary graph takes Θ(n2) SP queries and

Θ(n2) ED queries.

Proof. Consider the problem of verifying a clique, when the hidden graph is a

clique with some edge (u, v) removed, and the verifier knows this. SP(u′, v′) = 2

if and only if u′ = u and v′ = v. A simple adversarial argument shows that Ω(n2)

queries are necessary. Similarly, for ED queries, let S = {u, v}. The answer to

query ED(U), where |U | 6= 2 is predetermined. Otherwise, ED(U) = 0 if and

only if U = S. There are
(

n
2

)

choices for S such that |S| = 2; hence Ω(n2) are

needed. For both SP and ED queries the O(n2) algorithm of checking all pairs

of vertices is obvious.

Given that SP queries are most often considered in evolutionary tree learn-

ing, we also consider the problem of verifying a tree with SP queries. In this

21

setting, the verifier knows the hidden graph is a tree and is presented with a

tree to verify.

Proposition 12. Verifying a tree takes Θ(n) SP queries.

Proof. Consider the problem of verifying a path graph (from the class of path

graphs). This reduces to verifying that a given ordering of the vertices is correct.

If the answers to each query are consistent with the graph to be verified, each

query verifies at most two vertices in the ordering. An adversary can choose

whether or not to swap any pair of vertices that have not been queried and

either stay consistent with the input path graph or not until at least n/2 SP

queries have been performed. Conversely, we can verify each edge individually

in n − 1 queries.

We now consider the problem of verifying a graph with EC queries. Here,

we see that EC queries are quite powerful for verifying arbitrary graphs.

Theorem 13. Any graph can be verified by a randomized algorithm using 1

EC query, with success probability 1/4.

Proof. We define EC(V, G) to be the query EC(V) on graph G. The algorithm

is simple. We let Q be a random subset of vertices of V , with each vertex

chosen independently with probability 1
2 . We query EC(Q, G∗) and compute

EC(Q, G). If the two quantities are not equal, we say G and G∗ are different.

Otherwise we say they are the same. We will show that if G = G∗ the algorithm

always returns the correct answer, and otherwise gives the correct answer with

probability at least 1
4 .

Consider the symmetric difference S = (V, E∆E∗). Let A = {(u, v) ∈

E \ E∗ : u, v ∈ Q} and B = {(u, v) ∈ E∗ \ E : u, v ∈ Q}. If G = G∗ then |A| =

|B| = 0 and we are always right in saying the graphs are identical; otherwise

22

G 6= G∗ and E∆E∗ 6= ∅, so by the following lemma |E∆E∗| = |A|+ |B| is odd

with probability 1
4 . But this immediately implies that |A| 6= |B|, as desired.

Lemma 14. Let G(V, E) be a graph with at least one edge. Let G′(V ′, E′) be

the subgraph induced by taking each vertex in G independently with probability

1
2 . If G is non-empty, the probability that |E′| is odd is at least 1

4 .

Proof. Fix an ordering v1 . . . vn so that (vn−1, vn) ∈ E. Select each of v1 . . . vn−2

independently with probability 1/2, and let H ′ be the subgraph induced by the

selected vertices. Suppose the probability that H ′ contains an odd number of

edges (i.e., parity(H ′) = 1) is p.

Let i (resp. j) be the number of edges between vn−1 and H ′ (resp. vn and

H ′). Consider two cases:

• i ≡ j mod 2 If both are chosen an odd number of edges is added to H ′

and parity(H ′) = 1 − parity(G′). This happens with probability 1/4.

• i 6≡ j mod 2. Assume w.l.o.g. that i is odd and j is even. Then, if vn−1

is chosen and vn is not chosen, an odd number of edges is added to H ′,

and again parity(H ′) = 1 − parity(G′). This happens with probability

1/4.

On the other hand, if neither vn−1 nor vn is chosen then parity(G′) =

parity(H ′), and this happens with probability 1/4. So upon revealing the last

two vertices, the parity of H ′ is flipped with probability at least 1/4 and not

flipped with probability at least 1/4, independently of what happens in H ′. Let

23

F denote the event that it is flipped (i.e., that parity(H ′) 6= parity(G′). Then,

P[parity(G′) = 1] = P[parity(G′) = 1|parity(H ′) = 1]P[parity(H ′) = 1]

+ P[parity(G′) = 1|parity(H ′) = 0]P[parity(H ′) = 0]

= P[F |parity(H ′) = 1]p + P[F |parity(H ′) = 0](1 − p)

= P[F]p + P[F](1 − p) by independence

≥ 1/4(p + 1 − p) = 1/4

as desired.

This finishes the proof of Theorem 13. Since this result has 1-sided error,

we can easily boost the 1
4 probability to any constant, and Corollary 15 follows

immediately.

Corollary 15. Any graph can be verified by a randomized algorithm with error

ǫ using O(log(1
ǫ)) EC queries.

2.4.1 Relation to Fingerprinting

Suppose A and B are n × n matrices over a field F. It is known that if A 6= B,

then for a vector v ∈ {0, 1}n chosen uniformly at random we have

P[Av 6= Bv] ≥ 1/2.

This is Freivalds’ fingerprinting technique [19]. It is was originally developed as

a technique for verifying matrix multiplications, and can be used for testing for

equality of any two matrices.

An easy extension of this method says that for vectors v, w ∈ {0, 1}n chosen

24

independently uniformally at random, if A 6= B we have

P[wT Av 6= wT Bv] = P[wT Av 6= wT Bv|Av = Bv]P[Av = Bv]

+ P[wT Av 6= wT Bv|Av 6= Bv]P[Av 6= Bv]

≥ 0 × P[Av = Bv] +
1

2
× 1

2

=
1

4

This bears a strong resemblance to graph verification with EC queries. Let

A and B be the incidence matrices of G and G∗, respectively. Then an EC query

Q corresponds to multiplication on the left and right by the characteristic vector

of Q, and the algorithm becomes: choose v ∈ {0, 1}n uniformly at random and

return ‘same’ iff vT Av = vT Bv. By Theorem 13 if A 6= B then Pr[vT Av 6=

vT Bv] ≥ 1
4 .

This raises a natural question. For arbitrary n × n matrices A and B over

a field, if A 6= B, then for a vector v ∈ {0, 1}n chosen uniformly at random, is

P[vT Av 6= vT Bv] ≥ 1/4 (or some other constant > 0)?

This turns out not to be the case. Consider the two matrices

A =













0 1 0

0 0 1

1 0 0













B =













0 0 1

1 0 0

0 1 0













A 6= B, but it is not hard to check that for any vector v ∈ {0, 1}n, vT Av =

vT Bv. In fact, this holds true for adjacency matrices of ‘opposite’ directed

cycles on > 3 vertices. A graph theoretic interpretation of this fact is that if the

number of directed edges on any induced subset of the two opposite directed

cycles is the same, then an EC query will always return the same answer for

the two different cycles. Needless to say, this property is not limited to the

25

adjacency matrices of directed cycles: in fact, it holds for any two matrices A

and B such that A + AT = B + BT , since

vT (A + AT)v = vT Av + vT AT v = vT Av + (vT Av)T = 2vT Av

for all v, so that vT Av = vT Bv for all v.

Hence, we know that standard fingerprinting techniques do not imply The-

orem 13. Furthermore, the proof to Theorem 13 generalizes easily to weighted

graphs and a more general form of EC queries, where the answer to the query

is the sum of the weights of its induced edges. Since any symmetric matrix can

be viewed as an adjacency matrix of an undirected graph, we have the following

fingerprinting technique for symmetric matrices.

Theorem 16. Let A and B be n×n symmetric matrices over a field such that

A 6= B,3 then for v chosen uniformally at random from v ∈ {0, 1}n, Pr[vT Av 6=

vT Bv] ≥ 1
4 .

Proof. Let C = A − B 6= 0, and note that vT Av 6= vT Bv ⇐⇒ vT Cv 6= 0.

Identify C with the weighted graph G = (V, E), where V = {v1 . . . vn} and

E = {(u, v) : C(u, v) 6= 0}, and wt(u, v) = C(u, v). We proceed as in the proof

of Lemma 14. Fix v1 . . . vn so that wt(vn−1, vn) 6= 0, and let H ′ be as before.

Define:

wt(H) =
∑

(u,v)∈H

wt(u, v); wt(w, H) =
∑

(w,v)∈G,v∈H

wt(w, v).

The first quantity is a generalization of parity, the second of the number

of edges from a vertex to a subgraph. Let T = wt(vn−1, H
′) + wt(vn, H ′) +

wt(vn−1, vn), and consider two cases:

3Or, more generally, any matrices A and B with A + AT 6= B + BT .

26

• T = 0. Since wt(vn−1, vn) 6= 0, we know that at least one of the other

terms must be nonzero. Assume w.l.o.g. that this is wt(vn, H ′). So

choosing vn but not vn−1 is will make wt(G′) 6= wt(H ′), and this happens

with probability 1/4.

• T 6= 0. Choosing both vn and vn−1 sets wt(G′) = wt(H ′) + T 6= wt(H ′).

This happens with probability 1/4.

Again, we choose neither vertex with probability 1/4, in which case wt(G′) =

wt(H ′). Finally,

P[wt(G′) 6= 0] = P[wt(G′) 6= 0|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= 0|wt(H ′) = 0]P[wt(H ′) = 0]

≥ P[wt(G′) = wt(H ′)|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)|wt(H ′) = 0]P[wt(H ′) = 0]

= P[wt(G′) = wt(H ′)]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)]P[wt(H ′) = 0] by independence

≥ 1/4(P[wt(H ′) = 0] + P[wt(H ′) 6= 0]) = 1/4

as desired.

2.5 Discussion

There is a tantalizing asymptotic gap of O(lg n) in our bounds for EC queries for

learning the partition of the graph. It would also be interesting to know under

which, if any, query models it is easier to learn the number of components than

the partition itself.

27

Some other problems left to be considered are learning and verification prob-

lems for other restricted classes of graphs. For example, of theoretical interest

is the problem of verifying trees with ED queries. There is an obvious O(n)

brute-force algorithm, but it may be possible to do better. Also, other classes of

graphs have been studied in the literature (see the Section 2.2) including Hamil-

tonian paths, matchings, stars, and cliques. It may be revealing to see the power

of the queries considered herein for learning and verifying these restricted classes

of graphs.

It would also be useful to look at this problem from a more economic perspec-

tive. Since edge counting queries are strictly more powerful than edge detecting

queries, they ought to be more expensive in some natural framework. Taking

costs into account and allowing learners to be able to choose queries with the

goal of both learning the graph and minimizing cost should be an interesting

research direction.

28

Chapter 3

Learning Large-Alphabet

Circuits

Chapter Summary

In this chapter, we consider the problem of learning an acyclic discrete cir-

cuit with n wires, fan-in bounded by k and alphabet size s using value injection

queries. For the class of transitively reduced circuits, we develop the Distinguish-

ing Paths Algorithm, that learns such a circuit using (ns)O(k) value injection

queries and time polynomial in the number of queries. We note a generalization

of the algorithm to the class of circuits with shortcut width bounded by b that

uses (ns)O(k+b) value injection queries.

3.1 Introduction

We consider learning large-alphabet acyclic circuits in the value injection model

introduced in [6]. In this model, we may inject values of our choice on any

subset of wires, but we can only observe the one output of the circuit. However,

the value injection query algorithms in [6] for boolean and constant alphabet

networks do not lift to the case when the size of the alphabet is polynomial in

29

the size of the circuit.

One motivation for studying the boolean network model includes gene reg-

ulatory networks. In a boolean model, each node in a gene regulatory network

can represent a gene whose state is either active or inactive. However, genes may

have a large number of states of activity. Constant-alphabet network models

may not adequately capture the information present in these networks, which

motivates our interest in larger alphabets.

Akutsu et al. [2] and Ideker, Thorsson, and Karp [24] consider the discov-

ery problem that models the experimental capability of gene disruption and

overexpression. In such experiments, it is desirable to manipulate as few genes

as possible. In the particular models considered in these papers, node states

are fully observable – the gene expression data gives the state of every node

in the network at every time step. Their results show that in this model, for

bounded fan-in or sufficiently restricted gene functions, the problem of learning

the structure of a network is tractable.

In contrast, there is ample evidence that learning boolean circuits solely

from input-output behaviors may be computationally intractable. Kearns and

Valiant [28] show that specific cryptographic assumptions imply that NC1

circuits and TC0 circuits are not PAC learnable in polynomial time. These

negative results have been strengthened to the setting of PAC learning with

membership queries [11], even with respect to the uniform distribution [29].

Furthermore, positive learnability results exist only for fairly limited classes,

including propositional Horn formulas [9], general read once Boolean formu-

las [10], and decision trees [15], and those for specific distributions, including

AC0 circuits [32], DNF formulas [25], and AC0 circuits with a limited number

of majority gates [26].1

1Algorithms in both [32] and [26] for learning AC0 circuits and their variants run in
quasi-polynomial time.

30

Thus, Angluin et al. [6] look at the relative contributions of full observation

and full control of learning boolean networks. Their model of value injection

allows full control and restricted observation, and it is the model we study in

this paper. Interestingly, their results show that this model gives the learner

considerably more power than with only input-output behaviors but less than

the power with full observation. In particular, they show that with value injec-

tion queries, NC1 circuits and AC0 circuits are exactly learnable in polynomial

time, but their negative results show that depth limitations are necessary.

A second motivation behind our work is to study the relative importance of

the parameters of the models for learnability results. The impact of alphabet

size on learnability becomes a natural point of inquiry, and ideas from fixed

parameter tractability are very relevant [18, 33].

3.2 Preliminaries

3.2.1 Circuits

We give a general definition of acyclic circuits whose wires carry values from

a set X . For each nonnegative integer k, a gate function of arity k is a

function from Xk to X . A circuit C consists of a finite set of wires w1, . . . , wn,

and for each wire wi, a gate function gi of arity ki and an ordered ki-tuple

wσ(i,1), . . . , wσ(i,ki) of wires, the inputs of wi. We define wn to be the output

wire of the circuit.

The unpruned graph of a circuit C is the directed graph whose vertices

are the wires and whose edges are pairs (wi, wj) such that wi is an input of wj in

C. A wire wi is output-connected if there is a directed path in the unpruned

graph from that wire to the output wire. Wires that are not output-connected

cannot affect the output value of a circuit. The graph of a circuit C is the

31

subgraph of its unpruned graph induced by the output-connected wires.

A circuit is acyclic if its graph is acyclic. In this paper we consider only

acyclic circuits. If u and v are vertices such that u 6= v and there is a directed

path from u to v, then we say that u is an ancestor of v and that v is a

descendant of u. The depth of an output-connected wire wi is the length of

a longest path from wi to the output wire wn. The depth of a circuit is the

maximum depth of any output-connected wire in the circuit. A wire with no

inputs is an input wire; its default value is given by its gate function, which

has arity 0 and is constant.

We consider the property of being transitively reduced [1]. Let G be an

acyclic directed graph. An edge (u, v) of G is a shortcut edge if there exists

a directed path in G of length at least two from u to v. An acyclic directed

graph G is transitively reduced if it contains no shortcut edges. A circuit is

transitively reduced if its graph is transitively reduced.

3.2.2 Experiments on circuits

Let C be a circuit. An experiment e is a function mapping each wire of C to

X∪{∗}, where ∗ is not an element of X . If e(wi) = ∗, then the wire wi is free in

e; otherwise, wi is fixed in e. If e is an experiment that assigns ∗ to wire w, and

σ ∈ X , then e|w=σ is the experiment that is equal to e on all wires other than

w, and fixes w to σ. We define an ordering � on X∪{∗} in which all elements of

Σ are incomparable and precede ∗, and lift this to the componentwise ordering

on experiments. Then e1 � e2 if every wire that e2 fixes is fixed to the same

value by e1, and e1 may fix some wires that e2 leaves free.

For each experiment e we inductively define the value, denoted wi(e), of

each wire in C under the experiment e as follows. If e(wi) = x and x 6= ∗,

then wi(e) = x. Otherwise, if the values of the input wires of wi have been

32

defined, then wi(e) is defined by applying the gate function gi to them, that

is, wi(e) = gi(wσ(i,1)(e), . . . , wσ(i,ki)(e)). Because C is acyclic, this uniquely

defines wi(e) ∈ X for all wires wi. We define the value of the circuit to be the

value of its output wire, that is, C(e) = wn(e) for every experiment e.

Let C and C′ be circuits with the same set of wires and the same value set

X . If C(e) = C′(e) for every experiment e, then we say that C and C′ are

behaviorally equivalent.

3.2.3 The learning problem

We consider the following general learning problem. There is an unknown target

circuit C∗ drawn from a known class of possible target circuits. The set of wires

w1, . . . , wn and the value set X are given as input. The learning algorithm

may gather information about C∗ by making calls to an oracle that will answer

value injection queries. In a value injection query, the algorithm specifies an

experiment e and the oracle returns the value of C∗(e). The algorithm makes a

value injection query by listing a set of wires and their fixed values; the other

wires are assumed to be free, and are not explicitly listed. The goal of a learning

algorithm is to output a circuit C that is either exactly equivalent to C∗. The

goal is behavioral equivalence and the learning algorithm should run in time

polynomial in n.

3.3 Learning Large-Alphabet Circuits with Dis-

tinguishing Paths

In this section we consider the problem of learning a discrete circuit when the

alphabet X of possible values is of size nO(1). We prove the following theorem.

33

Theorem 17. The Distinguishing Paths Algorithm learns the class of transi-

tively reduced discrete circuits with n wires, alphabet size s, and fan-in bound k,

using O(n2k+1s2k+2) value injection queries and time polynomial in the number

of queries.

3.3.1 Preliminaries

Our goal is to learn transitively reduced circuits of n nodes, with an alphabet

Σ of size s and constant fan-in k. For each wire, we will keep a table, T which

we call a distinguishing table, of size s2 that keeps track of all possible pairs of

values the wire can take.

We say that values σ1 and σ2 are distinguishable for wire w if there exists

an experiment e such that C∗(e|w = σ1) 6= C∗(e|w = σ2). We define side wires

for a path from a wire w to the root to be a set of wires disjoint from the the

path that are inputs to wires beyond w along the path to the root. We define a

distinguishing path for wire w and distinguishable values σ1 and σ2 to be a

path of wires from w to the output and settings of side wires of the path such

that if s1 and s2 are experiments with the path free and side wires set in the

path from w to the root such that

1. ∀s1, s2 C∗(s1|w=σ) = C∗(s2|w=σ)

2. ∃σ1, σ2 C∗(s|w=σ1
) 6= C∗(s|w=σ2

)

An entry of 0 in position (i, j) in table Tw means that a distinguishing path

experiment has not (yet) been found to differentiate wire w having value i versus

value j. An entry of 1 in position (i, j) corresponds to an experiment having

been found that differentiates w having values i versus j. Together with this

entry, the corresponding distinguishing path and a bit for whether this entry

has been processed are recorded.

34

3.3.2 The Algorithm

We begin with the output wire having all 1 entries in its distinguishing table

since the output wire detects differences between any two output values. The

corresponding distinguishing paths to the 1 entries are empty sets and they are

initialized as unprocessed.

Algorithm 1 Distinguishing Paths Algorithm

Initialize G to have the wires as vertices and no edges.
Initialize Twn

to all 1’s, marked unprocessed.
Initialize Tw to all 0’s for all non-output wires w.
while there exists a Tw with an unprocessed 1 entry do

Let π be the corresponding distinguishing path.
Run Extend Known Paths on π.
Add all new edges (v, w) to G.
for each extension π′ that gives a new 1 entry in some Tv do

Put the new 1 entry in Tv with distinguishing path π′.
Mark this new 1 entry as unprocessed.

Mark the 1 entry for (σ, τ) in Tw as processed.
Construct a circuit C with G and the tables Tw

Output C and halt.

Intuitively, the algorithm works in the following way. At each step, we

look at our set of distinguishing tables. For each distinguishing table that has

unprocessed entries, we try to find more inputs to the gate. These new inputs

are used to make new distinguishing paths that are left to be processed. We

continue this until we have no more unprocessed entries. We then use the

information to reconstruct the learned circuit.

We now describe the procedure Extend Known Paths. This procedure

has two parts. First it finds new inputs to the current distinguishing path.

Given a distinguishing path π for wire w we consider the set of all exper-

iments that agree with π and for the remaining wires, for all possible choices

of up to k wires, try all possible settings of the chosen wires. We say a set of

k wires is determining with respect to π if we can determine the value of the

output given π and the settings of the k wires. The procedure for finding new

35

inputs finds the largest set of determining wires with respect to π. We call this

V (π).

The second part of this procedure is to extend π by V (π). For each wire

v ∈ V (π), this procedure searches for all pairs σ1, σ2 ∈ Σ such that for some

two experiments e1 where v = σ1 and e2 where v = σ2 such that e1 and e2 fix

the remaining wires in V (π) and π the same. Since v was in the determining set

of wires for π, we know at least such two values must exist. This corresponds

to a new distinguishing path for v, with π extended to the settings of the wires

in V (π) − v and v left free, that differentiates σ1 from σ2. This adds a 1 entry

and a corresponding distinguishing path in Tv(σ1, σ2).

Constructing the circuit. Now we show how to reconstruct the behavior

of a circuit given its complete set of distinguishing tables. Given the distinguish-

ing tables and graph G, we reconstruct circuit C to be behaviorally equivalent

to C∗. G is a subgraph of the graph of C∗ that has edges for all inputs the

distinguishing paths algorithm has found.

We will construct gate tables for wires in C. They will keep different com-

binations of the wires’ input values and their corresponding output. For the

values that are not distinguishable (that have 0’s in the distinguishing tables),

we record values up to equivalence. If σ1 and σ2 are not distinguishable for w,

we will place them in the same equivalence class.

We then process wires in any order, one at a time. For each wire w, for

each value σ per equivalence class, we record the outputs of C∗(eπ|w = σ) of

all distinguishing paths in Tw. For each path π we record the output of C∗ for

experiment eπ and inputs set to the fixed values. We do this for all settings of

inputs to w and this completes w’s gate table.

36

3.3.3 Correctness and Running Time

We wish to show that the following conditions hold:

1. Correctness

If T (σ1, σ2) = 1 then there is a distinguishing path s such that C∗(sw=σ1
) 6=

C∗(sw=σ2
) in the table.

2. Completeness

There do not exist Tw, σ1, σ2 such that Tw(σ1, σ2) = 0 but there exists an

experiment s such that C∗(sw=σ1
) 6= C∗(sw=σ2

)

Lemma 18. At any point in the run of the algorithm, every 1 entry placed in

distinguishing table Tw has a corresponding distinguishing path π.

Proof. We can prove this by induction on the number of 1 entries after initial-

ization. The base case is trivially true. Since every new 1 entry is found by

extending a distinguishing path by Extend Known Paths, we need to show is

that extending a distinguishing path in this manner gives a new distinguishing

path.

More formally, let π′ be a path produced for wire v and values σ1 and σ2

by extending the distinguishing path π for wire w, then we wish to show π′ is a

distinguishing path for wire v and values σ1 and σ2. Since v is an input to w,

then π′ is a path of wires from v to the output of C∗. The new side wires are

fixed such that C∗(sv=σ1
) 6= C∗(sv=σ2

). It is not hard to check that this is a

new distinguishing path.

We now consider the completeness condition. A distinguishing table is

complete if for every pair of values σ1 and σ2 that are distinguishable for

w, Tw(σ1, σ2) = 1.

37

Lemma 19. When the algorithm terminates, every table Tw is complete.

Proof. To make this argument, we need to use the fact that if σ1 and σ2 are

distinguishable for wire w then there exists a distinguishing path for wire w and

values σ1 and σ2. This is not hard to see by an inductive argument on the depth

of wire w.

We look at the wire, w, closest to the output wire that has an incomplete

distinguishing table, i.e. it is missing a 1 entry for two distinguishable values σ1

and σ2. We wish to argue that if the distinguishing tables above w are complete,

then distinguishing paths algorithm will have found a distinguishing path for

w, σ1, and σ2 – contradicting the assumption.

Knowing that a distinguishing path π exists for w, σ1, and σ2 we look at

the suffix of π, without w and side-wires to w’s parents. This gives us another

distinguishing path, which would be extended to w by the algorithm. This

contradicts the assumption that there are incomplete distinguishing tables.

3.3.4 Running Time

We now show that the Distinguishing Paths Algorithm runs in time polynomial

in the number of wires and the size of the alphabet.

We derive a loose upper bound. At each iteration of the algorithm for

filling distinguishing tables, for it not to terminate, at least one new 1 needs

to be added to a distinguishing table, so the number of total iterations cannot

exceed the number of spaces in the distinguishing tables, which is ns2. In each

iteration, for each existing 1 value in a distinguishing table, at most
(

n
k

)

=

O(nk) choices of inputs are made and O(sk) experiments are performed (at

most all possible alphabet values for the assumed inputs). So for each 1 value

at most O(nksk) queries are asked. Finally, there are again at most ns2 1 values,

38

making O(nk+1sk+2) queries per iteration. In ns2 iterations, we make at most

O(nk+2sk+4) queries. To build the gate tables, for each of n wires, we try all

s2 distinguishing table experiments for all s values of the wire, which takes at

most s3 time. We then run the same experiments for each input setting to the

wire, which takes sks2. This takes a total of O(n(s3 + sk+2)).

39

Bibliography

[1] Aho, A. V., Garey, M. R., and Ullman, J. D. The transitive reduction

of a directed graph. SIAM J. Comput. 1 (1972), 131–137.

[2] Akutsu, T., Kuhara, S., Maruyama, O., and Miyano, S. Identifi-

cation of gene regulatory networks by strategic gene disruptions and gene

overexpressions. In SODA ’98: Proceedings of the Ninth Annual ACM-

SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA, 1998),

Society for Industrial and Applied Mathematics, pp. 695–702.

[3] Alon, N., and Asodi, V. Learning a hidden subgraph. SIAM J. Discrete

Math. 18, 4 (2005), 697–712.

[4] Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B. Learn-

ing a hidden matching. SIAM J. Comput. 33, 2 (2004), 487–501.

[5] Angluin, D., Aspnes, J., Chen, J., and Reyzin, L. Learning large-

alphabet and analog circuits with value injection queries. In COLT (2007),

pp. 51–65.

[6] Angluin, D., Aspnes, J., Chen, J., and Wu, Y. Learning a circuit by

injecting values. In Proceedings of the Thirty-Eighth Annual ACM Sympo-

sium on Theory of Computing (New York, NY, USA, 2006), ACM Press,

pp. 584–593.

40

[7] Angluin, D., and Chen, J. Learning a hidden graph using O(log n)

queries per edge. In COLT (2004), pp. 210–223.

[8] Angluin, D., and Chen, J. Learning a hidden hypergraph. Journal of

Machine Learning Research 7 (2006), 2215–2236.

[9] Angluin, D., Frazier, M., and Pitt, L. Learning conjunctions of Horn

clauses. Machine Learning 9 (1992), 147–164.

[10] Angluin, D., Hellerstein, L., and Karpinski, M. Learning read-once

formulas with queries. J. ACM 40 (1993), 185–210.

[11] Angluin, D., and Kharitonov, M. When won’t membership queries

help? J. Comput. Syst. Sci. 50, 2 (1995), 336–355.

[12] Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann,

M., Mihalák, M., and Ram, L. S. Network discovery and verification.

In WG (2005), pp. 127–138.

[13] Bouvel, M., Grebinski, V., and Kucherov, G. Combinatorial search

on graphs motivated by bioinformatics applications: A brief survey. In WG

(2005), pp. 16–27.

[14] Brodal, G. S., Fagerberg, R., Pedersen, C. N. S., and Ostlin,

A. The complexity of constructing evolutionary trees using experiments.

In Proc. 28th International Colloquium on Automata, Languages, and Pro-

gramming, vol. 2076 of Lecture Notes in Computer Science. 2001, pp. 140–

151.

[15] Bshouty, N. H. Exact learning boolean functions via the monotone the-

ory. Inf. Comput. 123, 1 (1995), 146–153.

[16] Culberson, J. C., and Rudnicki, P. A fast algorithm for constructing

trees from distance matrices. Inf. Process. Lett. 30, 4 (1989), 215–220.

41

[17] de Bruijn, N. G. Asymptotic Methods in Analysis. Dover, 1981.

[18] Downey, R. G., and Fellows, M. R. Parameterized Complexity.

Springer-Verlag, 1999.

[19] Freivalds, R. Probabilistic machines can use less running time. In IFIP

Congress (1977), pp. 839–842.

[20] Goldreich, O., Goldwasser, S., and Ron, D. Property testing and its

connection to learning and approximation. J. ACM 45, 4 (1998), 653–750.

[21] Grebinski, V., and Kucherov, G. Reconstructing a hamiltonian cycle

by querying the graph: Application to DNA physical mapping. Discrete

Applied Mathematics 88, 1-3 (1998), 147–165.

[22] Grebinski, V., and Kucherov, G. Optimal reconstruction of graphs

under the additive model. Algorithmica 28, 1 (2000), 104–124.

[23] Hein, J. J. An optimal algorithm to reconstruct trees from additive dis-

tance data. Bulletin of Mathematical Biology 51, 5 (1989), 597–603.

[24] Ideker, T., Thorsson, V., and Karp, R. Discovery of regulatory

interactions through perturbation: Inference and experimental design. In

Pacific Symposium on Biocomputing 5 (2000), pp. 302–313.

[25] Jackson, J. C. An efficient membership-query algorithm for learning

DNF with respect to the uniform distribution. J. Comput. Syst. Sci. 55, 3

(1997), 414–440.

[26] Jackson, J. C., Klivans, A. R., and Servedio, R. A. Learnability

beyond AC0. In STOC ’02: Proceedings of the thirty-fourth annual ACM

symposium on Theory of computing (New York, NY, USA, 2002), ACM

Press, pp. 776–784.

42

[27] Kannan, S. K., Lawler, E. L., and Warnow, T. J. Determining the

evolutionary tree using experiments. J. Algorithms 21, 1 (1996), 26–50.

[28] Kearns, M., and Valiant, L. Cryptographic limitations on learning

boolean formulae and finite automata. J. ACM 41, 1 (1994), 67–95.

[29] Kharitonov, M. Cryptographic hardness of distribution-specific learning.

In STOC ’93: Proceedings of the twenty-fifth annual ACM symposium on

Theory of computing (New York, NY, USA, 1993), ACM Press, pp. 372–

381.

[30] King, V., Zhang, L., and Zhou, Y. On the complexity of distance-based

evolutionary tree reconstruction. In SODA ’03: Proceedings of the four-

teenth annual ACM-SIAM symposium on Discrete algorithms (Philadel-

phia, PA, USA, 2003), Society for Industrial and Applied Mathematics,

pp. 444–453.

[31] Lingas, A., Olsson, H., and Ostlin, A. Efficient merging, construc-

tion, and maintenance of evolutionary trees. In ICAL ’99: Proceedings of

the 26th International Colloquium on Automata, Languages and Program-

ming (London, UK, 1999), Springer-Verlag, pp. 544–553.

[32] Linial, N., Mansour, Y., and Nisan, N. Constant depth circuits,

Fourier transform, and learnability. Journal of the ACM 40, 3 (1993),

607–620.

[33] Niedermeier, R. Invitation to Fixed-Parameter Algorithms. Oxford Uni-

versity Press, 2006.

[34] Reyzin, L., and Srivastava, N. Learning and verifying graphs using

queries with a focus on edge counting. May 2007.

43

[35] Reyzin, L., and Srivastava, N. On the longest path algorithm for re-

constructing trees from distance matrices. Inf. Process. Lett. 101, 3 (2007),

98–100.

44

