
Abstract

Active Learning of Interaction Networks

Lev Reyzin

2009

From molecular arrangements to biological organisms, our world is composed of

systems of small components interacting with and affecting each other. Scientists

often learn the structure of such systems by tampering with them and making ob-

servations. In this thesis, we develop methods for automating this process from an

active learning perspective, a setting where the learner is not restricted to making

passive observations, but can choose to query the data.

First, we consider the setting of learning hidden graphs with queries. Each query

type is motivated by a real-world problem, from genome sequencing to evolutionary

tree reconstruction. We give new algorithms for learning graphs and also consider

the problem of verifying the results of the learning task.

Next, we turn to value injection queries, which model experiments used to identify

gene regulatory networks. We analyze the complexity of learning large alphabet and

analog circuits with value injection queries. We then apply this model to social

networks, allowing the learner to activate and suppress agents in the network, and

we give an optimal algorithm and matching lower bound for this problem. Finally,

we examine the passive learner, who watches the output of agents in a social network

and must deduce the most likely underlying network.

Last, we consider a classical problem in query learning: learning finite automata,

which themselves are networks of connected states. We introduce label queries as a

generalization of the well studied membership queries. We give algorithms for learn-

ing automata using label queries and analyze other models for learning automata.
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Chapter 1

Introduction

First of all, there have to be many bodies present – many angels, many
electrons, many atoms, many molecules, many people, etc. Secondly, for
there to be a problem, these bodies have to interact with each other.

–Richard P. Feynman

Atoms bond with one another: they interact, they share electrons, and they form

molecules. Some molecules are simple. Some are intricate and complex and form the

building blocks of life. Complex molecular interactions make cells and organisms.

Organisms reproduce, evolve, fight, cooperate, trade, communicate, and form even

more complex networks that have their own patterns of interaction.

An important goal of science is to learn about these processes and the rules

governing them. Often, scientists do not have access to these structures. They need

to run experiments, look at their output, and interpret the results properly to make

conclusions about the physical world.

It is seldom clear what experiment is best to run, especially when experiments are

costly and time is limited. Moreover, it may be unclear what to do with the results

of the experiments. In this dissertation, we seek to automate parts of this process
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of discovery. We show that many problems fit nicely into the task of learning the

structure of hidden interaction networks and that the world provides ways of prob-

ing these hidden structures. Thus, we can model many problems as computational

learning problems and apply machine learning methods to tackle them.

1.1 The Origins of Active Learning

Researchers in machine learning and learning theory have developed numerous mod-

els to study learning in a computational framework. One of the first paradigms for

studying learning appeared in a 1967 paper of Gold, where he defined learning in

the limit [46]. In this paradigm, the learner is presented with an infinite sequence

of examples labeled by an unknown concept. After seeing each example, the learner

outputs a hypothesis for the concept. The learner is said to learn a concept class

in the limit if, for every concept in the class, after some point, it converges on a

hypothesis that correctly classifies all examples.

Learning in the limit and variants of it are still studied, but this model was not

suitable for capturing the phenomenon of learning that happens in our world. Gold’s

model assumes almost nothing about how the examples are generated, does not take

computational efficiency into account, and insists that the learner find a hypoth-

esis that makes no errors. Little progress was made on finding a good paradigm

for studying computational learning until in 1984, in a seminal paper [85], Valiant

introduced PAC (Probably Approximately Correct) learning.

In the PAC learning model, training examples are given to the learner from a

fixed, arbitrary distribution and labeled by an unknown concept. A concept class is

said to PAC learnable if for any concept in the class and any distribution, a learner

can produce, with probability (1−δ), a hypothesis that has ε error on future examples,

after using a number of training examples polynomial in the relevant parameters of
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the problem and running in time polynomial in the number of examples.

The PAC model is possibly the most ubiquitous model of learning, but it suffers

from some drawbacks in capturing certain situations. In PAC learning, the learner

acts as an observer. It passively sees whatever examples the world chooses to give it

and does its best afterward. The PAC model fails to take into account the ability of

learners in certain settings to choose their training data.

This is the gap query learning fills in. In 1987, Angluin [9, 10] introduced a model

of learning where the learner creates its own examples and can query an oracle.1

The learner can ask the oracle to label an example according to the unknown concept

to be learned; this is called a membership query. In Angluin’s model, the learner

is also able to perform equivalence queries by asking the oracle whether its current

concept is the correct one.2 Angluin’s idea encompasses the ability of scientists to

run experiments of their own choosing, and the output of the oracle corresponds to

the results of an experiment. Because no underlying distribution generates the data

in this model, the learner is expected to learn the concept exactly.

However, Angluin’s model also presented some difficulty for real world applica-

tions. While in many settings, the power to ask membership queries is justified, in

some domains this ability makes little sense. Not every example is sensible enough

to be labeled one way or another. For example, while most articles written in ma-

jor newspapers can be classified into categories such as “Sports” or “Business,” not

every piece of arbitrarily chosen text can so easily subject itself to classification.

Modern active learning addresses some problems with the original framework.

It encompasses the query learning model3 and also many variants. One model by

Cohn et al. [35] is called selective sampling. In this framework unlabeled data are

1In [46], Gold considered queries within the context of learning in the limit, but did not emphasize
them because queries did not change learnability in his model.

2An equivalence query can be simulated in the PAC model by choosing a hypothesis and waiting
sufficiently long to see how it performs on future data.

3Sometimes “query learning” and “active learning” are used interchangeably.
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generated by a distribution, and the data selected by the learner are labeled for a

price. Other active learning models include PAC with membership queries, which

puts the learner in the PAC setting, but gives it power to query arbitrary examples.

Pool based active learning [71] models the learner being given large amounts of

unlabeled data and having to choose queries from the pool of unlabeled data. Many

strategies for active learning have been studied, including query-by-committee [45,

82], uncertainty sampling [70, 71], and variance reduction [36]. A survey of active

learning appears in [81]. We will be using the active learning framework for most of

this dissertation.

Another important model, which is used in most of Chapter 6, is online learn-

ing [74]. Here, examples present themselves one at a time, and the learner must

produce labels on the spot. Usually, the dataset is assumed to be so large that the

learner cannot store the data it has seen. In prediction with expert advice [75], which

is closely tied to online learning, the learner is given access to a pool of experts, and

it must label data online, using their advice. To analyze a learner’s performance, we

compare its error rate with that of the best hypothesis (or expert) in hindsight. This

is called competitive analysis.

Machine learning also covers many other learning phenomena. Reinforcement

learning concerns itself with agents choosing policies for their actions [57]. Semi-

supervised learning looks at how to take advantage of unlabeled data [33]. In learn-

ing with random noise, labels on the training examples are randomly flipped [24].

Agnostic learning makes no assumption on the origin of the labels of the data [61].

Statistical queries allow the learner to get estimates of the sample space [59]. Yet,

these are only a small collection of machine learning models.
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1.2 Active Learning of Interaction Networks

In this dissertation we create and analyze models inspired by real world problems

in learning interaction networks: finite populations of elements whose state may

change as a result of interacting with other elements according to specific rules. We

now look at some of the interaction networks and query models that we study in this

dissertation. We do not formally define the models here, but rather give an idea of

the problems we tackle.

Evolutionary trees form a fairly basic interaction network. In an evolutionary

tree an edge between two species represents an genetic linkage often taking millennia

to establish. In Chapter 2 we study the problem of evolutionary tree reconstruction.

Every species has a genetic distance to every other species, and these distances can be

recovered by performing an experiment that compares their DNA. Due to the process

of evolution, these distances are tree-realizable, and the task is to reconstruct the

evolutionary tree by querying the distances. Because these experiments are costly, an

important goal is to use as few queries as possible in reconstructing an evolutionary

tree, and this can be studied from a computational standpoint.

Next we turn to the inner workings of some of these genetic tests. One of the first

steps in analyzing a species, or rather an organism from a species, is to sequence its

DNA. A common approach is to find contigs – contiguous regions of the genome –

and to place them in proper order. Multiplex PCR (Polymerase Chain Reaction) is a

tool for testing contigs for adjacent regions. Multiplex PCR experiments are modeled

by edge counting queries. Edge counting queries take a subset of contigs, and the

result of a query is a count of the number of connections contained in the queried

subset. The goal of the learner is to reconstruct the adjacency graph, and edge

counting queries are among the main queries studied in Chapter 3. In that chapter

we also look at other models of other interaction networks inspired by settings such
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as reacting chemicals, circuit boards, and Internet topology.

After examining genome sequencing, we look at learning the mechanisms behind

gene interaction by examining gene regulatory networks. Learning with value injec-

tion queries [14] models learning gene regulatory networks by disrupting and overex-

pressing genes and looking at the output of the network – the expressed phenotype –

using techniques currently employed by biologists. The value injection query model

represents gene regulatory networks as hidden acyclic circuits and allows the learner

to override values on the wires of the circuit to learn the function it computes. In

Chapter 4 we study these queries when they are applied to analog and large-alphabet

circuits.

We can also take value injection queries and apply them to different settings.

Social networks represent connections of individual agents in a population. Social

networks are used to model diffusion of diseases, fads, or any form of information

through a population. Independent cascade social networks describe the strength of

influence of agents on each other, and they are modeled by weighted directed graphs,

with edge weights representing the probabilities of agents activating one another. In

Chapter 5 we look at how a learner can discover the strength of these connections

by activating and suppressing agents in a social network and observing the resulting

series of activations.

In Chapter 6 we again examine learning social networks, but from the point of

view of a passive learner. The learner is able to observe connected parts of the social

network – for example, in the case of the spread of disease, the learner might be

shown groups of infected persons. We consider the problem of inferring the most

likely social network given access to such data.

Finally, in Chapter 7 we take a new look at one of the most well studied problems

in active learning: learning finite state automata. We study this problem mainly from

theoretical interest, but it also has applications to the problem of robot localization.
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In automata, the interaction between states happens as agents move from state to

state, possibly changing their actions given what they see. We prove learnability

results for new models of learning in this classic framework. In the new model, a

teacher sprinkles labels over the states of an automata. The answer to querying a

string on the automata includes not only an accept/reject, but also the label of the

state the string leads to.

1.3 Preliminaries

This dissertation involves a theoretical study of interaction networks. Hence, we as-

sume basic knowledge of probability, linear algebra, combinatorics, and graph theory,

as well as some comfort with computer science theory, including basic complexity

and asymptotic notation. Other concepts are defined where needed. In this section,

we present some recurring ideas and definitions used in this thesis.

1.3.1 Graphs: Notation and Definitions

Notation

A graph G = (V, E) consists of a set V of n vertices and a set E of m edges. Each

edge e ∈ E consists of a unique pair {u, v} of vertices u, v ∈ V with u 6= v. If there

is a {u, v}-edge, u and v are said to be adjacent. In a directed graph, the pairs

(u, v) are ordered pairs, and we say that there is a directed edge from u to v. In

a weighted graph, each edge e ∈ E has weight (or cost) we. In an unweighted

graph all weights we = 1.
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Definitions

The degree of a vertex is the number of edges that contain it. A graph has degree

d of all of its vertices have degree ≤ d. A graph has average degree d if the average

over the degrees of the vertices is ≤ d. A path in a graph is a sequence of vertices

such that each vertex is adjacent to the next one in the sequence. A path is simple

if all vertices along the path are unique. A cycle is a path where the start and end

vertex are the same. A graph is connected if there is a path from every vertex to

every other vertex. A tree graph is a connected graph with n− 1 edges. A leaf in a

tree is a node of degree 1. A path graph is a tree with exactly 2 leaves. A star graph

is a tree with one vertex that is adjacent to the rest of the vertices. A matching

is a set of edges without common vertices, and a vertex is said to be matched if it

incident to an edge in the matching. A perfect matching is a matching in which

every vertex is matched.

A path in a directed graph is a sequence of vertices such that each vertex has

a directed edge to the next one in the sequence. A directed graph is strongly

connected if there is a directed path from every vertex to every other vertex.

A Note on Random Graphs

An Erdös Rényi random graph, denoted G(n, p), is a graph on n vertices in which

every possible edge occurs independently with probability p. It has p
(

n
2

)
edges in

expectation. If p = .5 each of the 2(n
2) graphs occurs equiprobably. The connectivity

properties of random graphs exhibit certain threshold phenomena. If p ≥ (1+ε) ln(n)
n

then the graph is almost surely connected [41], that is as n → ∞, the probability

G(n, p) is connected approaches 1. One can also use a more general model for

generating random graphs, with each edge having a possibly different probability of

occurring – this, of course, applies to both directed and undirected graphs.
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1.3.2 Information Theoretic Lower Bounds

In this dissertation, we often rely on information theoretic arguments to establish

lower bounds on the number of queries a learner must perform. An information

theoretic lower bound uses the following observation: the answer to every query

gives the learner a limited amount of information, and the learner must ask enough

queries to be able to specify any output.

Suppose it requires n bits to specify any output, and the learner only receives b

bits on every query. This gives us a lower bound of Ω(n/b) queries.

For an example, we now apply an information theoretic argument for a familiar

problem: sorting n numbers with comparisons. We assume a comparison of two

numbers a and b can have 3 different results: a > b, a < b, or a = b. The result of a

comparison gives the algorithm at most 2 = O(1) bits of information. There are n!

possible orderings of n numbers, so it takes Ω(log(n!)) = Ω(n log(n)) bits to specify

an ordering. So an information theoretic lower bound tells us the known result that

Ω(n log(n))
O(1)

= Ω(n log(n)) comparisons are required for sorting n numbers.

1.3.3 Learners and Adversaries

A algorithm is an adaptive learner if it can ask queries one at a time, deciding each

subsequent query only after seeing the answer to the previous queries. A learning

algorithm is non-adaptive if it must choose its queries all at once, before seeing the

results of any query. Information theoretic lower bounds apply against both adaptive

and non-adaptive learners.

In analyzing the performance of an algorithm, we can view the oracle answering

the learner’s queries as an adversary. An adaptive adversary must answer each

future query consistently with its previous answers, but can otherwise change its

target concept arbitrarily. An adaptive adversary is used when measuring the worst-
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case performance of an algorithm. An oblivious adversary must commit to a

concept after seeing the learner’s algorithm and cannot change it afterward. Because

the adversary has access to the learner’s algorithm, an oblivious adversary is just

as powerful as an adaptive adversary if the learning algorithm is deterministic. If

the learner uses randomness, we analyze the expected performance of the learning

algorithm.

1.4 A Note to the Reader

Much of the work in this thesis has appeared in journal papers or conference proceed-

ings, and has been done jointly with collaborators. Chapter 2 is based on the paper

“On the Longest Path Algorithm for Reconstructing Trees from Distance Matri-

ces” [79], which is joint work with Nikhil Srivastava. Chapter 3 is based on the paper

“Learning and Verifying Graphs Using Queries with a Focus on Edge Counting” [78],

which is joint work with Nikhil Srivastava. Chapter 4 is based on the paper “Learning

Large-Alphabet and Analog Circuits with Value Injection Queries” [12, 13], which is

joint work with Dana Angluin, James Aspnes, and Jiang Chen. Chapter 5 is based

on the paper “Optimally Learning Social Networks with Activations and Suppres-

sions” [15, 16], which is joint work with Dana Angluin and James Aspnes. Chapter 6

is based on joint work with Dana Angluin and James Aspnes. Chapter 7 is based on

the paper “Learning Finite Automata Using Label Queries” [17], which is joint work

with Dana Angluin, Leonor Becerra-Bonache, and Adrian Horia Dediu.
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Chapter 2

The Longest Path Algorithm

In this chapter, we focus on analyzing a well known algorithm for reconstructing

evolutionary trees. This short chapter also serves as an introduction to the types of

algorithms and analysis used in this thesis.

2.1 Introduction and Background

In [37], Culberson and Rudnicki consider the problem of reconstructing a degree d

weighted tree given query access to it. If the tree has n vertices, a shortest path

query on two vertices, SP(i, j), returns dij, the weight of the (unique) path between

vertices i and j. They describe an algorithm which finds the longest path in the tree,

divides the remaining vertices into subtrees according to where they connect to this

path, and then recurses on the subtrees. Their algorithm relies on three key ideas:

1. The longest path in a subtree can be computed in linear time. Simply pick

an arbitrary vertex r and find the distances from r to every other vertex. Let

u be the farthest vertex from r, and repeat to find the farthest vertex v from

u. Then πuv is the longest path in the tree, and we have performed only 2n

queries.

11



2. Given a longest path πuv and distances computed in step (1), every other vertex

z can be placed either on πuv or on a subtree rooted at a known vertex w (a

“hub”) on πuv, with no additional SP queries. To be precise, z is in the subtree

rooted at w if and only if dzu − dzv = dwu − dwv.

3. No further SP queries involving any hub w need be made, since for every

vertex z in w’s subtree, we have dzw = dzu − dwu. This means that we can

effectively forget about vertices that occur on the longest path, as far as SP

queries concerned.

The algorithm presented in [37] is equivalent to what is described above, with

minor simplifications. We will call this algorithm Longest Path.

In their analysis, Culberson and Rudnicki refer to SP queries in step (1) as “hub

computations” and establish that the running time is dominated by them. They

claim that for unweighted trees1, the running time of the algorithm is O(dn logd n).

Their claim rests on the following argument:

Since once a vertex... is located on a path in the tree it no longer partic-

ipates in such computations in other partitions, the number of computa-

tions is maximized when the longest path in every subtree is minimized.

When the maximum degree is restricted, this leads to balanced trees where

all internal vertices are of maximum degree.

So according to [37], the worst case for degree four is the kind of tree shown in

Figure 2.1.

Yet, this proof is incorrect. In section 2.2, we construct an unweighted tree on

which the algorithm takes Ω(n3/2
√

d) time, contradicting the claim in [37]. In section

2.3 we present a revised analysis of Longest Path, showing that Θ(n3/2
√

d) is tight

for the unweighted case.

1Culberson and Rudnicki call unweighted trees “topological trees.”
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Figure 2.1: A tree that minimizes the longest path in every subtree, from [37].

It is worth noting that other algorithms exist that achieve the O(dn logd n) bound,

which was also shown to be a lower bound in [65]. A quite different algorithm called

Deepest Point2, discovered by Hein [52], reconstructs both general and unweighted

trees in O(dn logd n) time. Further, variants of this problem have been studied in

the experiment model for constructing evolutionary trees by Kannan et al. [58],

Brodal et al. [30], and Lingas et al. [72]. Notwithstanding, Longest Path is one of

the first algorithms claimed to run in sub-quadratic time for tree reconstruction and

also one of the simplest. In this chapter we present a correct analysis of it.

2.2 A Counterexample

While the tree in Figure 2.1 does minimize the lengths of the longest paths, it also

“nicely” splits the remaining vertices. Here, we take the opposite approach and

consider a family of trees where removing the longest path always leaves the re-

2In constructing Deepest Point [52], Hein mentions in passing that an algorithm recursively
placing longest paths would run in Ω(n

3
2 )
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maining vertices in a single subtree, as shown in Figure 2.2. Notice that Gi has

1+3+ . . . ..(2i−1) = i2 vertices and a longest path of length 2i−1 (perpendicular to

the horizontal “stem”) – that is, the tree on n vertices has a longest path of length

2i− 1 = O(
√

n) and a stem of length i = O(
√

n). Removing the longest path which

is centered on the stem from Gi gives Gi−1.

Figure 2.2: A counterexample to the O(dn logd n) analysis of [37], the tree Gi.

For a tree of size n, finding a longest path lying vertically along the spine takes

Ω(n) SP queries and leaves a subtree of size Ω(n −
√

n). Hence, the total running

time is at least

T (n) ≥ n + T (n−
√

n)

T (1) = 0.

The recurrence is solved easily by substitution to get T (n) = Ω(n3/2), showing that

the O(dn logd n) analysis of [37] is incorrect.

All vertices in the above example are of degree at most 3. For the general degree

d case, we consider trees G′
i that have d

2
−1 copies of each path on the stem. Observe

that |G′
i| = Ω(d|Gi|) (since a linear number of vertices are copied Ω(d) times), so

that longest paths in G′
i are of length O(

√
n
d
). Since all longest paths of a given

length intersect at only one vertex (which is on the stem), Longest Path does not
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split them into smaller parts by placing them in separate subtrees. This gives the

following recurrence:

T (n) ≥ n + T

(
n−

√
n

d

)
T (1) = 0

which has the solution T (n) = Ω(n3/2
√

d).

2.3 Analysis of the Unweighted Case

Say that a subtree is at phase j if it is obtained by recursing j times. Consider all

subtrees T1 . . . Tk at a particular phase, with a total of n vertices. The number of

SP queries used to find a longest path in Ti is just O(|Ti|), so the total number

of queries used in the phase is
∑

i O(|Ti|) = O(n), i.e., linear in the total number

of nodes. Thus we can bound the running time of Longest Path by n×(number of

phases).

The correct analysis of Longest Path relies on following observation:

Lemma 2.3.1. Suppose π is a longest path in a subtree T , and S is the set of longest

paths in T that are edge-disjoint with π. Then all paths in S ∪ {π} share a single

vertex.

Proof. Suppose π1 and π2 are longest paths in T . Assume they do not intersect.

Find the shortest path π′ that connects π1 and π2 (we can do this since T is a tree).

But now we can construct a path longer than π1: take the longer halves of π1 and

π2 and join them with π′.

Thus every two longest paths in T intersect. Moreover, if π1 and π2 are edge-

disjoint, they must intersect at a unique vertex: they cannot intersect at two con-

secutive vertices because then they would share an edge, and they cannot intersect

at two non-consecutive vertices because that would imply a cycle in T .
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Suppose π′ ∈ S, and let π and π′ intersect at v. Suppose π′′ ∈ S does not pass

through v; then, it must intersect π at a single vertex w 6= v. Also, π′′ intersects π′

at some vertex u not on π by the claim above. But now u, v, w lie on a cycle, which

is impossible.

Lemma 2.3.2. If the longest path at a phase has length l, then there are at most dl

phases remaining before the algorithm terminates.

Proof. Suppose the longest path π chosen by Longest Path has length l. Any longest

paths that share an edge with π will be split into smaller paths, each of length at

most l−1, for the next phase. By lemma 2.3.1 all longest paths that are edge-disjoint

from π must pass through a single vertex, which has degree at most d. Thus there

are at most d such paths, and after d phases, the longest path remaining will be of

length at most l − 1. Therefore, after dl phases, all longest paths are of length 0,

and Longest Path terminates.

Theorem 2.3.3. Longest Path runs in O(n3/2
√

d) time.

Proof. If at any phase the longest path is of length at most
√

n
d
, then by lemma 2.3.2

the number of phases remaining is O(d
√

n
d
). Since each phase takes linear time, the

total time starting from such a phase is O(nd
√

n
d
) = O(n3/2

√
d).

So assume the input has a longest path of length l >
√

n
d
. How many phases can

go by without l falling below
√

n
d
? If l ≥

√
n
d

then at least
√

n
d

vertices are removed

in each phase; thus, the number of such phases is at most n/
√

n
d

=
√

dn. Again,

each phase takes linear time, so we reach a phase with l ≤
√

n
d

in time O(n3/2
√

d),

as desired.
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Chapter 3

Learning and Verifying Graphs

with Queries

3.1 Introduction

Graph learning appears in many different contexts for learning interaction networks.

In this chapter, we explore models for graph learning inspired by various real-world

problems.

Suppose we are presented with a circuit containing a set of chips on a board. We

can test the resistance between two chips with an ammeter. In as few measurements

as possible, we want to learn whether the entire circuit is connected, or whether

we need to power the components separately. This can be seen as a graph learning

problem, in which the chips are vertices of a hidden graph and the ammeter measure-

ments are queries into the graph, which tell whether a pair of vertices is connected

by a path. If we are given a strong enough ammeter to tell not only whether two

chips are connected, but also how far apart they are in the underlying circuit, we get

the stronger shortest path queries – a concept familiar to us from Chapter 2, where

shortest path queries are used in the context of evolutionary tree reconstruction.
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In a different setting [18], testing which pairs of chemicals react in a solution

is modeled by edge detecting queries. Here, vertices correspond to chemicals,

edges designate chemical reactions, and a set of chemicals ‘reacts’ if and only if it

induces an edge. Applications of this model extend to bioinformatics, where learning

a hidden matching [6] turns out to be useful in analyzing PCR, a technique for DNA

sequencing. As we discuss in Section 1.2, PCR can be modeled as graph learning

problems, and a focus of this chapter is studying edge counting queries, which are

modeled after multiplex PCR.

Our goal is to explore several graph-learning problems and queries. We consider

the following types of queries, defined on graphs G = (V, E):

• Edge detecting query (ED): Check if there is edge between any two vertices

in S ⊆ V . This model has applications in genome sequencing and was studied

in [3, 6, 18, 19, 49].

• Edge counting query (EC): Return the number of edges in the subgraph

induced by S ⊆ V . Learning graphs with edge counting queries is called the

additive model in bioinformatics, where it has extensive uses, especially for

analyzing multiplex PCR, and was studied in [29, 34, 50].

• Shortest path query (SP): Return the length of shortest path in G between

two vertices; if no path exists, return ∞. This is the canonical model in the

evolutionary tree literature; see [52, 65] and Chapter 2.

The second kind of task we consider is graph verification. Suppose we are inter-

ested in learning the structure of some protein networks, and after months of careful

measurement, we complete our learning task. If we then find out there is a small

chance we made a mistake in our measurements or if we have reason to believe our

equipment may have been broken during experimentation, can we verify the struc-

tures we’ve learned more efficiently than learning them over again? More concretely,
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we are interested in how efficiently we can decide whether a graph presented to us

is indeed the “true graph.” This is a natural question to ask, especially since real

world data is often noisy, or we sometimes have reason to mistrust results we are

given. Every learning problem induces a new verification problem.

We consider different classes of graphs for our learning and verification tasks. The

first class is arbitrary graphs, where there are no restrictions on the topology of

the graph. Any algorithm that learns or verifies an arbitrary graph can also be used

for more restricted settings. We also consider learning trees, where we know the

graph we are trying to learn is a tree, but we are not aware of its topology. This is a

natural setting for learning structures that we know do not have underlying cycles,

for example evolutionary trees. Finally, we consider the problem of learning the

partition of a graph, where the learner must determine the connected components of

the hidden graph without necessarily learning its edges. Here, we do not restrict the

underlying class of graphs, but instead relax the learning problem. This is a natural

question in settings where different partitions represent qualitative differences, for

example in electrical networks, a power generator in one partition cannot power any

nodes outside its own partition. Note that this also subsumes the natural question

of whether or not a graph is connected.

In this chapter we fill in some gaps in the literature on these problems and

introduce the verification task for these queries. We also introduce the problem

of learning partitions and present results in the EC query case. We then show

what problems remain open. After presenting a summary of the past work done on

these problems, we divide our results into two sections: Graph Learning and Graph

Verification.
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3.2 Previous Work

Some of the earliest work in graph discovery was for the evolutionary tree recon-

struction problem we study in Chapter 2. While the longest path algorithm fails

at solving this task optimally, Hein [52] tackles the problem of learning a degree d

restricted tree with SP queries. He describes an O(dn lg n) algorithm that builds

the tree by inserting one node at a time, in a carefully chosen order under which

each insertion takes O(d lg n) queries. Among other results, King et al. [65] provide

a matching lower bound for this problem.

Angluin and Chen [18] show that O(lg n) adaptive ED queries per edge are

sufficient to learn an arbitrary hidden graph. Their algorithm repeatedly divides

the graph into independent subgraphs (i.e., it colors the graph), so as to eliminate

interference to ED queries from previously discovered edges, and uses a variant of

binary search to find new edges within each subgraph. It is worth noting that this is

not far from an information-theoretic lower bound of Ω(ε lg n) ED queries per edge

for the family of graphs with n2−ε edges. A later paper [19] generalizes these results

to hypergraphs using different techniques.

The work of Angluin and Chen is preceded by a few papers [3, 6, 49] that

tackle learning restricted families of graphs, such as stars, cliques, and matchings.

Alon et al. [6] provide lower and upper bounds of .32
(

n
2

)
and (1/2 + o(1))

(
n
2

)
respec-

tively on learning a matching using nonadaptive ED queries, and a tight bound of

Θ(n lg n) ED queries in expectation if randomization is allowed. Alon and Asodi [3]

prove similar bounds for the classes of stars and cliques. Grebinski and Kucherov [49]

study reconstructing Hamiltonian paths with ED queries. It turns out that many of

these results are subsumed by those of [18] if we ignore constant factors.

Grebinski and Kucherov [50] also study the problem of learning a graph using EC

queries and give tight bounds of Θ(dn) and Θ(n2/ lg n) nonadaptive queries for d-
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degree-bounded and general graphs respectively. They also prove tight Θ(n) bounds

for learning trees. Their constructions make heavy use of separating matrices. In [34],

Choi and Kim show that graph reconstruction can be done using O
(
|E| log(n)
log(|E|)

)
queries,

but their algorithm takes time exponential in n. In [29], Grebinski and Kucherov

present a survey on learning various restricted cases of graphs, including Hamiltonian

cycles, matchings, stars, and k degenerate graphs, with ED and EC queries.

In the graph verification setting, Beerliova et al. [26] consider the problem of

discovering and verifying networks using distance queries. In this setting, which

models discovering nodes on the Internet, the learner can query a vertex, and the

answer to the query is the set of all edges whose endpoints have different distances

from the query vertex. They show there is no o(log n) competitive algorithm unless

P = NP .

Both the learning and verification tasks also bear some relation to the field of

Property Testing, where the object is to examine small parts of the adjacency matrix

of a graph to determine a global property of the graph. For a survey of this area,

see [48].

3.3 Graph Learning

We first note that EC queries are at least as strong as ED queries and that the

problem of learning an arbitrary graph is at least as hard as learning trees or parti-

tions. Hence, in this chapter, any lower bounds for stronger queries and easier targets

apply to weaker queries and harder target classes. Conversely, any upper bounds we

establish for weaker queries and harder problems apply for stronger queries and more

restricted classes.

We first establish that Θ(n2) SP and ED queries is essentially tight for learning
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arbitrary graphs and partitions.

Proposition 3.3.1. Ω(n2) SP queries are needed to learn the partition of a hidden

graph on n vertices.

Proof. We prove this by an adversarial argument; the adversary simply answers ‘∞’

(i.e., not connected) for all pairs of vertices i, j. If fewer than
(

n
2

)
queries are made,

then some pair i, j is not queried, and the algorithm cannot differentiate between the

graph with no edges and the graph with a single edge {i, j} (for which SP(i, j) = 1).

But these graphs have different partitions.

If k is the number of components in a graph, there is an obvious algorithm that

does better for k < n, even without knowledge of k:

Proposition 3.3.2. O(nk) SP queries are sufficient to determine the partition of

a hidden graph on n vertices, if k is the number of components in the graph.

Proof. We use a simple iterative algorithm:

• Step 1: Place 1 in its own component.1

• Step i > 1: Query SP(i, w) for an item w from each existing component; if

SP(i, w) 6= ∞ , place i in the corresponding component and move to the next

step. Otherwise, create a new component containing i and move to the next

step.

Correctness is trivial. For complexity, note that there at most k components at

any step (since there are at most k components at phase n and components are never

destroyed); hence n vertices take at most nk queries.

Proposition 3.3.3. Ω(n2) ED queries are needed to learn the partition of a hidden

graph on n vertices.

1We use numbers 1, 2, . . . , n to represent the vertices of the graph.
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Proof. Consider the class of graphs on n vertices consisting of two copies of Kn
2
, which

we will call C1 and C2, and one possible edge between C1 and C2. If there is an edge,

all the vertices are in a single component; otherwise there are two components. Any

algorithm that learns the partition must distinguish between the two cases. Observe

that an ED query on a set S containing more than one vertex from either C1 or C2

will not yield any information since an edge is guaranteed to be present in S and any

such query will be answered with a ‘yes’. Hence, all informative queries must contain

one vertex from C1 and one vertex from C2. An adversary can keep on answering

‘no’ to all such queries, and unless all possible pairs are checked, an edge may be

present between C1 and C2. Hence, the algorithm cannot tell whether the graph has

one component or two until it asks all ≈ (n
2
)2 = Ω(n2) queries.

It turns out that EC queries are considerably more powerful than ED queries

for this problem.

Proposition 3.3.4. Ω(n) EC queries are needed to learn the partition of a hidden

graph on n vertices.

Proof. We use an information-theoretic argument. The number of partitions of an n

element set is given by the Bell number Bn; according to de Bruijn [38]:

ln Bn = Ω(n ln n)

Since each EC query gives a lg(
(

n
2

)
) = 2 lg n bit answer, we need Ω( lg(Bn)

2 lg n
) =

Ω(n lg n
lg n

) = Ω(n) queries.

Theorem 3.3.5. O(n lg n) EC queries are sufficient to learn the partition of a

hidden graph on n vertices.

Proof. Consider the following n phase algorithm, in which the components of G[1 . . . i]

are determined in phase i.
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• Phase 1: Set C = {c1} with c1 = {1}. C will keep track of the components

c1, c2, . . . known at any phase, and we will let C + v denote {v} ∪
⋃

ci∈C ci.

• Phase (i + 1): Let v = (i + 1), and query EC(C + v). If EC(C + v) = EC(C)

(i.e., there are no edges between v and C ), add a new component c = {v} to

C.

Otherwise, split C into roughly equal halves C1 and C2 and query EC(C1 +

v),EC(C2 + v). Pick any half h ∈ {1, 2} for which EC(Ch + v) > EC(Ch)

and repeat recursively until EC({cj} + v) > EC(cj) for a single component

cj ∈ C2. This implies that there are edges between cj and v; we will call cj a

live component.

Repeat on C\{cj} to find another live component cj′ , if it exists; repeat again on

C \ {cj, cj′} and so on until no further live components remain (or equivalently,

no new edges are found). Remove all live components from C and add a new

component {v} ∪
⋃

live cj
cj.

Correctness is simple, by induction on the phase: we claim that C contains the

components of G[1 . . . i] at the end of phase i. This is trivial for i = 1. For i > 1,

suppose C = {c1, . . . , cm} at the beginning of phase i, and by the inductive hypothesis

C contains precisely the components of G[1 . . . (i− 1)]. The components that do not

have edges to v are unaffected by its introduction in G[1 . . . i], and these are not

changed by the algorithm. All other components are connected to v and therefore

to each other in G[1 . . . i]; but these are marked ‘live’ and subsequently merged into

a single component at the end of the phase. This completes the proof.

To analyze complexity, we use a “potential argument.” Let ∆i denote the increase

in the number of components in C during phase i. There are three cases:

2Notice that this is essentially a binary search.
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• ∆i = 1: There are no live components (v has no edges to any component in

C), and this is determined with a single EC(C + v) query.

• ∆i = 0: There is exactly 1 live component (v connects to exactly one member

of C). Since there are at most n components to search, it takes O(lg n) queries

to find this component.

• ∆i < 0: There are k > 1 live components with edges to v, bringing the number

of components down by k − 1.3 Finding each one takes O(lg n) queries, for a

total of O(k lg n) = O((−∆i + 1) lg n).

The total number of queries is

∑
i:∆i=1

1 +
∑

i:∆i=0

(lg n) +
∑

i:∆i<0

O((−∆i + 1) lg n)

The first two sums are bounded by O(n lg n) since there are n phases, and the last

one becomes

O(n lg n) + O(lg n)
∑
∆i<0

(−∆i).

But
∑

∆i<0(−∆i), the total decrease in the number of components, cannot be greater

than n since the total increase is bounded by n (one new component per phase) and

the final number of components is nonnegative. So the total number of queries is

O(n lg n), as desired.

To see that this analysis is tight, consider the case where G has exactly n/2

components, with ∆i = 1 for i < n/2, ∆i = 0 for i ≥ n/2. The first n/2 phases take

only O(n/2) queries, but the remaining n/2 take O(lg(n/2)) queries each, for a total

of O(n/2 lg(n/2) + n/2) = O(n lg n) queries.

Proposition 3.3.6. O(|E| lg n) EC queries are sufficient to learn a hidden graph

3The k components previously in C are replaced by a single component, hence ∆i = −(k − 1).
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on n vertices.

Proof. The algorithm of Angluin and Chen ([18]) achieves this since EC queries are

more powerful than ED queries, but we present a simpler method here that exploits

the counting ability of EC. The key observation is that we can learn the degree of

any vertex v in two queries:

d(v) = EC(V )− EC(V \ {v})

We use this to find all of the neighbors of v, using a binary search similar to

that in the algorithm of theorem 3.3.5. Split V \ {v} into halves V1, V2 and query

EC(V1 + v),EC(V2 + v). Pick a half such that EC(Vi + v) > EC(Vi) and recurse

until EC(w + v) > 0 for some vertex w. This implies that w is a neighbor of v.

Repeat the procedure on V \ {w, v} to find more neighbors, and so on, until d(v)

neighbors are found.

We can reconstruct the graph by finding the neighbors of each vertex; this uses

a total of ∑
v

d(v) lg n = lg n
∑

v

d(v) = 2|E| lg n = O(|E| lg n)

queries, as desired.

It follows from the above proof that the degree sequence of a graph can be com-

puted in 2n queries, and consequently any property that is determined by it takes

only linear queries.

Proposition 3.3.7. Ω(n2) SP queries are needed to learn a hidden tree.

Proof. Consider a quasi-star – a graph on 2n+1 vertices, which are of three kinds: a

single center vertex s, n ‘inner’ vertices x1 . . . xn, and n ‘outer’ vertices y1 . . . yn. The

center and inner vertices form a star (with edges {xi, s}) and the outer vertices are

26



s

xi

yi

Figure 3.1: An illustration of a quasi-star.

matched with the inner vertices (for each yi there is a unique xji
such that {xji

, yi}

is an edge; no xji
is repeated). A quasi-star is pictured in Figure 3.1.

Suppose the learning algorithm knows that G is a quasi-star. There are only

three kinds of SP queries: SP(s, xi) = 1, SP(s, yi) = 2, and

SP(xi, yj) =

 1 if {xi, yj} is an edge

3 otherwise

The only query that gives any information is the last kind, and the problem reduces

to that of learning a matching using ED queries, which we know by [6] takes Ω(n2)

queries.

Query partition graph tree
ED Θ(n2) Θ(|E| lg n), Θ(n2)[18] Θ(n lg n)

EC O(n lg n) O(|E| lg n), O( n2

lg n
), O(dn)[18, 50] Θ(n)

Ω(n) Ω(dn), Ω( n2

lg n
)[50]

SP Θ(nk) Θ(n2) Θ(n2), Θ(dn logd n) [52, 65]

Table 3.1: Summary of results for polynomial time algorithms.

Table 3.1 shows the known bounds for the problems we consider. We can see that
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tight asymptotic bounds exist for all of these learning problems, except for learning

partitions with EC.

We note that learning a tree becomes significantly easier when the degrees of its

vertices are restricted, and in many cases, knowing a bound on the degree of a graph

can help with the learning problem.

3.4 Graph Verification

In this setting, a verifier is presented a graph G(V, E) and asked to check whether it

is the same as a hidden graph G∗(V, E∗), given query access to G∗. In this section, we

explore the complexity of graph verification using various queries. Mainly, we show

that while verifying unrestricted graphs is hard using SP and ED queries, there is

a fast randomized algorithm that uses EC queries.

Proposition 3.4.1. Verifying an arbitrary graph takes Θ(n2) SP queries and Θ(n2)

ED queries.

Proof. Consider the problem of the verifying a clique when the hidden graph is

really a clique with some edge (u, v) removed. SP(u′, v′) = 2 if and only if u′ = u

and v′ = v. A simple adversarial argument shows that Ω(n2) queries are necessary.

Similarly, for ED queries, let S = {u, v}. The answer to query ED(U), where |U | 6= 2

is predetermined. Otherwise, ED(U) = 0 if and only if U = S. There are
(

n
2

)
choices

for S such that |S| = 2; hence Ω(n2) are needed. For both SP and ED queries the

O(n2) algorithm of checking all pairs of vertices is obvious.

Given that SP queries are most often considered in evolutionary tree learning,

we also consider the problem of verifying a tree with SP queries. In this setting, the

verifier knows the hidden graph is a tree and is presented with a tree to verify.

Proposition 3.4.2. Verifying a tree takes Θ(n) SP queries.
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Proof. Consider the problem of verifying a path graph (from the class of path graphs).

This reduces to verifying that a given ordering of the vertices is correct. If the answers

to each query are consistent with the graph to be verified, each query verifies at most

two vertices in the ordering. An adversary can choose whether or not to swap any

pair of vertices that have not been queried and either stay consistent with the input

path graph or not until at least n/2 SP queries have been performed. Conversely,

we can verify each edge individually in n− 1 queries.

We now consider the problem of verifying a graph with EC queries. Here, we see

that EC queries are quite powerful for verifying arbitrary graphs.

Theorem 3.4.3. Any graph can be verified by a randomized algorithm using 1 EC

query, with success probability 1/4.

Proof. We define EC(V, G) to be the query EC(V ) on graph G. The algorithm

is simple. We let Q be a random subset of vertices of V , with each vertex chosen

independently with probability 1
2
. We query EC(Q, G∗) and compute EC(Q, G). If

the two quantities are not equal, we say G and G∗ are different. Otherwise we say

they are the same. We will show that if G = G∗ the algorithm always returns the

correct answer, and otherwise gives the correct answer with probability at least 1
4
.

Consider the symmetric difference S = (V, E∆E∗). Let A = {(u, v) ∈ E \ E∗ :

u, v ∈ Q} and B = {(u, v) ∈ E∗ \ E : u, v ∈ Q}. If G = G∗ then |A| = |B| = 0

and we are always right in saying the graphs are identical; otherwise G 6= G∗ and

E∆E∗ 6= ∅, so by the following lemma |E∆E∗| = |A|+ |B| is odd with probability

1
4
. But this immediately implies that |A| 6= |B|, as desired.

Lemma 3.4.4. Let G(V, E) be a graph with at least one edge. Let G′(V ′, E ′) be the

subgraph induced by taking each vertex in G independently with probability 1
2
. If G

is non-empty, the probability that |E ′| is odd is at least 1
4
.
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Proof. Fix an ordering v1 . . . vn so that (vn−1, vn) ∈ E. Select each of v1 . . . vn−2

independently with probability 1/2, and let H ′ be the subgraph induced by the

selected vertices. Suppose the probability that H ′ contains an odd number of edges

(i.e., parity(H ′) = 1) is p.

Let i (resp. j) be the number of edges between vn−1 and H ′ (resp. vn and H ′).

Consider two cases:

• i ≡ j mod 2 If both are chosen an odd number of edges is added to H ′ and

parity(H ′) = 1− parity(G′). This happens with probability 1/4.

• i 6≡ j mod 2. Assume w.l.o.g. that i is odd and j is even. Then, if vn−1 is

chosen and vn is not chosen, an odd number of edges is added to H ′, and again

parity(H ′) = 1− parity(G′). This happens with probability 1/4.

On the other hand, if neither vn−1 nor vn is chosen then parity(G′) = parity(H ′),

and this happens with probability 1/4. So upon revealing the last two vertices, the

parity of H ′ is flipped with probability at least 1/4 and not flipped with probability

at least 1/4, independently of what happens in H ′. Let F denote the event that it

is flipped (i.e., that parity(H ′) 6= parity(G′). Then,

P[parity(G′) = 1] = P[parity(G′) = 1|parity(H ′) = 1]P[parity(H ′) = 1]

+ P[parity(G′) = 1|parity(H ′) = 0]P[parity(H ′) = 0]

= P[F |parity(H ′) = 1]p + P[F |parity(H ′) = 0](1− p)

= P[F ]p + P[F ](1− p) by independence

≥ 1/4(p + 1− p) = 1/4

as desired.

This finishes the proof of Theorem 3.4.3. Since this result has 1-sided error,
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we can easily boost the 1
4

probability to any constant, and Corollary 3.4.5 follows

immediately.

Corollary 3.4.5. Any graph can be verified by a randomized algorithm with error ε

using O(log(1
ε
)) EC queries.

3.4.1 Relation to Fingerprinting

Suppose A and B are n× n matrices over a field F. It is known that if A 6= B, then

for a vector v ∈ {0, 1}n chosen uniformly at random we have

P[Av 6= Bv] ≥ 1/2.

This is Freivalds’ fingerprinting technique [43]. It is was originally developed as a

technique for verifying matrix multiplications, and can be used for testing for equality

of any two matrices.

An easy extension of this method says that for vectors v, w ∈ {0, 1}n chosen

independently at random, if A 6= B we have

P[wT Av 6= wT Bv] = P[wT Av 6= wT Bv|Av = Bv]P[Av = Bv]

+ P[wT Av 6= wT Bv|Av 6= Bv]P[Av 6= Bv]

≥ 0× P[Av = Bv] +
1

2
× 1

2

=
1

4

This bears a strong resemblance to graph verification with EC queries. Let A

and B be the incidence matrices of G and G∗, respectively. Then an EC query

Q corresponds to multiplication on the left and right by the characteristic vector

of Q, and the algorithm becomes: choose v ∈ {0, 1}n uniformly at random and
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return ‘same’ if and only if vT Av = vT Bv. By Theorem 3.4.3 if A 6= B then

Pr[vT Av 6= vT Bv] ≥ 1
4
.

This raises a natural question. For arbitrary n×n matrices A and B over a field,

if A 6= B, then for a vector v ∈ {0, 1}n chosen uniformly at random, is P[vT Av 6=

vT Bv] ≥ 1/4 (or some other constant > 0)?

This turns out not to be the case. Consider the two matrices

A =


0 1 0

0 0 1

1 0 0

 B =


0 0 1

1 0 0

0 1 0


A 6= B, but it is not hard to check that for any vector v ∈ {0, 1}n, vT Av = vT Bv.

In fact, this holds true for adjacency matrices of ‘opposite’ directed cycles on > 3

vertices. A graph theoretic interpretation of this fact is that if the number of directed

edges on any induced subset of the two opposite directed cycles is the same, then an

EC query will always return the same answer for the two different cycles. Needless

to say, this property is not limited to the adjacency matrices of directed cycles: in

fact, it holds for any two matrices A and B such that A + AT = B + BT , since

vT (A + AT )v = vT Av + vT AT v = vT Av + (vT Av)T = 2vT Av

for all v, so that vT Av = vT Bv for all v.

Hence, we know that standard fingerprinting techniques do not imply Theorem

3.4.3. Furthermore, the proof to Theorem 3.4.3 generalizes easily to weighted graphs

and a more general form of EC queries, where the answer to the query is the sum

of the weights of its induced edges. Since any symmetric matrix can be viewed as

an adjacency matrix of an undirected graph, we have the following fingerprinting

technique for symmetric matrices.
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Theorem 3.4.6. Let A and B be n × n symmetric matrices over a field such that

A 6= B,4 then for v chosen uniformally at random from v ∈ {0, 1}n, Pr[vT Av 6=

vT Bv] ≥ 1
4
.

Proof. Let C = A− B 6= 0, and note that vT Av 6= vT Bv ⇐⇒ vT Cv 6= 0. Identify

C with the weighted graph G = (V, E), where V = {v1 . . . vn} and E = {(u, v) :

C(u, v) 6= 0}, and wt(u, v) = C(u, v). We proceed as in the proof of Lemma 3.4.4.

Fix v1 . . . vn so that wt(vn−1, vn) 6= 0, and let H ′ be as before. Define:

wt(H) =
∑

(u,v)∈H

wt(u, v); wt(w,H) =
∑

(w,v)∈G,v∈H

wt(w, v).

The first quantity is a generalization of parity, the second of the number of edges

from a vertex to a subgraph. Let T = wt(vn−1, H
′) + wt(vn, H

′) + wt(vn−1, vn), and

consider two cases:

• T = 0. Since wt(vn−1, vn) 6= 0, we know that at least one of the other terms

must be nonzero. Assume w.l.o.g. that this is wt(vn, H
′). So choosing vn but

not vn−1 is will make wt(G′) 6= wt(H ′), and this happens with probability 1/4.

• T 6= 0. Choosing both vn and vn−1 sets wt(G′) = wt(H ′) + T 6= wt(H ′). This

happens with probability 1/4.

Again, we choose neither vertex with probability 1/4, in which case wt(G′) =

wt(H ′). Finally,

4Or, more generally, any matrices A and B with A + AT 6= B + BT .
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P[wt(G′) 6= 0] = P[wt(G′) 6= 0|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= 0|wt(H ′) = 0]P[wt(H ′) = 0]

≥ P[wt(G′) = wt(H ′)|wt(H ′) 6= 0]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)|wt(H ′) = 0]P[wt(H ′) = 0]

= P[wt(G′) = wt(H ′)]P[wt(H ′) 6= 0]

+ P[wt(G′) 6= wt(H ′)]P[wt(H ′) = 0] by independence

≥ 1/4(P[wt(H ′) = 0] + P[wt(H ′) 6= 0]) = 1/4

as desired.

3.5 Discussion

There is a tantalizing asymptotic gap of O(lg n) in our bounds for EC queries for

learning the partition of the graph. It would also be interesting to know under which,

if any, query models it is easier to learn the number of components than the partition

itself. Another open question asked by Bouvel, Grebinski, and Kucherov [29], and

one that we leave open, is whether a hidden graph of average degree d can be learned

with O(dn) EC queries.5 This has since been answered by Choi and Kim [34], who

show that any graph with m edges can be learned non-adaptively using O
(

m log(n)
log(m)

)
queries. Their algorithm, however, is not polynomial time, and find finding an effi-

cient algorithm that meets this bound remains an interesting problem.

Some other problems left to be considered are learning and verification problems

for other restricted classes of graphs. For example, of theoretical interest is the

5Bouvel, Grebinski, and Kucherov [29] restrict themselves to a non-adaptive framework, where
all queries must be asked simultaneously.
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problem of verifying trees with ED queries. There is an obvious O(n) brute-force

algorithm, but it may be possible to do better. Also, other classes of graphs have

been studied in the literature (see the Section 3.2) including Hamiltonian paths,

matchings, stars, and cliques. It may be revealing to see the power of the queries

considered herein for learning and verifying these restricted classes of graphs.

It would also be useful to look at this problem from a more economic perspective.

Since edge counting queries are strictly more powerful than edge detecting queries,

they ought to be more expensive in some natural framework. Taking costs into

account and allowing learners to be able to choose queries with the goal of both

learning the graph and minimizing cost should be an interesting research direction.

Finally, our work shows that graph verification is possible even for many classes of

directed graphs. It would be interesting to redefine these queries for directed graphs

and explore their power.
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Chapter 4

Learning Analog Circuits by

Injecting Values

4.1 Introduction

We consider learning large-alphabet and analog acyclic circuits in the value injection

model introduced in [14]. In this model, we may inject values of our choice on any

subset of wires, but we can only observe the one output of the circuit. However, the

value injection query algorithms in that paper for boolean and constant alphabet

networks do not lift to the case when the size of the alphabet is polynomial in the

size of the circuit.

One motivation for studying the boolean network model is learning gene regu-

latory networks. In a boolean model, each node in a gene regulatory network can

represent a gene whose state is either active or inactive. However, genes may have

a large number of states of activity. Constant-alphabet network models may not

adequately capture the information present in these networks. The motivates our

interest in larger alphabets.

Akutsu et al. [2] and Ideker et al. [53] consider the discovery problem that models
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the experimental capability of gene disruption and overexpression. In such experi-

ments, it is desirable to manipulate as few genes as possible. In the particular models

considered in these papers, node states are fully observable – the gene expression data

gives the state of every node in the network at every time step. Their results show

that in this model, for bounded fan-in or sufficiently restricted gene functions, the

problem of learning the structure of a network is tractable.

In contrast, there is ample evidence that learning boolean circuits solely from

input-output behaviors may be computationally intractable. Kearns and Valiant [60]

show that specific cryptographic assumptions imply that NC1 circuits and TC0

circuits are not PAC learnable in polynomial time. These negative results have

been strengthened to the setting of PAC learning with membership queries [23],

even with respect to the uniform distribution [64]. Furthermore, positive learnability

results exist only for fairly limited classes, including propositional Horn formulas [21],

general read once Boolean formulas [22], and decision trees [31], and those for specific

distributions, including AC0 circuits [73], DNF formulas [54], and AC0 circuits with

a limited number of majority gates [55].1

Thus, Angluin et al. [14] look at the relative contributions of full observation

and full control of learning boolean networks. Their model of value injection allows

full control and restricted observation, and it is the model we study in this chapter.

Interestingly, their results show that this model gives the learner considerably more

power than with only input-output behaviors but less than the power with full ob-

servation. In particular, they show that with value injection queries, NC1 circuits

and AC0 circuits are exactly learnable in polynomial time, but their negative results

show that depth limitations are necessary.

A second motivation behind our work is to study the relative importance of

1Algorithms in both [55] and [73] for learning AC0 circuits and their variants run in quasi-
polynomial time.
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the parameters of the models for learnability results. The impact of alphabet size

on learnability becomes a natural point of inquiry, and ideas from fixed parameter

tractability are very relevant [40, 77].

In this chapter we show positive learnability results for bounded fan-in, large

alphabet, arbitrary depth circuits given some restrictions on the topology of the tar-

get circuit. Specifically, we show that transitively reduced circuits and circuits with

bounded shortcut width (as defined in section 4.2) are exactly learnable in poly-

nomial time, and we present evidence that shortcut width is the correct parameter

to look at for large-alphabet circuits. We also show that analog circuits of bounded

fan-in, logarithmic depth, and small shortcut width that satisfy a Lipschitz condition

are approximately learnable in polynomial time.

4.2 Preliminaries

4.2.1 Circuits

We give a general definition of acyclic circuits whose wires carry values from a set

Σ. For each nonnegative integer k, a gate function of arity k is a function from Σk

to Σ. A circuit C consists of a finite set of wires w1, . . . , wn, and for each wire wi,

a gate function gi of arity ki and an ordered ki-tuple wσ(i,1), . . . , wσ(i,ki) of wires, the

inputs of wi. We define wn to be the output wire of the circuit. We may think of

wires as outputs of gates in C.

The unpruned graph of a circuit C is the directed graph whose vertices are

the wires and whose edges are pairs (wi, wj) such that wi is an input of wj in C. A

wire wi is output-connected if there is a directed path in the unpruned graph from

that wire to the output wire. Wires that are not output-connected cannot affect the

output value of a circuit. The graph of a circuit C is the subgraph of its unpruned
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graph induced by the output-connected wires.

A circuit is acyclic if its graph is acyclic. In this chapter we consider only acyclic

circuits.2 If u and v are vertices such that u 6= v and there is a directed path from

u to v, then we say that u is an ancestor of v and that v is a descendant of u.

The depth of an output-connected wire wi is the length of a longest path from wi

to the output wire wn. The depth of a circuit is the maximum depth of any output-

connected wire in the circuit. A wire with no inputs is an input wire; its default

value is given by its gate function, which has arity 0 and is constant.

We consider the property of being transitively reduced [1] and a generalization

of it: bounded shortcut width. Let G be an acyclic directed graph. An edge (u, v)

of G is a shortcut edge if there exists a directed path in G of length at least two

from u to v. G is transitively reduced if it contains no shortcut edges. A circuit is

transitively reduced if its graph is transitively reduced. Note that in a transitively

reduced circuit, for every output-connected wire wi, no ancestor of wi is an input of

any descendant of wi, otherwise there would be a shortcut edge in the graph of the

circuit.

The shortcut width of a wire wi is the number of wires wj such that wj is both

an ancestor of wi and an input of a descendant of wi. (Note that we are counting

wires, or vertices, not edges.) The shortcut width of a circuit C is the maximum

shortcut width of any output-connected wire in C. A circuit is transitively reduced

if and only if it has shortcut width 0. A circuit’s shortcut width turns out to be a

key parameter in its learnability by value injection queries.

2In Chapter 5 we consider a variant of this model for circuits that allow cycles.
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4.2.2 Experiments on Circuits

Let C be a circuit. An experiment e is a function mapping each wire of C to

Σ ∪ {∗}, where ∗ is not an element of Σ. If e(wi) = ∗, then the wire wi is free in e;

otherwise, wi is fixed in e. If e is an experiment that assigns ∗ to wire w, and σ ∈ Σ,

then e|w=σ is the experiment that is equal to e on all wires other than w, and fixes w

to σ. We define an ordering � on Σ∪{∗} in which all elements of Σ are incomparable

and precede ∗, and lift this to the componentwise ordering on experiments. Then

e1 � e2 if every wire that e2 fixes is fixed to the same value by e1, and e1 may fix

some wires that e2 leaves free.

For each experiment e we inductively define the value wi(e) ∈ Σ, of each wire wi

in C under the experiment e as follows. If e(wi) = σ and σ 6= ∗, then wi(e) = σ. Oth-

erwise, if the values of the input wires of wi have been defined, then wi(e) is defined

by applying the gate function gi to them, that is, wi(e) = gi(wσ(i,1)(e), . . . , wσ(i,ki)(e)).

Because C is acyclic, for any experiment this uniquely defines wi(e) ∈ Σ for all wires

wi. We define the value of the circuit to be the value of its output wire, that is,

C(e) = wn(e) for every experiment e.

Let C and C ′ be circuits with the same set of wires and the same value set Σ. If

C(e) = C ′(e) for every experiment e, then we say that C and C ′ are behaviorally

equivalent. To define approximate equivalence, we assume that there is a metric

d on Σ mapping pairs of values from Σ to a real-valued distance between them.

If d(C(e), C ′(e)) ≤ ε for every experiment e, then we say that C and C ′ are ε-

equivalent.

We consider two principal kinds of circuits. A discrete circuit is a circuit for

which the set Σ of wire values is a finite set. An analog circuit is a circuit for which

Σ = [0, 1]. In this case we specify the distance function as d(x, y) = |x− y|.
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4.2.3 The Learning Problems

We consider the following general learning problem. There is an unknown target

circuit C∗ drawn from a known class of possible target circuits. The set of wires

w1, . . . , wn and the value set Σ are given as input. The learning algorithm may gather

information about C∗ by making calls to an oracle that will answer value injection

queries. In a value injection query, the algorithm specifies an experiment e and

the oracle returns the value of C∗(e). The algorithm makes a value injection query

by listing a set of wires and their fixed values; the other wires are assumed to be free,

and are not explicitly listed. The goal of a learning algorithm is to output a circuit

C that is either exactly or approximately equivalent to C∗.

In the case of learning discrete circuits, the goal is behavioral equivalence and the

learning algorithm should run in time polynomial in n. In the case of learning analog

circuits, the learning algorithm has an additional parameter ε > 0, and the goal is

ε-equivalence. In this case the learning algorithm should run in time polynomial in

n and 1/ε.

4.3 Learning Large-Alphabet Circuits

In this section we consider the problem of learning a discrete circuit when the al-

phabet Σ of possible values is of size nO(1). In Section 4.5 we reduce the problem of

learning an analog circuit whose gate functions satisfy a Lipschitz condition to that

of learning a discrete circuit over a finite value set Σ; the number of values is nΘ(1)

for an analog circuit of depth O(log n). Using this approach, in order to learn analog

circuits of even moderate depth, we need learning algorithms that can handle large

alphabets.

The algorithm Circuit Builder [14] uses value injection queries to learn acyclic
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discrete circuits of unrestricted topology and depth O(log n) with constant fan-in

and constant alphabet size in time polynomial in n. However, the approach of [14]

to building a sufficient set of experiments does not generalize to alphabets of size

nO(1) because the total number of possible settings of side wires along a test path

grows superpolynomially. In fact, we give evidence in Section 4.3.1 that this problem

becomes computationally intractable for an alphabet of size nΘ(1).

In turn, this negative result justifies a corresponding restriction on the topology of

the circuits we consider. We first show that a natural top-down algorithm using value-

injection queries learns transitively reduced circuits with arbitrary depth, constant

fan-in and alphabet size nO(1) in time polynomial in n. We then give a generalization

of this algorithm to circuits that have a constant bound on their shortcut width.

The topological restrictions do not result in trivial classes; for example, every leveled

graph is transitively reduced.

Combining these results with the discretization from Section 4.5, we obtain an al-

gorithm using value-injection queries that learns, up to ε-equivalence, analog circuits

satisfying a Lipschitz condition with constant bound, depth bounded by O(log n),

having constant fan-in and constant shortcut width in time polynomial in n and

1/ε.

4.3.1 Hardness for Large-Alphabet Circuits with Unrestricted

Topology

We give a reduction that turns a large-alphabet circuit learning algorithm into a

clique tester. Because the clique problem is complete for the complexity class W [1]

(see [40, 77]), this suggests the learning problem may be computationally intractable

for classes of circuits with large alphabets and unrestricted topology.
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The Reduction. Suppose the input is (G, k), where k ≥ 2 is an integer and

G = (V, E) is a simple undirected graph with n ≥ 3 vertices, and the desired output

is whether G contains a clique of size k. We construct a circuit C of depth d =
(

k
2

)
as follows. The alphabet Σ is V ; let v0 be a particular element of V . Define a gate

function g with three inputs s, u, and v as follows: if (u, v) is an edge of G, then

the output of g is equal to the input s; otherwise, the output is v0. The wires of C

are s1, . . . , sd+1 and x1, x2, . . . , xk. The wires xj have no inputs; their gate functions

assign them the default value v0. For i = 1, . . . , d, the wire si+1 has corresponding

gate function g, where the s input is si, and the u and v inputs are the i-th pair

(x`, xm) with ` < m in the lexicographic ordering. Finally, the wire s1 has no inputs,

and is assigned some default value from V − {v0}. The output wire is sd+1.

To understand the behavior of C, consider an experiment e that assigns values

from V to each of x1, . . . , xk, and leaves the other wires free. The gates g pass along

the default value of s1 as long as the values e(x`) and e(xm) are an edge of G, but if

any of those checks fail, the output value will be v0. Thus the default value of s1 will

be passed all the way to the output wire if and only if the vertex values assigned to

x1, . . . , xk form a clique of size k in G.

We may use a learning algorithm as a clique tester as follows. Run the learning

algorithm using C to answer its value-injection queries e. If for some queried exper-

iment e, the values e(x1), . . . , e(xk) form a clique of k vertices in G, stop and output

the answer “yes.” If the learning algorithm halts and outputs a circuit without mak-

ing such a query, then output the answer “no.” Clearly a “yes” answer is correct,

because we have a witness clique. And if there is a clique of size k in G, the learning

algorithm must make such a query, because in that case, the default value assigned

to s1 cannot otherwise be learned correctly; thus, a “no” answer is correct. Then we

have the following.

43



Theorem 4.3.1. If for some nonconstant computable function d(n) an algorithm

using value injection queries can learn the class of circuits of at most n wires, alphabet

size s, fan-in bound 3, and depth bound d(n) in time polynomial in n and s, then

there is an algorithm to decide whether a graph on n vertices has a clique of size k

in time f(k)nα, for some function f and constant α.

Proof. (Note that the function f need not be a polynomial.) On input (G, k), where

G has n vertices, we construct the circuit C as described above, which has alphabet

size s′ =
(

n
2

)
, depth d′ =

(
k
2

)
and number of wires n′ = d′ + k + 1. We then evaluate

d(1), d(2), . . . to find the least N such that d(N) ≥ n′. Such an N may be found

because d(n) is a nonconstant computable function; the value of N depends only on

k. We run the learning algorithm on the circuit C padded with inessential wires to

have N wires, using C to answer the value injection queries. By hypothesis, because

d′ ≤ d(N), the learning algorithm runs in time polynomial in N and s′. Its queries

enable us to answer correctly whether G has a clique of size k. The total running

time is bounded by f(k)nα for some function f and some constant α.

Because the clique problem is complete for the complexity class W [1], a polyno-

mial time learning algorithm as hypothesized in the theorem for any non-constant

computable function d(n) would imply fixed-parameter tractability of all the prob-

lems in W [1] [40, 77]. However, we show that restricting the circuit to be transi-

tively reduced (Theorem 4.3.5), or more generally, of bounded shortcut width (The-

orem 4.4.1), avoids the necessity of a depth bound at all.3

Remark. A natural question is whether a pattern graph less dense than a clique

might avoid squaring the parameter k in the reduction. In fact, there is a polynomial-

time algorithm to test whether a graph contains a path of length O(log n) [7]. A

3The target circuit C constructed in the reduction is of shortcut width k − 1.
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reduction similar to the one above can be used to test for the presence of an arbitrary

graph H on k vertices {1, . . . , k} as an induced subgraph in G. The gate with inputs

x` and xm tests for an edge in G (if (`, m) is an edge of H) or tests whether the

vertices are distinct and not an edge of G (if (`, m) is not an edge of H.) Note that

regardless of the number of edges in H, the all-pairs structure is necessary to verify

that the distinctness of the vertices assigned to x1, . . . , xk.

4.3.2 Distinguishing Paths

This section develops some properties of distinguishing paths, making no assumptions

about shortcut width. Let C∗ be a circuit with n wires, an alphabet Σ of cardinality

s, and fan-in bounded by a constant k. An arbitrary gate function for such a circuit

can be represented by a gate table with sk entries, giving the value of the gate

function for each possible k-tuple of input symbols.

Experiment e distinguishes σ from τ for w if e sets w to ∗ and

C∗(e|w=σ) 6= C∗(e|w=τ ).

If such an experiment exists, the values σ and τ are distinguishable for wire w;

otherwise, σ and τ are indistinguishable for w.

A test path π for a wire w in C∗ consists of a directed path of wires from w

to the output wire, together with an assignment giving fixed values from Σ to some

set S of other wires; S must be disjoint from the set of wires in the path, and each

element of S must be an input to some wire beyond w along the path. The wires in

S are the side wires of the test path π. The length of a test path is the number of

edges in its directed path. There is just one test path of length 0, consisting of the

output wire and no side wires.

We may associate with a test path π the partial experiment pπ that assigns ∗
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to each wire on the path, and the specified value from Σ to each wire in S. An

experiment e agrees with a test path π if e extends the partial experiment pπ, that

is, pπ is a subfunction of e. We also define the experiment eπ that extends pπ by

setting all the other wires to ∗.

If π is a test path and V is a set of wires disjoint from the side wires of π, then

V is functionally determining for π if for any experiment e agreeing with π and

leaving the wires in V free, for any experiment e′ obtained from e by setting the

wires in V to fixed values, the value of C∗(e′) depends only on the values assigned

to the wires in V . That is, the values on the wires in V determine the output of the

circuit, given the assignments specified by pπ. A test path π for w is isolating if

{w} is functionally determining for π. The following property is then clear.

Lemma 4.3.2. If π is an isolating test path for w then the set V of inputs of w is

functionally determining for π.

We define a distinguishing path for wire w and values σ, τ ∈ Σ to be an

isolating test path π for w such that eπ distinguishes between σ and τ for w. The

significance of distinguishing paths is indicated by the following lemma, which is

analogous to Lemma 10 of [14].

Lemma 4.3.3. Suppose σ and τ are distinguishable for wire w. Then for any mini-

mal experiment e distinguishing σ from τ for w, there is a distinguishing path π for

wire w and values σ and τ such that the free wires of e are exactly the wires of the

directed path of π, and e agrees with π.

Proof. We prove the result by induction on the depth of the wire w; it clearly holds

when w is the output wire. Suppose the result holds for all wires at depth at most

d in C∗, and assume that w is a wire at depth d + 1 and that e is any minimal

experiment that distinguishes σ from τ for w. Every free wire in e must be reachable

46



from w; using the acyclicity of C∗, let w′ be a free wire in e whose only free input

is w. Let σ′ = w′(e|w=σ) and τ ′ = w′(e|w=τ ). Because e is minimal, we must have

σ′ 6= τ ′.

Moreover, the minimality of e also implies that

C∗(e|w=σ,w′=σ′) = C∗(e|w=τ,w′=σ′)

and

C∗(e|w=σ,w′=τ ′) = C∗(e|w=τ,w′=τ ′),

so we must have

C∗(e|w=σ,w′=σ′) 6= C∗(e|w=σ,w′=τ ′),

which means that the experiment e′ = e|w=σ distinguishes σ′ from τ ′ for w′. The

experiment e′ is also a minimal experiment distinguishing σ′ from τ ′ for w′; otherwise,

e would not be minimal. The depth of w′ is at most d, so by induction, there is a

distinguishing path π′ for wire w′ and values σ′ and τ ′ such that the free wires of e′

are exactly the wires of the directed path π′, and e′ agrees with π′.

We may extend π′ to π as follows. Add w to the start of the directed path in π′.

The side wires of π are the side wires of π′ with their settings in π′, together with

any inputs of w′ (other than w) that are not already side wires of π′, set as in e. The

result is clearly an isolating test path for w that distinguishes σ from τ . Also the

wires in the directed path of π are precisely the free wires of e, and e agrees with π,

which completes the induction.

Conversely, a shortest distinguishing path yields a minimal distinguishing exper-

iment, as follows. This does not hold for circuits of general topology without the

restriction to a shortest path.
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Lemma 4.3.4. Let π be a shortest distinguishing path for wire w and values σ and

τ . Then the experiment e obtained from pπ by setting every unspecified wire to an

arbitrary fixed value is a minimal experiment distinguishing σ from τ for w.

Proof. Because π is a distinguishing path, w is functionally determining for π, so e

distinguishes σ from τ for w. If e is not minimal, then there is some minimal e′ � e

such that e′ distinguishes σ and τ for w. By Lemma 4.3.3, there is a distinguishing

path for w and values σ and τ whose path wires are the free wires of e′. This

contradicts the assumption that π as a shortest path distinguishing σ from τ for w.

4.3.3 The Distinguishing Paths Algorithm

In this section we develop the Distinguishing Paths Algorithm.

Theorem 4.3.5. The Distinguishing Paths Algorithm learns any transitively reduced

circuit with n wires, alphabet size s, and fan-in bound k, with O(n2k+1s2k+2) value

injection queries and time polynomial in the number of queries.

Lemma 4.3.6. If C∗ is a transitively reduced circuit and π is a test path for w in

C∗, then none of the inputs of w is a side wire of π.

Proof. Every side wire u of π is an input to some wire beyond w in the directed path

of wires, that is, to some descendant of w. If u were an input to w, then u would be

an ancestor of w and an input to a descendant of w, contradicting the assumption

that C∗ is transitively reduced.

The Distinguishing Paths Algorithm builds a directed graph G whose vertices are

the wires of C∗, in which an edge (v, w) represents the discovery that v is an input

of w in C∗. The algorithm also keeps for each wire w a distinguishing table Tw

with
(

s
2

)
entries, one for each unordered pair of values from Σ. The entry for (σ, τ)
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in out

a a

b a

c b

out

a

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -

output

gate tables distinguishing tables

Figure 4.1: The gate and distinguishing tables of a circuit over alphabet {a, b, c}.

in Tw is 1 or 0 according to whether or not a distinguishing path has been found

to distinguish values σ and τ on wire w. Stored together with each 1 entry is a

corresponding distinguishing path and a bit marking whether the entry is processed

or unprocessed. An illustration of a circuit’s gate and distinguishing tables appears

in Figure 4.1.

At each step, for each distinguishing table Tw that has unprocessed 1 entries, we

try to extend the known distinguishing paths to find new edges to add to G and

new 1 entries and corresponding distinguishing paths for the distinguishing tables

of inputs of w. Once every 1 entry in every distinguishing table has been marked

processed, the construction of distinguishing tables terminates. Then a circuit C

is constructed with graph G by computing gate tables for the wires; the algorithm

outputs C and halts.

To extend a distinguishing path for a wire w, it is necessary to find an input wire

of w. Given a distinguishing path π for wire w, an input v of w is relevant with

respect to π if there are two experiments e1 and e2 that agree with π, that set the

inputs of w to fixed values, that differ only by assigning different values to v, and
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are such that C∗(e1) 6= C∗(e2). Let V (π) denote the set of all inputs v of w that

are relevant with respect to π. It is only relevant inputs of w that need be found, as

shown by the following.

Lemma 4.3.7. Let π be a distinguishing path for w. Then V (π) is functionally

determining for π.

Proof. Suppose V (π) is not functionally determining for π. Then there are two

experiments e1 and e2 that agree with π and assign ∗ to all the wires in V (π), and

an assignment a of fixed values to the wires in V (π) such that the two experiments

e′1 and e′2 obtained from e1 and e2 by fixing all the wires in V (π) as in a have the

property that C∗(e′1) 6= C∗(e′2).

Because π is a distinguishing path for w, the set V of all inputs of w is functionally

determining for π. Thus, e′1 and e′2 must induce different values for at least one

input of w (that cannot be in V (π).) Let e′′1 be e′1 with all of the inputs of w

fixed to their induced values in e′1, and similarly for e′′2 with respect to e′2. Now

C∗(e′′1) = C∗(e′1) 6= C∗(e′2) = C∗(e′′2), and both e′′1 and e′′2 fix all the inputs of w. By

changing the differing fixed values of the inputs of w one by one from their setting in

e′′1 to their setting in e′′2, we can find a single input wire u of w such that changing just

its value changes the output of the circuit. The resulting two experiments witness

that u is an input of w relevant with respect to π, which contradicts the fact that u

is not in V (π).

Given a distinguishing path π for wire w, we define its corresponding input

experiments Eπ to be the set of all experiments e that agree with π and set up

to 2k additional wires to fixed values and set the rest of the wires free. Note that

each of these experiments fix at most 2k more values than are already fixed in the

distinguishing path. Consider all pairs (V, Y ) of disjoint sets of wires not set by pπ
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such that |V | ≤ k and |Y | ≤ k; for every possible way of setting V ∪ Y to fixed

values, there is a corresponding experiment in Eπ.

Find-Inputs. We now describe a procedure, Find-Inputs, that uses the experi-

ments in Eπ to find all the wires in V (π). Define a set V of at most k wires not set

by pπ to be determining if for every disjoint set Y of at most k wires not set by

pπ and for every assignment of values from Σ to the wires in V ∪ Y , the value of C∗

on the corresponding experiment from Eπ is determined by the values assigned to

wires in V , independent of the values assigned to wires in Y . Find-Inputs finds all

determining sets V and outputs their intersection.

Lemma 4.3.8. Given a distinguishing path π for w and its corresponding input

experiments Eπ, the procedure Find-Inputs returns V (π).

Proof. First, there is at least one set in the intersection, because if Vw is the set of

all inputs to w in C∗, then by Lemma 4.3.6 and the acyclicity of C∗, no wires in Vw

are set in pπ. By Lemma 4.3.2, Vw is functionally determining for π and therefore

determining, and, by the bound on fan-in, |Vw| ≤ k, so Vw will be one such set V .

Let V ∗ denote the intersection of all determining sets V .

Clearly, every wire in V ∗ is an input of w, because V ∗ ⊆ Vw. To see that each

v ∈ V ∗ is relevant with respect to π, consider the set V ′ = Vw − {v} of inputs of

w other than v. This set must not appear in V ∗(because v ∈ V ∗), so it must be

that for some pair (V ′, Y ) there are two experiments e1 and e2 in Eπ that give the

same fixed assignments to V ′ and different fixed assignments to Y , and are such that

C∗(e1) 6= C∗(e2). Then v(e1) 6= v(e2), because V ′ ∪ {v} is functionally determining

for π. Thus, if we take e′1 to be e1 with v fixed to v(e1) and e′2 to be e1 with v fixed

to v(e2), we have two experiments that witness that v is relevant with respect to π.

Thus V ∗ ⊆ V (π).
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Conversely, suppose v ∈ V (π) and that V ∗ does not include v. Then there is

some set V in the intersection that excludes v. Also, there are two experiments e1

and e2 that agree with π, set the inputs of w to fixed values and differ only on v, such

that C∗(e1) 6= C∗(e2). Let Y consist of all the inputs of w that are not in V ; clearly

v ∈ Y , none of the elements of Y are set in pπ and |Y | ≤ k. There is an experiment

e′1 ∈ Eπ for the pair (V, Y ) that sets the inputs of w as in e1 and the other wires of V

arbitrarily, and another experiment e′2 ∈ Eπ for the pair (V, Y ) that agrees with e1

except in setting v to its value in e2. These two experiments set the inputs of w as

in e1 and e2 respectively, and the inputs of w are functionally determining for π, so

we have C∗(e′1) = C∗(e1) 6= C∗(e2) = C∗(e′2). This is a contradiction: V would not

have been included in the intersection. Thus V (π) ⊆ V ∗, concluding the proof.

Find-Paths. We now describe a procedure, Find-Paths, that takes the set V (π)

of all inputs of w relevant with respect to π, and searches, for each triple consisting

of v ∈ V (π) and σ, τ ∈ Σ, for two experiments e1 and e2 in Eπ that fix all the wires

of V (π)−{v} in the same way, but set v to σ and τ , respectively, and are such that

C∗(e1) 6= C∗(e2). On finding such a triple, the distinguishing path π for w can be

extended to a distinguishing path π′ for v by adding v to the start of the path, and

making all the wires in V (π)− {v} new side wires, with values fixed as in e1. If this

gives a new 1 for entry (σ, τ) in the distinguishing paths table Tv, then we change

the entry, add the corresponding distinguishing path for v to the table, and mark it

unprocessed. We have to verify the following.

Lemma 4.3.9. Suppose π′ is a path produced by Find-Paths for wire v and values σ

and τ . Then π′ is a distinguishing path for wire v and values σ, τ .

Proof. Because v is an input to w in C∗, prefixing v to the path from π is a path of

wires from v to the output wire in C∗. Because v is an input of w, by Lemma 4.3.6, v
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is not among the side wires S for π. The new side wires are those in V (π)−{v}, and

because they are inputs of w, by Lemma 4.3.6 they are not already on the path for π

nor in the set S. Thus, π′ is a test path. The new side wires are fixed to values with

the property that changing v between σ and τ produces a difference at the output of

C∗. Because by Lemma 4.3.7, V (π) is functionally determining for π, the test path

π′ is isolating for v. Thus π′ is a distinguishing path for wire v and values σ and

τ .

The Distinguishing Paths Algorithm initializes the simple directed graph G to

have the set of wires of C∗ as its vertex set, with no edges. It initializes Tw to

all 0’s, for every non-output wire w. Every entry in Twn is initialized to 1, with

a corresponding distinguishing path of length 0 with no side wires, and marked as

unprocessed. The Distinguishing Paths Algorithm is summarized in Algorithm 1;

the procedure Construct-Circuit is described below.

Algorithm 1 The Distinguishing Paths Algorithm

Initialize G to have the wires as vertices and no edges.
Initialize Twn to all 1’s, marked unprocessed.
Initialize Tw to all 0’s for all non-output wires w.
while there is an unprocessed 1 entry (σ, τ) in some Tw do

Let π be the corresponding distinguishing path.
Perform all input experiments Eπ.
Use Find-Inputs to determine the set V (π).
Add any new edges (v, w) for v ∈ V (π) to G.
Use Find-Paths to find extensions of π for elements of V (π).
for each extension π′ that gives a new 1 entry in some Tv do

Put the new 1 entry in Tv with distinguishing path π′.
Mark this new 1 entry as unprocessed.

Mark the 1 entry for (σ, τ) in Tw as processed.
Use Construct-Circuit with G and the tables Tw to construct a circuit C.
Output C and halt.

We now show that when processing of the tables terminates, the tables Tw are

correct and complete. We first consider the correctness of the 1 entries.
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Lemma 4.3.10. After the initialization, and after each new 1 entry is placed in

a distinguishing table, every 1 entry in a distinguishing table Tw for (σ, τ) has a

corresponding distinguishing path π for wire w and values σ and τ .

Proof. This condition clearly holds after the initialization, because the distinguishing

path consisting of just the output wire and no side wires correctly distinguishes every

distinct pair of values from Σ. Then, by induction on the number of new 1 entries

in distinguishing path tables, when an existing 1 entry in Tw gives rise to a new one

in Tv, then the path π from Tw is a correct distinguishing path for w. Thus, by

Lemma 4.3.8, the Find-Inputs procedure correctly finds the set V (π) of inputs of w

relevant with respect to π, and by Lemma 4.3.9, the Find-Paths procedure correctly

finds extensions of π to distinguishing paths π′ for elements of V (π). Thus, any new

1 entry in a table Tv will have a correct corresponding distinguishing path.

A distinguishing table Tw is complete if for every pair of values σ, τ ∈ Σ such

that σ and τ are distinguishable for w, Tw has a 1 entry for (σ, τ).

Lemma 4.3.11. When the Distinguishing Paths Algorithm terminates, Tw is com-

plete for every wire w in C∗.

Proof. Assume to the contrary and look at a wire w at the smallest possible depth

such that Tw is incomplete; assume it lacks a 1 entry for the pair (σ, τ), which are

distinguishable for w. Note that w cannot be the output wire. Because the depth of

w is at least one more than the depth of any descendant of w, all wires on all directed

paths from w to the root have complete distinguishing tables. By Lemma 4.3.10, all

the entries in all distinguishing tables are also correct.

Because σ and τ are distinguishable for w, by Lemma 4.3.3 there exists a distin-

guishing path π for wire w and values σ and τ . On this distinguishing path, w is

followed by some wire x. The wires along π starting with x and omitting any side
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wires that are inputs of x is a distinguishing path for wire x and values σ′ and τ ′,

where σ′ is the value that x takes when w = σ and τ ′ is the value that x takes when

w = τ in any experiment agreeing with π.

Because x is a descendant of w, its distinguishing table Tx is complete and correct.

Thus, there exists in Tx a 1 entry for (σ′, τ ′) and a corresponding distinguishing

path πx. This 1 entry must be processed before the Distinguishing Paths Algorithm

terminates. When it is processed, two of the input experiments for πx will set the

inputs of x in agreement with π, and set w to σ and τ respectively. Thus, w will

be discovered to be a relevant input of x with respect to π, and a distinguishing

experiment for wire w and values σ and τ will be found, contradicting the assumption

that Tw never gets a 1 entry for (σ, τ). Thus, no such wire w can exist and all the

distinguishing tables are complete.

Construct-Circuit. Now we show how to construct a circuit C behaviorally equiv-

alent to C∗ given the graph G and the final distinguishing tables. G is the graph of

C, determining the input relation between wires. Note that G is a subgraph of the

graph of C∗, because edges are added only when relevant inputs are found.

Gate tables for wires in C will keep different combinations of input values and

their corresponding output. Since some distinguishing tables for wires may have 0

entries, we will record values in gate tables up to equivalence, where σ and τ are in

the same equivalence class for w if they are indistinguishable for w. We process one

wire at a time, in arbitrary order. We first record, for one representative σ of each

equivalence class of values for w, the outputs C∗(eπ|w=σ) for all the distinguishing

paths π in Tw. Given a setting of the inputs to w (in C), we can tell which equivalence

class of values of w it should map to as follows. For each distinguishing path π in

Tw, we record the output of C∗ for the experiment equal to eπ with the inputs of w

set to the given fixed values and w = ∗. For this setting of the inputs, we set the
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output in w’s gate table to be the value of σ with recorded outputs matching these

outputs for all π. Repeating this for every setting of w’s inputs completes w’s gate

table, and we continue to the next gate.

Lemma 4.3.12. Given the graph G and distinguishing tables as constructed in the

Distinguishing Paths Algorithm, the procedure Construct-Circuit constructs a circuit

C behaviorally equivalent to C∗.

Proof. Assume to the contrary that C is not behaviorally equivalent to C∗, and let

e be a minimal experiment (with respect to �) such that C(e) 6= C∗(e). Using the

acyclicity of C, there exists a wire w that is free in e and its inputs (in C) are fixed

in e. Let σ be the value that w takes for experiment e in C, and let τ be the value

that w takes for experiment e in C∗. Because e is minimal, σ 6= τ .

Now C(e) = C(e|w=σ) and C∗(e) = C∗(e|w=τ ), but because e is minimal, we

must have C(e|w=σ) = C∗(e|w=σ), so C∗(e|w=σ) = C(e) 6= C∗(e) = C∗(e|w=τ ) and

e distinguishes σ from τ for w. Thus, because the distinguishing tables used by

Construct-Circuit are complete and correct, there must be a distinguishing path π

for (σ, τ) in Tw.

Consider the set V of inputs of w in C∗. If in the experiment eπ the wires in V

are set to the values they take in e in C∗, then the output of C∗ is C∗(e|w=τ ). If V ′

is the set of inputs of w in C, then V ′ ⊆ V , and if in the experiment eπ the wires

in V ′ are set to their fixed values in e, then the output of C∗ is C∗(e|w=σ), where σ

is the representative value chosen by Construct-Circuit. Thus, there must be a wire

v ∈ V − V ′ relevant with respect to π, but then v would have been added to the

circuit graph as an input to w when π was processed, a contradiction. Thus, C is

behaviorally equivalent to C∗.

We analyze the total number of value injection queries used by the Distinguishing

Paths Algorithm; the running time is polynomial in the number of queries. To
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construct the distinguishing tables, each 1 entry in a distinguishing table is processed

once. The total number of possible 1 entries in all the tables is bounded by ns2. The

processing for each 1 entry is to take the corresponding distinguishing path π and

construct the set Eπ of input experiments, each of which consists of choosing up to

2k wires and setting them to arbitrary values from Σ, for a total of O(n2ks2k) queries

to construct Eπ. Thus, a total of O(n2k+1s2k+2) value injection queries are used to

construct the distinguishing tables.

To build the gate tables, for each of n wires, we try at most s2 distinguishing

path experiments for at most s values of the wire, which takes at most s3 queries.

We then run the same experiments for each possible setting of the inputs to the wire,

which takes at most sks2 experiments. Thus Construct-Circuit requires a total of

O(n(s3+sk+2)) experiments, which are already among the ones made in constructing

the distinguishing tables. Note that every experiment fixes at most O(kd) wires,

where d is the depth of C∗. This concludes the proof of Theorem 4.3.5.

4.4 Circuits with Bounded Shortcut Width

In this section we describe the Shortcuts Algorithm, which generalizes the Distin-

guishing Paths Algorithm to circuits with bounded shortcut width as follows.

Theorem 4.4.1. The Shortcuts Algorithm learns the class of circuits having n wires,

alphabet size s, fan-in bound k, and shortcut width bounded by b using a number of

value injection queries bounded by (ns)O(k+b) and time polynomial in the number of

queries.

When C∗ is not transitively reduced, there may be edges of its graph that are

important to the behavior of the circuit, but are not completely determined by the

behavior of the circuit. For example, the three circuits given in Figure 1 of [14] are
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behaviorally equivalent, but have different graphs; a behaviorally correct circuit can-

not be constructed with just the edges that are common to the three circuit graphs.

Thus, the Shortcuts Algorithm focuses on finding a sufficient set of experiments for

C∗, and uses Circuit Builder [14] to build the output circuit C.

A gate with gate function g and input wires u1, . . . , u` is wrong for w in C∗ if there

exists an experiment e in which the wires u1, . . . , u` are fixed, say to values uj = σj,

and w is free, and there is an experiment e such that C∗(e) 6= C∗(e|w=g(σ1,...,σ`)), and

is correct otherwise. The experiment e, which we term a witness experiment for

this gate and wire, shows that no circuit C using this gate for w can be behaviorally

equivalent to C∗. A set E of experiments is sufficient for C∗ if for every wire w and

every candidate gate that is wrong for w, E contains a witness experiment for this

gate and this wire.

Lemma 4.4.2. [14] If the input E to Circuit Builder is a sufficient set of experiments

for C∗, then the circuit C that it outputs is behaviorally equivalent to C∗.

The need to guarantee witness experiments for all possible wrong gates means that

the Shortcuts Algorithm will learn a set of distinguishing tables for the restriction

of C∗ obtained by fixing u1, . . . , u` to values σ1, . . . , σ` for every choice of at most k

wires uj and every choice of assignments of fixed values to them.

On the positive side, we can learn quite a bit about the topology of a circuit C∗

from its behavior. An edge (v, w) of the graph of C∗ is discoverable if it is the initial

edge on some minimal distinguishing experiment e for v and some values σ1 and σ2.

This is a behaviorally determined property; all circuits behaviorally equivalent to C∗

must contain all the discoverable edges of C∗.

Because e is minimal, w must take on two different values, say τ1 and τ2 in

e|v=σ1 and e|v=σ2 respectively.. Moreover, e|v=σ1 must be a minimal experiment

distinguishing τ1 from τ2 for w; this purely behavioral property is both necessary
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and sufficient for a pair (v, w) to be a discoverable edge.

Lemma 4.4.3. The pair (v, w) is a discoverable edge of C∗ if and only if there is

an experiment e and values σ1, σ2, τ1, τ2 such that e is a minimal experiment distin-

guishing σ1 from σ2 for v, and e|v=σ1 is a minimal experiment distinguishing τ1 from

τ2 for w.

We now generalize the concept of distinguishing paths to leave potential shortcut

wires unassigned. Assume that C∗ is a circuit, with n wires, an alphabet Σ of s

symbols, fan-in bound k, and shortcut width bound b. A test path with shortcuts

π is a directed path of wires from some wire w to the output, a set S of side wires

assigned fixed values from Σ, and a set K of cut wires such that S and K are

disjoint and neither contains w, and each wire in S ∪K is an input to at least one

wire beyond w in the directed path of wires. One intuition for this is that the wires

in K could have been set as side wires, but we are treating them as possible shortcut

wires, not knowing whether they will end up being shortcut wires or not. As before,

we define pπ to be the partial experiment setting all the wires in the directed path to

∗ and all the wires in S to the specified fixed values. Also, eπ is the experiment that

extends pπ by setting every unspecified wire to ∗. The length of π is the number of

edges in its directed path of wires.

Let π be a test path with shortcuts of nonzero length, with the directed path

v1, v2, . . . , vr, side wires S, and cut wires K. The 1-suffix of π is the test path π′

obtained as follows. The directed path is v2, . . . , vr, the side wires S ′ are all elements

of S that are inputs to at least one of v3, . . . , vr, and the cut wires K ′ are all elements

of K ∪ {v1} that are inputs to at least one of v3, . . . , vr. If t < r, the t-suffix of π is

obtained inductively by taking the 1-suffix of the (t− 1)-suffix of π. A suffix of π is

the t-suffix of π for some 1 ≤ t < r.

If π is a test path with shortcuts and V is a set of wires disjoint from the side
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wires of π, then V is functionally determining for π if for any experiment that

agrees with π and fixes all the wires in V , the value output by C∗ depends only on

the values assigned to the wires in V . Then π is isolating if the set of wires {w}∪K

is functionally determining for π. Note that if we assign fixed values to all the wires

in K, we get an isolating test path for w.

Lemma 4.4.4. Let π be an isolating test path with shortcuts. If π′ is any suffix of

π then π′ is isolating.

Proof. Let π have directed path v1, . . . , vr, side wires S and cut wires K. Let π′

be the 1-suffix of π, with side wires S ′ and cut wires K ′. The values of v1 and K

determine the output of C∗ in any experiment that agrees with π. The only wires

in {v1} ∪ K that are not in K ′ are inputs of v2 that are not also inputs of some

v3, . . . , vr. Similarly, the only wires in S−S ′ are inputs of v2 that are not also inputs

of some v3, . . . , vr. By setting the value of v2, we make these input wires irrelevant,

so {v2} ∪K ′ are functionally determining for π′.

In this setting, what we want to distinguish are pairs of assignments to (w,B),

where B is a set of wires not containing w. An assignment to (w,B) is just a

function with domain {w}∪B and co-domain Σ. If a is an assignment to (w,B) and

e is an experiment mapping w and every wire in B to ∗, then by (e|a) we denote the

experiment e′ such that e′(v) = a(v) if v ∈ {w}∪B and e′(v) = e(v) otherwise. If a1

and a2 are two assignments to (w,B), then the experiment e distinguishes a1 from

a2 if e maps {w} ∪B to ∗ and C∗(e|a1) 6= C∗(e|a2).

Let π be a distinguishing path with shortcuts with initial path wire w, side

wires S and cut wires K. Then π is distinguishing for the pair (w,B) and assign-

ments a1 and a2 to (w,B) if K ⊆ B, B ∩ S = ∅, π is isolating and eπ distinguishes

a1 from a2. If such a path exists, we say (w,B) is distinguishable for a1 and a2.
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Note that this condition requires that π not set any of the wires in B. When B = ∅,

these definitions reduce to the previous ones.

4.4.1 The Shortcuts Algorithm

Overview of algorithm. We assume that at most k wires u1, . . . , u` have been

fixed to values σ1, . . . , σ`, and denote by C∗ the resulting circuit. The process de-

scribed is repeated for every choice of wires and values. Like the Distinguishing

Paths Algorithm, the Shortcuts Algorithm builds a directed graph G whose vertices

are the wires of C∗, in which an edge (v, w) is added when v is discovered to be an

input to w in C∗; one aim of the algorithm is to find all the discoverable edges of C∗.

Distinguishing tables. The Shortcuts Algorithm maintains a distinguishing table

Tw for each wire w. Each entry in Tw is indexed by a triple, (B, a1, a2), where B is a

set of at most b wires not containing w, and a1 and a2 are assignments to (w,B). If an

entry exists for index (B, a1, a2), it contains π, a distinguishing path with shortcuts

that is distinguishing for (w,B), a1 and a2. The entry also contains a bit marking

the entry as processed or unprocessed.

Initialization. The distinguishing table Twn for the output wire is initialized with

entries indexed by (∅, {wn = σ}, {wn = τ}) for every pair of distinct symbols σ, τ ∈ Σ,

each containing the distinguishing path of length 0 with no side wires and no cut

wires. Each such entry is marked as unprocessed. All other distinguishing tables are

initialized to be empty.

While there is an entry in some distinguishing table Tw marked as unprocessed,

say with index (B, a1, a2) and π the corresponding distinguishing path with shortcuts,

the Shortcuts Algorithm processes it and marks it as processed. To process it, the

algorithm first uses the entry try to discover any new edges (v, w) to add to the
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graph G; if a new edge is added, all of the existing entries in the distinguishing table

for wire w are marked as unprocessed. Then the algorithm attempts to find new

distinguishing paths with shortcuts obtained by extending π in all possible ways.

If an extension is found to a test path with shortcuts π′ that is distinguishing for

(w′, B′), a′1 and a′2, if there is not already an entry for (B′, a′1, a
′
2), or, if π′ is of

shorter length that the existing entry for (B′, a′1, a
′
2), then its entry is updated to

π′ and marked as unprocessed. When all possible extensions have been tried, the

algorithm marks the entry in Tw for (B, a1, a2) as processed.

In contrast to the case of the Distinguishing Paths Algorithm, the Shortcuts

Algorithm tries to find a shortest distinguishing path with shortcuts for each entry in

the table. When no more entries marked as unprocessed remain in any distinguishing

table, the algorithm constructs a set of experiments E as described below, calls

Circuit Builder on E, outputs the resulting circuit C, and halts.

Processing an entry. Let (B, a1, a2) be the index of an unprocessed entry in a

distinguishing table Tw, with corresponding distinguishing path with shortcuts, π,

where the side wires of π are S and the cut wires are K. Note that K ⊆ B and

S ∩B = ∅. Let the set Eπ consist of every experiment that agrees with π, arbitrarily

fixes the wires in K, and arbitrarily fixes up to 2k additional wires not in K and not

set by pπ, and sets the remaining wires free. There are O((ns)2ksb) experiments in

Eπ; the algorithm makes a value injection query for each of them.

Finding relevant inputs. For every assignment a of fixed values to K, the re-

sulting path πa is an isolating test path for w. We use the Find-Inputs procedure (in

Section 4.3.3) to find relevant inputs to w with respect to πa, and let V ∗(π) be the

union of the sets of wires returned by Find-Inputs over all assignments a to K. For

each v ∈ V ∗(π), add the edge (v, w) to G if it is not already present, and mark all
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existing entries in all the distinguishing tables for wire w as unprocessed.

Lemma 4.4.5. The wires in V ∗(π) are inputs to w and the wires in V ∗(π) ∪K are

functionally determining for π.

Proof. This follows from Lemma 4.3.8, because for each assignment a to K, the

resulting πa is an isolating path for w, and any wires in the set returned by Find-

Inputs are indeed inputs to w. Also, for each assignment a to K, the set V (πa) is

functionally determining for πa, and is contained in V ∗(π).

Additional input test. The Shortcuts Algorithm makes an additional input test

if π distinguishes two assignments a1 and a2 such that there is a wire w′ ∈ K such

that a1 and a2 agree on every wire other than w. Let π′ be the distinguishing path

obtained from π by fixing every wire in K − {w} to its value in a1. If there is an

experiment e agreeing with π′ and setting w to ∗ and fixing every element of V (π′),

and two values σ1 and σ2 such that C∗(e|v=σ1) 6= C∗(e|v=σ2), and, moreover, for every

τ ∈ Σ, C∗(e|w=τ,v=σ1) = C∗(e|w=τ,v=σ2), then add edge (v, w) to G if it is not already

present, and mark all the existing entries in the distinguishing table for wire w as

unprocessed.

Lemma 4.4.6. If edge (v, w) is added to G by this additional input test, then v is

an input of w in C∗.

Proof. Note that w must take two different values, say τ1 and τ2, in the experiments

e|v=σ1 and e|v=σ2 ; thus, w must be a descendant of v. Moreover, C∗(e|w=τ1,v=σ1) =

C∗(e|w=τ1,v=σ2) and C∗(e|w=τ2,v=σ1) = C∗(e|w=τ2,v=σ2), from which we conclude that

C∗(e|w=τ1,v=σ1) 6= C∗(e|w=τ2,v=σ1).

If v is not an input of w, then let U be the set of all inputs of w. In e, if we

set v = σ1 and w = ∗ and the wires in U as induced by e|v=σ1 , then w = τ1 and

the output of C∗ is C∗(e|w=τ1,v=σ1). If we then change the values on wires in U one
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by one to their values in e|v=σ2 , because the final result have w = τ2 and output

C∗(e|v=σ1,w=τ2), there must be an input u such that fixing the other inputs to w and

changing u’s value changes the output with respect to e|v=σ1 . Thus, u is a relevant

input with respect to the distinguishing path π{v=σ1}, and must be in the set V (π).

This is a contradiction, because wires in V (π) are fixed in e, and u must change

value from e|v=σ1 and e|v=σ2 . Thus v must be an input of w.

Extending a distinguishing path. After finding as many inputs of w as possible

using π, the Shortcuts Algorithm attempts to extend π as follows. Let IG(w) be the

set of all inputs of w in G. For each pair (w′, K ′) such that w′ ∈ IG(w) and K ′ is a

set of at most b wires not containing w′ such that K ′ ⊆ IG(w)∪K and K ′ is disjoint

from the path wires and side wires of π, we let S0 = (K ∪V ∗(π))− ({w′}∪K ′). Note

that the set of wires in S0 ∪K ′ ∪ {w′} is functionally determining for π.

For each assignment a of fixed values to S0, the algorithm extends π to π′ as

follows. It adds w′ to the start of the directed path, adds S0 to the set of side wires

(fixed to the values assigned by a) and takes the cut wires to be K ′. Note that every

wire in K ′ is an input to some wire beyond w on the path. Because w′ is an input

of w, and all of the wires in V ∗(π)∪K are accounted for among (w,K ′) and S ′, and

all of the wires in S ′ are inputs to w or wires beyond w on the path, the result is an

isolating test path with shortcuts for (w′, K ′).

The algorithm then searches through all triples (B′, a′1, a
′
2) where B′ is a set of at

most b wires not containing w′, and a′1 and a′2 are assignments to (w′, B′), to discover

whether π′ is distinguishing for (w′, B′), a′1 and a′2. If so, the algorithm checks the

distinguishing table Tw′ and creates or updates the entry for index (B′, a′1, a
′
2) as

follows. If there is no such entry, one is created with π′. If there already is an entry

and π′ is shorter than the path in the entry, then the entry is changed to contain

π′. If the entry is created or changed by this operation, it is marked as unprocessed.
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When all possible extensions of π have been tried, the entry in Tw for (B, a1, a2) is

marked as processed.

Correctness and completeness. We define the distinguishing table Tw to be

correct if whenever π is an entry in Tw for (B, a1, a2), then π is a distinguishing path

with shortcuts that is distinguishing for (w,B), a1 and a2. For each wire w, let B(w)

denote the set of shortcut wires of w in the target circuit C∗. If π is a distinguishing

path with shortcuts such that every edge in its directed path is discoverable, we say

that π is discoverable. The distinguishing Tw table is complete if for every pair a1

and a2 of assignments to (w,B(w)) that are distinguishable by a discoverable path,

there is an entry in Tw for index (B(w), a1, a2).

Lemma 4.4.7. When Shortcuts Algorithm finishes the processing of the distinguish-

ing tables, every distinguishing table Tw is correct and complete.

Proof. The correctness follows inductively from the correctness of the initialization

of Twn by the arguments given above. To prove completeness, we prove the following

stronger condition about the distinguishing tables when the Shortcuts Algorithm

finishes processing them: (1) for every wire w and every pair a1 and a2 of assign-

ments to (w,B(w)) that are distinguishable by a discoverable path, the entry for

(B(w), a1, a2) is a shortest discoverable distinguishing path with shortcuts that is

distinguishing for (w,B(w)), a1 and a2.

Condition (1) clearly holds for Twn after it is initialized, and this table does not

change thereafter. Assume to the contrary that condition (1) does not hold and let

w be a wire of the smallest possible depth such that Tw does not satisfy condition

(1). Note that w is not the output wire.

There must be assignments a1 and a2 for (w,B(w)) that are distinguishable by a

discoverable path such that in Tw, the entry for (B(w), a1, a2) is either nonexistent
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or not as short as possible. Let π be a shortest possible discoverable distinguishing

path with shortcuts that is distinguishing for (w,B(w)), a1 and a2. Let S be the

side wires of π, with assignment a, and let K be the cut wires of π. Then we have

K ⊆ B and S ∩ B = ∅. Because w is not the output wire, the directed path in π is

of length at least 1. Let π′ be the 1-suffix of π, with initial vertex w′, side wires S ′

and cut wires K ′. Note that (w,w′) must be a discoverable edge and that π′ is also

discoverable. By Lemma 4.4.4, π′ is isolating.

For any two assignments a′1 and a′2 to (w′, B(w′)) such that a′j(u) is the value of

u in eπ|aj
for each u ∈ {w′} ∪K ′, we have that π′ is distinguishing for (w′, B(w′)),

a′1 and a′2. To see this, note that {w′} ∪ K ′ is functionally determining for π′, so

C∗(eπ′|a′j) = C∗(eπ|aj
) for j = 1, 2, and these latter two values are distinct. Let a′j

denote the assignment to (w′, B(w′)) induced by the experiment eπ|aj
for j = 1, 2;

these two assignments have the required property.

Because the depth of w′ is smaller than the depth of w, condition (1) must hold for

Tw′ , and the distinguishing table for Tw′ must contain an entry for (B(w′), a′1, a
′
2) that

is a shortest discoverable distinguishing path with shortcuts π′′ that is distinguishing

for B(w′), a′1 and a′2. Note that the length of π′′ is at most the length of π minus 1.

We argue that the discoverable edge (w,w′) must be added to G by the Shortcuts

Algorithm. This edge is the first edge on a minimal experiment e distinguishing

σ1 from σ2 for w. This corresponds to a distinguishing path ρ with no cut edges

distinguishing σ1 from σ2 for w, and every edge of this path is also discoverable.

There are two cases, depending on whether w is a shortcut of w′ on the path or not.

If w is not a shortcut edge of w′ on the path, then the 1-suffix of ρ will be a

discoverable distinguishing path with no cut edges that is distinguishing for w′, τ1,

and τ2, where these are the values w′ takes in e|w=σj
for j = 1, 2. Because condition

(1) holds for Tw′ , there will be an entry in Tw′ containing a distinguishing path with

shortcuts for (w′, B(w′)) that distinguishes the two assignments that set B(w′) as in
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e and set w′ to τ1 and τ2. Because w is a relevant input with respect to ρ, the edge

(w,w′) will be added to G if it is not already present when ρ is processed.

If w is a shortcut edge of w′ on the path, then the 1-suffix of ρ will be a discoverable

distinguishing path with cut edges {w} that is distinguishing for the assignments

α1 = {w = σ1, w
′ = τ1} and α2 = {w = σ2, w

′ = τ2}. Because w ∈ B(w′) and Tw′

satisfies condition (1), there will be an entry ρ in Tw′ for (w′, B(w′)) that distinguishes

the two assignments to (w′, B(w′)) that agree with α1 and α2 on w′ and w, and set

every other element of B(w′) as in e. When the entry ρ is processed, the additional

input test will discover the edge (w,w′) and add it to the graph G if it is not already

present. In fact, this shows that every discoverable edge (v, w′) will eventually be

discovered by the algorithm because Tw′ is complete.

Thus, we can be sure that the entry π′′ will be (re)processed when every discov-

erable edge (v, w′) is present in G, including (w,w′). When this happens, the entry

π′′ will be extended to a distinguishing path with shortcuts that is distinguishing for

(w,B(w)), a1 and a2 and has length at most that of π. To see that this holds, note

that if v is a side wire of π′′, then it cannot be an ancestor of w′ because otherwise it is

a shortcut wire of w′ and in B(w′), which is disjoint from the side wires of π′′. Thus,

the side wires of π′′ cannot include any input of w′ or any wire in B(w), because all

these wires are ancestors of w′. Moreover, since all the discoverable inputs to w′ have

been added to G, one of the possible extensions of π′′ will set (some of) the inputs

of w′ in such a way that moving from assignment a1 to assignment a2 to (w,B(w))

with the other side gate settings of π′′ will move from a′1 to a′2 for (w′, B(w′)),

Thus, the entry (B, a1, a2) will exist and be of length at most the length of π

when the algorithm finishes processing the distinguishing tables. This contradiction

shows that all the distinguishing tables must be complete.
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Building a circuit. When all the entries in all the distinguishing tables are marked

as processed, the Shortcuts Algorithm constructs a set E of experiments. For every

table Tw and every distinguishing path π for (B, a1, a2) in the table such that a1(u) =

a2(u) for every u ∈ B, and every set V of at most k wires not set by pπ and every

assignment a to V , add to E the experiment eπ|a, that extends eπ by the assignment a.

After iterating the above process over all possible choices of at most k wires u1, . . . , u`

and assignments to them, the algorithm takes the union of all the resulting sets of

experiments E and calls Circuit Builder [14] on this union and outputs the returned

circuit C and halts.

Lemma 4.4.8. The circuit C is behaviorally equivalent to the target circuit C∗.

Proof. We show that the completeness of the distinguishing tables implies that the

set E of experiments is sufficient, and apply Lemma 4.4.2 to conclude that C is

behaviorally equivalent to C∗. Suppose a gate g with inputs u1, . . . , u` is wrong for

wire w in C∗. Then there exists a minimal experiment e that witnesses this; e fixes

all the wires u1, . . . , u`, say as uj = σj for j = 1, . . . , `, sets the wire w free and is

such that C∗(e) 6= C∗(e|w=g(σ1,...,σ`
)).

Consider the iteration of the table-building process for the circuit C∗ with the

restriction uj = σj for j = 1, . . . , `. In this circuit, e distinguishes between w = σ

and w = τ , where σ is the value w takes in C∗ for e, and τ = g(σ1, . . . , σ`). Note

that the free wires of e form a directed path of discoverable edges. Because the table

Tw is complete, there will be a distinguishing path π with shortcuts for (w,B(w))

for assignments a1 and a2 where a1(w) = σ and a2(w) = τ , and a1(v) = a2(v) for

all v ∈ B(w). For every input v of w in C∗ that is not among u1, . . . , u`, π does not

set v, because it only sets wires that are inputs to descendants of w, and any input

of w that is an input of a descendant of w is a short cut wire of w and therefore in

B(w). However, π does not set any wires in B(w). Thus, among the choices of sets
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of at most k wires and values to set them to, there will be one that sets just the

inputs (in C∗) of w as in e. The corresponding experiment e′ in E will be a witness

experiment eliminating the gate g with inputs u1, . . . , u`, so the set of experiments

to Circuit Builder is sufficient for C∗.

Running time. To analyze the running time of the Shortcuts Algorithm, note

that there are O(nksk) choices of at most k wires and values from Σ to fix them to;

this bounds the number of iterations of the table building process. In each iteration,

there are O(nb+1s2b+2) total entries in the distinguishing tables. Each entry in a

distinguishing table may be processed several times: when it first appears in the

table, and each time its distinguishing path is replaced by a shorter one, and each

time a new input of w is discovered, for a total of at most n + k times. Thus,

the total number of entry-processing events by the algorithm in one iteration is

O((n + k)nb+1s2b+2). Each such event makes O((ns)2ksb) value injection queries, so

O((n + k)n2k+b+1s2k+3b+2) value injection queries are made by the algorithm in each

iteration, for a total of O((n+k)n3k+b+1s3k+3b+2) value injection queries made by the

Shortcuts Algorithm. The number of experiments given as input to Circuit Builder

is O(n2k+b+1s2k+2b+2), because each final entry may give rise to at most O(nksk)

experiments in E in each iteration. This concludes the proof of Theorem 4.4.1.

4.5 Learning Analog Circuits via Discretization

We first give a simple example of an analog circuit. We then show how to construct

a discrete approximation of an analog circuit, assuming its gate functions satisfy a

Lipschitz condition with constant L, and apply the large-alphabet learning algorithm

of Theorem 4.4.1, to get a polynomial-time algorithm for approximately learning an

analog circuit with logarithmic depth, bounded fan-in and bounded shortcut width.
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4.5.1 Example of an Analog Circuit

For example, let ∧(x, y) = xy for all x, y ∈ [0, 1] and let ∨(x, y) = x + y − xy

for all x, y ∈ [0, 1]. (Note that these are polynomial representations of conjunction

and disjunction when restricted to the values 0 and 1.) Then ∧ and ∨ are analog

functions of arity 2, and we define a circuit with 6 wires as follows. Let g1 be the

constant function 0.1, g2 be the constant function 0.6 and g3 be the constant function

0.8. These functions assign default values to the corresponding wires. Let g4 be the

function ∨, and let its pair of inputs be w1, w2. Let g5 be the function ∨, and let its

pair of inputs be w2, w3. Finally, let w6 be the function ∧, and let its pair of inputs

be w4, w5. If we consider the experiment e0 that assigns ∗ to every wire, we calculate

the values wi(e0) as follows. Using their default values,

w1(e0) = 0.1, w2(e0) = 0.6, w3(e0) = 0.8.

Then, because the inputs to w4 and w5 have defined values,

w4(e0) = ∨(0.1, 0.6) = 0.64, w5(e0) = ∨(0.6, 0.8) = 0.92.

Because the inputs to w6 now have defined values,

w6 = ∧(0.64, 0.92) = 0.5888.

If we consider the experiment e1 that fixes the value of w5 to 0.2 and assigns ∗ to

every other wire, then as before,

w1(e1) = 0.1, w2(e1) = 0.6, w3(e1) = 0.8, w4(e1) = 0.64.
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However, because the value of w5 is fixed to 0.2 in e1,

w5(e1) = 0.2, w6(e1) = ∧(0.64, 0.2) = 0.128.

4.5.2 A Lipschitz Condition

An analog function g of arity k satisfies a Lipschitz condition with constant L if for

all x1, . . . , xk and x′1, . . . , x
′
k from [0, 1] we have

|g(x1, . . . , xk)− g(x′1, . . . , x
′
k)| ≤ L max

i
|xi − x′i|.

For example, the function ∧(x, y) = xy satisfies a Lipschitz condition with constant

2. A Lipschitz condition on an analog function allows us to bound the error of a

discrete approximation to the function. For more on Lipschitz conditions, see [56].

Let m be a positive integer. We define a discretization function Dm from [0, 1]

to the m points {1/2m, 3/2m, . . . , (2m− 1)/2m} by mapping x to the closest point

in this set (choosing the smaller point if x is equidistant from two of them.) Then

|x−Dm(x)| ≤ 1/2m for all x ∈ [0, 1]. We extend Dm to discretize analog experiments

e by defining Dm(∗) = ∗ and applying it componentwise to e. An easy consequence

is the following.

Lemma 4.5.1. If g is an analog function of arity k, satisfying a Lipschitz condi-

tion with constant L and m is a positive integer, then for all x1, . . . , xk in [0, 1],

|g(x1, . . . , xk)− g(Dm(x1), . . . , Dm(xk))| ≤ L/2m.

4.5.3 Discretizing Analog Circuits

We describe a discretization of an analog gate function in which the inputs and the

output may be discretized differently. Let g be an analog function of arity k and r, s
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be positive integers. The (r, s)-discretization of g is g′, defined by

g′(x1, . . . , xk) = Dr(g(Ds(x1), . . . , Ds(xk))).

Let C be an analog circuit of depth dmax and let L and N be positive integers.

Define md = N(3L)d for all nonnegative integers d. We construct a particular dis-

cretization C ′ of C by replacing each gate function gi by its (md, md+1)-discretization,

where d is the depth of wire wi. We also replace the value set Σ = [0, 1] by the value

set Σ′ equal to the union of the ranges of Dmd
for 0 ≤ d ≤ dmax. Note that the wires

and tuples of inputs remain unchanged. The resulting discrete circuit C ′ is termed

the (L, N)-discretization of C.

Lemma 4.5.2. Let L and N be positive integers. Let C be an analog circuit of

depth dmax whose gate functions all satisfy a Lipschitz condition with constant L.

Let C ′ denote the (L, N)-discretization of C and let M = N(3L)dmax. Then for any

experiment e for C, |C(e)− C ′(DM(e))| ≤ 1/N.

Proof. Define md = N(3L)d for all nonnegative integers d; then M = mdmax . We

prove the stronger condition that for every experiment e for C and every wire wi, if

d is the depth of wi, we have

|wi(e)− w′
i(DM(e))| ≤ 1/md,

where wi(e) is the value of wire wi in C for experiment e and w′
i(DM(e)) is the value

of wire wi in C ′ for experiment DM(e). Because the output wire is at depth d = 0,

this will imply that C(e) and C ′(DM(e)) do not differ by more than 1/N .

Let e be an arbitrary experiment for C. We proceed by downward induction on

the depth d of wi. When this quantity is dmax, the wire wi is at maximum depth

and has no inputs. The wire wi is fixed in e if and only if it is fixed in DM(e), and
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in either case, the values assigned to wi agree to within 1/2M < 1/mdmax . Now

consider wi at depth d, assuming inductively that the condition holds for all wires

at greater depth. If wi is fixed in e then it is fixed in DM(e) and the values assigned

to it differ by at most 1/2M . If wi is free in e then it is free in DM(e). Consider the

input wires to wi, say wj1 , . . . , wjs ; these are all at depth at least d + 1, so by the

inductive hypothesis

|wjr(e)− w′
jr

(DM(e))| ≤ 1/md+1,

for r = 1, . . . , s.

Note that

wi(e) = gi(wj1(e), . . . , wjs(e))

and

w′
i(DM(e)) = Dmd

(gi(y1, . . . , ys)),

where yr = Dmd+1
(w′

jr
(DM(e))) for r = 1, . . . , s. Note that by the properties of the

discretization function,

|yr − w′
jr

(DM(e))| ≤ 1/(2md+1).

By the Lipschitz condition on the gate function gi we have

|gi(wj1(e), . . . , wjs(e))− gi(y1, . . . , ys)| ≤ L(3/2)(1/md+1) = 1/(2md),

because

|wjr(e)− yr| ≤ 1/md+1 + 1/(2md+1).

Discretizing the output of gi by Dmd
adds at most 1/(2md) to the difference, so

|gi(wj1(e), . . . , wjs(e))−Dmd
(gi(y1, . . . , yx))| ≤ 1/md,
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that is,

|wi(e)− w′
i(DM(e))| ≤ 1/md,

which completes the induction.

This lemma shows that if every gate of C satisfies a Lipschitz condition with

constant L, we can approximate C’s behavior to within ε using a discretization with

O((3L)d/ε) points, where d is the depth of C. For d = O(log n), this bound is

polynomial in n and 1/ε.

Theorem 4.5.3. There is a polynomial time algorithm that approximately learns any

analog circuit of n wires, depth O(log n), constant fan-in, gate functions satisfying a

Lipschitz condition with a constant bound, and shortcut width bounded by a constant.

4.6 Discussion

In this chapter, we extended the results of Angluin et al. [14] to the large-alphabet

setting under the value injection query model. We showed topological conditions

under which large-alphabet circuits are efficiently learnable and gave evidence that

the conditions for shortcut width that we consider are necessary. We also showed

that analog circuits can be approximated by large alphabet circuits, and that they

can be approximately learned given a restriction on their depth.

In making these algorithms more practical, a goal for future research is to find

ways to minimize the number of gates fixed in any given value injection query, es-

pecially for the types of circuits that occur in real-world networks. In manipulating

gene regulatory networks, biologists can often only override a few wires at a time,

and this presents challenges for learning.

Given that small-alphabet, large-alphabet, and analog circuits have been studied

under the value-injection model, Angluin et al. [11] extend these results to Bayesian
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circuits, where probabilities are attached to the gates. In Chapter 5 we apply these

queries to social networks. One interesting direction to explore is possible impli-

cations of this work for complexity theory. For example, does the class of circuits

that are efficiently learnable with value injection queries represent a natural class of

problems?
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Chapter 5

Active Learning of Social Networks

5.1 Introduction

Social networks are used to model interactions within populations of individuals.

These interactions can include distributing information, spreading a disease, or pass-

ing trends among friends. Viral marketing is often used as an example of a process

well modeled by social networks. A company may want to virally market a product

to its potential clients. The idea is to carefully choose some influential people to

target. This can be done, for instance, by giving these people a free sample of the

product. The targeted people have relationships in their population, and the hope

is that they will virally spread interest in this product to their friends, and so on.

There are many different models of social networks, and these models (imper-

fectly) approximate complicated real world phenomena. One of the most basic and

well-studied models is the independent cascade model [47, 62, 63], and it is the

one we consider in this chapter. Informally, in the independent cascade model, each

individual, or agent, has some probability of influencing each other agent. When

targeted with a product, an agent becomes activated, and then attempts to influence

each neighbor, and so on. This model is called independent cascade because each
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agent’s success probability in attempting to influence another agent is independent

of the history of previous activation attempts in the network.

Social networks belong to the wider class of probabilistic networks. Probabilistic

networks are circuits whose gate functions specify, for each combination of inputs,

a probability distribution on the output. In the case of social networks, these gates

compute rather simple functions of their inputs.

A natural question to ask is: what can we learn about the structure of these

networks by experimenting with their behavior? Given access to a pool of agents in

our network, one intuitive way in which we could experiment on this network would

be to artificially excite some set of agents, for example by sending them political

brochures in support of some measure, and then observe the consequences of the

experiment. Furthermore, we will allow for the possibility of suppressing agents; a

suppressed agent cannot be excited by another agent. To make things more realistic,

and theoretically more interesting, we will not assume that we can observe the entire

network. We will instead have an output agent, whose state at the end of this process

we can see, e.g. the probability the President supports the measure.

Thus, in this chapter we consider the setting where we can inject values into the

network; we fix the states (or values) of any subset of agents in the target network

and observe only the state of some specified agent, whom we think of as the output

of the network. This is the value injection query model.

The idea of value injection queries was inspired both from hardness results in

learning circuits by manipulating only the inputs [23, 60, 64] and by models of gene

suppression and gene overexpression in the study of gene interaction networks [2, 53]

and was proposed by Angluin et al. [14]. They show that acyclic deterministic

boolean circuits with constant fan-in and O(log n) depth are learnable in polynomial

time with value injection queries. In Chapter 4 we extend these results to circuits

with polynomial-size alphabets, and show that bounded shortcut width acyclic deter-

77



ministic circuits that have polynomial-size alphabets, constant fan-in, and no depth

bound are learnable in polynomial time with value injection queries. Then, An-

gluin et al. [11] extend this work to probabilistic circuits. They show that constant

fan-in acyclic boolean probabilistic circuits of O(log(n)) depth can be approximately

learned in polynomial time, but that this no longer necessarily holds once the alpha-

bet becomes larger than boolean.

However, unlike in previous work on the value injection model, we allow our target

social networks to have cycles. In many classes of networks, allowing for cycles would

make the problem ill-defined in the value injection model, as the values on the nodes

of the network may not be stable. In the social networks case, the values of the nodes

in the network converge. Also, unlike in previous work, our learnability results do

not require a degree bound on the target network. This gives us a nice theoretical

model whose properties are interesting to explore.

In Section 5.2 we formally define the model, value injection queries, and learning

criteria. In Section 5.3 we develop an algorithm that learns any social network in

O(n2) queries and prove a matching lower bound for this problem. In Section 5.4 we

show that in the special case when the network comes from the class of trees, learning

the network takes Θ(n log(n)) queries. In Section 5.5 we show some limitations of

using path-based methods for learning social networks when value injection queries

do not return exact probability distributions of value of the output node, which is

the case in real-world settings. In Section 5.6 we give an approximation algorithm

for learning influential sets of nodes in a social network.
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5.2 Model

5.2.1 Social Networks

We consider a class of circuits that represent social networks. We are specifically

interested in a variant of the model of deterministic circuits defined in Chapter 4.

Social networks have no distinguished inputs – instead, value-injection experiments

may be used to override the values on any subset of the agents.

An independent cascade social network S consists of a finite nonempty set

of independent excitation agents A, one of which is designated as the output agent.

Agents take values from a boolean alphabet Σ = {0, 1}, corresponding to the states

waiting and activated, respectively. The size of the social network is n = |A|.

An independent excitation agent function f on k inputs is defined by k param-

eters: the probabilities p1, . . . , pk. If the inputs to the agent are (b1, . . . , bk) ∈ {0, 1}k,

then the probability that f(b1, . . . , bk) is 0 is

k∏
i=1

(1− pi)
bi .

We define 00 = 1.

If we are told, in an arbitrary order, which inputs to f are 1, then we may sample

from the correct output distribution for f as follows. Initially the output is 0. Given

that bi = 1, then with probability pi we set the output to 1 and with probability

(1 − pi) we leave it unchanged. This corresponds to our intuitive notion of the

behavior of social networks; when a neighbor of an agent is activated, the agent has

some probability of becoming activated as well, and an agent will remain inactive if

it was not activated by any of its neighbors.
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5.2.2 Graphs of Social Networks

The weighted network graph of the social network has vertices A and a directed

edge (u, v) if agent u is one of the inputs of agent v. If u is an input to v with

activation probability p(u,v), then the edge has weight p(u,v). We say an edge exists

if it has positive weight. The weighted network graph of a social network captures

all relevant information about the social network. Therefore, we will often refer to

a social network in terms of its graph. The depth of a node in the network is the

number of edges in the shortest path from the node to the output. The depth of the

network is the maximum over the depths of all the nodes in the network. The network

is acyclic if the network graph contains no directed cycles. Unlike in Chapter 4, in

this chapter we consider networks that may have cycles.

5.2.3 Experiments

The behavior of a social network consists of its responses to all possible value-injection

experiments. In an experiment, some agents are fixed to values from [0, 1] and others

are left free. Fixing an agent to a 1 corresponds to activating or firing the agent,

fixing to a 0 corresponds to suppressing the agent, and leaving an agent free allows

it to function as it normally would. Fixing an agent to a value c between 0 and 1

corresponds to firing the agent with probability c and suppressing it with probability

1− c.

Formally, a value-injection experiment (or just experiment) e is a mapping

from A to {[0, 1] ∪ {∗}}. If e(g) is ∗, then the experiment e leaves agent g free;

otherwise g is fixed to the value e(g) ∈ [0, 1]. If e is any experiment and a ∈

[0, 1]∪{∗}, the experiment e|w=a is defined to be the experiment e′ such that e′(w) = a

and e′(u) = e(u) for all u ∈ A such that u 6= w.

We can define the behavior of a social network S as a function of a value-injection
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experiment in two different ways. The first is a percolation model. For each edge

(u, v), we leave it “open” with probability p(u,v) and “closed” with probability (1 −

p(u,v)). For each node w in S, such that e(w) = c for some c ∈ [0, 1], we make

node w fired with probability c and suppressed with probability 1 − c. We let the

indicator variable I = 1 if there is direct path using open edges from some fired node

to the output node via free nodes, and we let I = 0 otherwise. This determines a

probability distribution on assignments of 0 and 1 to I. We define the output S(e)

to be E(I).

The following process, equivalent to the percolation model, defines the behavior

of social network as a function of a value-injection experiment e. It is also the

process that will guide the intuition and proofs in this chapter. Initially every node

is tentatively assigned the value 0. There is a queue of nodes to be assigned values,

which initially contains the nodes fixed to values > 0 by e. The assignments are

complete when the queue becomes empty. While the queue is nonempty, its first

node v is dequeued. If e(v) = ∗, v is assigned the value 1. If e(v) 6= ∗, v is assigned

a 1 with probability e(v), and 0 with probability (1− e(v)). If v is assigned a 1, for

every node u such that v is an input to u, do the following.

1. If u is fixed to any value, or already assigned 1 or present in the queue, do

nothing.

2. Otherwise, with probability p(v,u) add u to the queue, and with probability

(1− p(v,u)) do nothing.

This process determines a joint probability distribution on assignments of 0 and 1

to the nodes of the social network S. In this case, the output S(e) is the expected

value of the output node given by e.

We note that in comparing this process with the percolation model, the proba-

bilistic decision whether to add a node to the queue is equivalent to the decision to
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make an edge “open” or “closed.” At any point in the queuing process, however, only

those edges that can affect S(e) are explored. Because edges can be considered in

any order in the percolation model, in the queuing process nodes can also be added

(or even removed) from the queue in any order.

5.2.4 Example: S1

We give a simple example of a social network. We define a network S1 of 4 agents.

We give the adjacency matrix of the network graph, labeling the agents associated

with the nodes. Figure 5.1 shows the social network defined by the adjacency matrix.

a1 a2 a3 a4

a1

a2

a3

a4



− .5 0 0

0 − .5 1

1 0 − .5

0 0 .3 −


The output agent is a4.

Figure 5.1: An illustration of the circuit S1.

We first make an observation. Edge (a4, a3) has weight .3, meaning that a4, when
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activated has a probability of .3 of activating a3, if a3 has not already been activated.

However, because a4 is the output, the weight of (a4, a3) does not affect any value

injection experiment. It follows that no sequence of injection queries can learn the

weight of (a4, a3).

We now consider the experiment e that leaves a4 and a2 free, suppresses a3 (sets

a3 = 0) and activates a1 (a1 = 1). We wish to compute the output distribution

S1(e). Because a1 has only one outgoing edge of weight .5 to a2, a1 activates agent

a2 with probability .5. a2 has an edge to a3, but a3 is suppressed, so that edge has no

effect. a2 also has an edge of weight 1 to a4, the output. So, whenever a2 is active,

a4 will become activated, and we have observed a2 is active with probability 1
2
. So

the output distribution S1(e) is an unbiased coin flip.

5.2.5 Behavior and Equivalence

The behavior of a network is the function that maps experiments e to output excita-

tion probabilities S(e). Two social networks S and S ′ are behaviorally equivalent

if they have the same set of agents, the same output agent, and the same behavior,

that is, if for every value-injection experiment e, S(e) = S ′(e). We also define a con-

cept of approximate equivalence. For ε ≥ 0, S is ε-behaviorally equivalent to S ′

if they contain the same agents, the same output agent and for every value-injection

experiment e, |S(e)− S ′(e)| ≤ ε.

5.2.6 Queries

The learning algorithm gets information about the target network by repeatedly

specifying an experiment e and observing the value assigned to the output node.

Such an action is termed a value injection query. A value-injection query does not

return S(e), but instead returns a {0, 1} value selected according to the probability
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S(e). This means that the learner must repeatedly sample to approximate S(e). To

separate the effects of this approximation from the inherent information requirements

of this problem, we define an exact value injection query to return S(e). The

focus of this chapter is on exact value injection queries.

5.2.7 The Learning Problem

The learning problem we consider is: by making exact value injection queries to a

target network S drawn from a known class of social networks, find a network S ′

that is behaviorally equivalent to S. The inputs to the learning algorithm are the

names of the agents in S and the name of the output agent.

Let S be a social network, and let S ′ be any social network that differs only in

edge (u, v). We say edge (u, v) is discoverable for S if there exists an experiment

e such that S(e) 6= S ′(e). Otherwise we say that the edge is not discoverable. We

could also view the learning problem in terms of finding the discoverable edges and

their probabilities.

5.2.8 A Note on the Generality of this Model

The model introduced in this section allows for the observation of the network by

looking at the output of one selected node. However, this model is surprisingly

general. One may wish to consider, for example, the ability to observe the number

of nodes to fire as a result of an experiment. Such a scenario could be simulated in

our model – given any social network, one could make a new output node that is

activated by each node with some fixed, chosen probability. Now the probability the

output is activated corresponds to the number of network nodes that are activated

in an experiment.

One could also imagine networks where some nodes spontaneously fire with some
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probability. We can again simulate this in the model we introduced. We add a node

that is fired with probability 1 whenever any node in the network fires (all other

nodes have 1-edges to the new node), and the new node can have edges to each node

in the network, with probabilities corresponding to the desired spontaneous firing

probabilities of the network nodes.

5.3 General Social Networks

In this section we prove the following theorem.

Theorem 5.3.1. Any social network with n agents can be learned up to behavioral

equivalence with O(n2) exact value injection queries and time polynomial in the num-

ber of queries.

Before considering the case of arbitrary social networks, we begin by developing

an algorithm that learns social networks that do not have edges of weight 1, to

behavioral equivalence.

5.3.1 No Probability 1 Edges

First, we develop excitation paths, which are a variant of test paths, a concept

central in previous work on learning deterministic circuits in [14] and in our work in

Chapter 4. An excitation path for an agent a is a value-injection experiment in

which a subset of the free agents form a simple directed path in the circuit graph

from (but not including) a to the output agent. All agents not on the path with

inputs into agents (excluding a) on the path are fixed to 0. A shortest excitation

path is an excitation path of length equal to the depth of a.

Let G be the network graph of A. In G, the up edges are edges from nodes of

larger depth to nodes of smaller depth, level edges are edges among nodes of the
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same depth, and down edges are edges from nodes of smaller depth to nodes of

larger depth. An edge (u, v) is a shortcut edge if there exists a directed path in G

of length at least two from u to v.

Lemma 5.3.2. Let e be a shortest excitation path for node a and π be the nodes on

the path. Let p1 · · · pk be the weights of the up edges in π ∪ a. Then for 0 ≤ c ≤ 1

S(e|a=c) = c

k∏
i=1

pi.

Proof. In a shortest excitation path, if some node on the path does not activate, no

node at smaller depth will activate, because a shortest excitation path cannot have

shortcuts to nodes further along the path. Hence, all up edges must fire to fire the

output. This happens exactly with probability
∏k

i=1 pi.

We note that Lemma 5.3.2 still holds when a takes probability c, not only when

it is set to c by e.

Figure 5.2: An illustration for Lemma 5.3.3. The shaded nodes are suppressed. The
solid edges are known and the dashed edge is the edge to be computed.

Lemma 5.3.3. Let e be an excitation path experiment for node v and let π =

vk, . . . , v0 be the nodes along π in order from v to the output (with v0 being the

output node), such that there are no shortcut edges (vi, vj) for j < i along π. Let
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u /∈ π be a node such that all edges from u to nodes on π are known and have weights

< 1. Let e′ = e|v=∗,u=1. Then, given S(e′) we can compute p(u,v).

Proof. We can see this situation illustrated in Figure 5.2. We observe that because

there are no shortcuts along π, no node vi will activate in e′ unless either u activated

it, or vi+1. Hence, any edge (vj, vk) where j < k does not affect S(e′). Therefore, we

can compute S(e′) by summing over all the ways v0 can activate. Either u activates

it directly with probability p(u,v0), or if not (with probability 1 − p(u,v0)) we look

at the probability u activates v1 and the probability of v1 firing the output, and

so on. These quantities can be computed using the logic of Lemma 5.3.2. For the

calculation below, we rename node v to vk+1.

S(e′) =
k+1∑
i=0

(
p(u,vi)

∏
j<i

(1− p(u,vj))(p(vj+1,vj))

)

This equation is linear in p(u,vk+1), which we can solve for because the other

quantities are known.

We present an algorithm for learning social networks that do not contain edges

of weight 1, Algorithm 2. We then show the conditions for an edge in the network

to be learnable and analyze the running time of the algorithm.

The subroutine Find-Up-Edges builds a leveled graph of S. Let level i be the

set of all nodes at depth i. Find-Up-Edges assigns each node to a level and finds all

up edges in the graph. Starting at the top level and proceeding downward, for each

pair of nodes u and v, such that u is one level deeper than v, Find-Up-Edges finds

a shortest excitation path for u that goes through v to learn p(u,v). This experiment

leaves the path free and suppresses all other nodes in the graph. We show correctness

by induction on the level. For the base case, the edges from nodes at depth 1 form

the paths. Considering nodes at depth i we assume we know all up edges on the
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Algorithm 2 Learning Social Networks without Edges of Weight 1

Let S be the target social network.
Initialize G to have the agents as vertices and no edges.
Run Find-Up-Edges to learn the leveled graph of S.
Add learned weighted edges to G.
for Each level in the graph do

Run Find-Level-Edges to learn all level edges.
Add the learned weighted edges to G

Let the complete set C = ∅
for Each level i, from the deepest to the output do

Run Find-Down-Edges(G,C,i) to learn the down edges from that level.
Add all nodes at the current level to C.
Add the learned weighted edges to G.

Output G and halt.

induced subgraph at depths 0 to i − 1. Therefore, for each node at depth i − 1 we

have a shortest excitation path to the root. Thus, for each node u not yet assigned

a level, we can try experiments with excitation paths via each node v at depth i− 1.

Let e be such an experiment with π as the excitation path. And let p1 · · · pi−1 be the

weights of the up edges in π. By Lemma 5.3.2 we can compute

p(u,v) =
S(e|u=1)∏i−1

j=1 pj

.

If p(u,v) > 0 we assign node u to level i.

The subroutine Find-Level-Edges finds edges among nodes at the same depth.

It again uses the notion of shortest excitation paths. Let nodes u and v be at depth

i. To find p(u,v), the algorithm first finds any shortest excitation path from v to the

output; suppose it passes through node w at depth i− 1. Let e1 be that experiment.

Let e2 = e1|u=1,v=∗. From Find-Up-Edges, we know p(u,w) and p(v,w), and because all

nodes on the shortest excitation path from w are at depth ≤ i− 2, we know e2 is a

shortest excitation path for w. Let p1 . . . pk be the weights of the up edges on this

path. By performing S(e2), by Lemma 5.3.2, we can compute pw, the probability
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that w = 1

pw =
S(e2)∏k

i=1 pi

.

Because u (fired) and v (free) are the remaining unsuppressed nodes in S, given p(u,w)

and p(v,w) we can compute p(u,v)
1

pw = p(u,w) + (1− p(u,w))p(u,v)p(v,w)

p(u,v) =
pw − p(u,w)

p(v,w)(1− p(u,w))
.

Finally, the subroutine Find-Down-Edges finds down edges in the graph. By

this point, the graph has the entire set of up and level edges. The idea of Find-

Down-Edges is to find all down edges, with their sources starting from the deepest

nodes, working up towards the root. The algorithm keeps a complete set C of nodes,

among which all discoverable edges are known. Let the deepest node in the network

be at depth d, we say that the C has height i if contains all nodes at depth greater

than d − i. Find-Down-Edges grows the complete set, one level at a time, towards

the root.

Algorithm 3 The Subroutine Find-Down-Edges from Algorithm 2 (Current Graph
G, Complete Set C, Level i)

for Each node u at the current level i {find all down edges to C} do
Sort each node in C by distance to the root in G− {u}.
Let v1, . . . , vk ∈ C sorted by increasing distance.
Let π1, . . . , πk be shortest paths for v1, . . . , vk resp. in G− {u}.
for Node vj from v1 to vk do

Perform experiment ej of firing u, leaving πj free, and suppressing the rest of
the nodes.
Query S(ej). Compute by Lemma 5.3.3 the weight of p(u,v).
Add (u, v) to G if pu,v) > 0.

We restate the algorithm and give an inductive proof of its correctness. We do

1We note that this computation is a special case of Lemma 5.3.3.
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induction on the height of the complete set. The base case contains all nodes at

depth d. They, by definition, cannot have down edges, and since we know all of their

level edges from Find-Level-Edges, they form a complete set. For the inductive step,

we assume all nodes at depth > i form a complete set, and the goal is to find all

down edges to them from nodes at depth i. Let L be the set of nodes on level i.

Let u be a node in L. For each node vj in the complete set, the algorithm first finds

the distance from vj to the root in G− {u} and πj the corresponding shortest path.

Let v1 · · · vk be the vertices in the complete set, sorted smallest to largest by this

distance. Now, the edges (u, v1), (u, v2), · · · , (u, vk) can be found in that order. We

show this by induction.

We first show the inductive step. To test for the existence of (u, vj), we perform

the experiment ej of firing u, leaving πj free, and suppressing the rest of the nodes.

We note that all nodes on πj have a smaller depth than vj, so all down edges from u

to πj are known by the time the algorithm gets to vj, and all up edges along π are

known. Because πj is a shortest path in G−{u}, it clearly has no shortcuts. Hence,

by Lemma 5.3.3 the weight of (u, vj) can be computed given S(ej). The base case

is done similarly. This completes the inductive proof of finding down edges, which

completes the proof of growing the complete set.

We can now summarize the conditions for finding an edge. Find-Up-Edges and

Find-Level-Edges discover all up and level edges as long as they are connected to

the output. Find-Down-Edges finds all down edges that have a path to the output

that doesn’t use the source node. If every path from u to the output agent that

starts with edge (u, v) goes through u, then edge (u, v) is not discoverable. We can

see this because if the edge (u, v) activates v, it must mean that u has already fired,

and because all paths from v go through u, the edge firing will not affect the output.

Therefore, the edges this algorithm does not learn are not discoverable.
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5.3.2 Arbitrary Social Networks

We now extend the ideas in Algorithm 2 to allow for edges of weight 1, giving us

Algorithm 4. This algorithm is similar to Algorithm 2, except that Find-Level-Edges

and Find-Down-Edges are combined into Find-Remaining-Edges. Algorithm 4 first

builds a leveled graph of the social network as before, and the justification for Find-

Up-Edges can be found in Section 5.3.1.

Algorithm 4 Learning Arbitrary Social Networks

Let S be the target social network.
Initialize G to have the agents as vertices and no edges.
Run Find-Up-Edges to learn the leveled graph of S.
Add learned weighted edges to G.
Let C = ∅ be the complete set.
for Each level i in the graph, from the deepest level to the output node do

Run Find-Remaining-Edges(G,C,i) to learn all level and down edges.
Add all nodes at the current level to C.

Output G and halt.

After Find-Up-Edges is run, the remaining edges that need to be found are

down and level edges. The subroutine Find-Remaining-Edges, shown in Algo-

rithm 5, accomplishes this task. Find-Remaining-Edges is similar to Find-Down-

Edges. The algorithm once again keeps a complete set C in which all discoverable

edges are known. C starts at the largest level and grows toward smaller levels. Find-

Remaining-Edges finds all discoverable edges from the level it is on to the complete

set. It also finds all discoverable edges between nodes at the level it is on. Then,

that level is added to C.

Let L be the set of nodes on level i. To find down and level edges from nodes

in L, Find-Remaining-Edges keeps a table T , with an entry for each possible edge

originating from a node in L. Each entry is initially set to 1. After determining

whether an edge is present, its corresponding entry becomes marked 0. The potential

edges whose corresponding entries are marked 1 we call “unprocessed.”
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For each unprocessed edge (u, v), we find the set of all nodes we know are guar-

anteed to be activated when u is fired. This is the set of nodes reachable by edges

of weight 1 from u in G. We call this set Au. Now, we find the shortest path πu,v

(if one exists) in G − {Au} from v to the output. If no unprocessed edge has such

a path, then Find-Remaining-Edges terminates and the algorithm proceeds to the

next level.

Otherwise, we take an edge (u, v) that minimizes the distance from v to the

output in G − {Au}. Let e be the experiment where u is fired, all nodes along πu,v

are left free, and the rest of the nodes are suppressed. We will show that S(e) is

enough to determine p(u,v). Then, the entry for this edge is set to 0 in the table, and

if it is present, is added to G. Then the algorithm continues, recomputing the sets

Au for the remaining unprocessed edges.

Algorithm 5 Find-Remaining-Edges(Current Graph G, Complete Set C, Level i)

Let L be the set of nodes at the current level i.
Let M = L ∪ C.
Let Π be a collection of paths.
Keep an |L| by |M | table T . ∀ wi ∈ L, xj ∈ M s.t. wi 6= xj, T (wi, xj) = 1.
loop

Set Π = ∅.
for Each node wi ∈ L do

Find Awi
, the set of all nodes reachable from wi by 1-edges (incl. wi) in G.

for Each node xj ∈ M where T (wi, xj) = 1 do
Find the shortest path πwi,xj

in G− Awi
from xj to the root.

Π = Π ∪ {πwi,xj
}.

if Π = ∅ then return.
Let wi, xj minimize the length of πwi,xj

∈ Π.
Let experiment e fire wi, leave πwi,xj

free, and suppress the rest of the nodes.
Query S(e) and compute p(wi,xj) by Lemma 5.3.3.
Set T (wi, xj) = 0.
If p(wi,xj) > 0 then add (wi, xj) to G.

We now show that the value of S(e), as defined above, is sufficient to learn edge

(u, v). All edges from u to π are either up edges or have already been processed
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by the time edge (u, v) is considered, otherwise there would be an unprocessed edge

from u to a node on π with a shorter distance to the root in G − Au. All edges on

π in G − C are known from Find-Up-Edges, and the rest of the edges are known

because they are in C. Hence, by Lemma 5.3.3, we can compute the weight of edge

(u, v), and add it to G if its weight is positive.

Find-Remaining-Edges returns when all remaining unprocessed down and level

pairs of nodes u, v do not have a path from v to the root in G−Au. The algorithm

does not attempt to learn these edges. We will argue that when an execution of

Find-Remaining-Edges terminates, all of the unprocessed edges are not discoverable.

Let u, v be such a pair. Let S be the graph of the complete social network and Bu

be the set of nodes reachable by edges of weight 1 in S. If there is no path from v

to the root in S−Bu, edge (u, v) is clearly not discoverable. We note that Au ⊆ Bu.

By way of contradiction, we will assume there exist vertices u (on level i) and v

(on level ≥ i) such that there is a path of discoverable edges from v to the root in

S − Bu but not in G − Au at the time Find-Remaining-Edge exits. Once this path

reaches level i− 1 in G, then the path can be continued by following up edges to the

root. By assumption, G has all discoverable edges among the complete set C, which

contains all nodes at levels > i. Hence, there must be some smallest set of edges U

going from nodes at level i, that are in S but not in G, such that if they were added

to G, then then there would be a path from v to the root node in G−Au. All of the

edges in U must lie on a path π. Let edge (x, y) ∈ U be the unprocessed edge closest

to the root along the path. Because edge (x, y) was unprocessed, there was a path

of 1 edges from x to a node in π above y; otherwise, there would be a path from y

to the root in G−Ax and (x, y) would have been processed. But taking the path of

1 edges from x to a node in π gives a path from v to the root in G − Au using one

fewer unprocessed edge. This contradicts that U was the smallest set of edges that,

if added to G, would make a path from v to the root in G − Au. This contradicts
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our assumption that a discoverable edge exists that Find-Remaining-Edges does not

find.

To analyze number of queries used, we observe that every query either confirms

the absence of an edge or discovers one. Hence, Algorithm 4 performs at most O(n2)

queries.

5.3.3 A Matching Ω(n2) Lower Bound

We show an information theoretic lower bound for learning social networks that

matches the bound of the algorithm.

Theorem 5.3.4. Ω(n2) queries are required to learn a social network.

Proof. We give an information theoretic lower bound. We consider the following

class of graphs on vertices {v1, . . . , v2n+1}. We let v2n+1 be the output. The edges

(vn+1, v2n+1), (vn+2, v2n+1), . . . , (v2n, v2n+1) all have weight 1. The edges (v1, vn+1),

(v2, vn+2), . . . , (vn, v2n) also all have weight 1. For 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n, and

j 6= i + n, each edge (vi, vj) is either present with weight 1 or absent. The rest of

the edges are absent. There are 2Ω(n2) such graphs and the answer to every exact

value injection query is 1 bit because all present edges have weight 1. Algorithm

4 differentiates all graphs in this class because all edges in this class of graphs are

up edges and are therefore discoverable. Hence, by an information theoretic lower

bound, at least log 2Ω(n2) = Ω(n2) queries are needed.

5.4 Trees

In this section, we will consider the special case in which the target social networks

come from the class of trees. A tree social network is a social network whose edges

are up edges that form a tree.
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Theorem 5.4.1. Learning a social network tree takes Θ(n log n) exact value injection

queries.

Proof. We first show the lower bound. Consider a directed path of nodes, with the

output node at an endpoint. All edges along the path have probability 1. The only

unknown is the ordering of the nodes along the path. Let u and v be two nodes. We

can test which of the two nodes has a smaller distance to the root by the experiment

that fires u and suppresses v. If this fires the output, then u is closer to the root;

otherwise, v is closer. Hence, all orderings can be distinguished. Because all edges

have probability one, the result of any experiment is deterministically a 1 or 0, a 1-bit

answer. There are n! orderings of nodes. This gives an Ω(log (n!)) = Ω(n log (n))

information-theoretic lower bound.

We now develop an algorithm that meets this bound for trees. Let T be the

target tree social network. In a tree, an ancestor of node u is any node on the path

from u to the output. We can test whether node v is an ancestor of node u by firing

u and suppressing v. If the result is > 0, then v is not an ancestor of u. In general,

to test whether there exists some node in V that is an ancestor of u, we can fire u

and suppress all nodes in V . This allows us to find all k ancestors of a given node u

by binary search in O(k log(n)) queries. Because the ancestors of u form a path, we

can sort them by their depth using O(k log(k)) queries (an ancestor test involving

two nodes provides a comparator) to get a directed path from u to the output.

Now, we will use the observation above to give an algorithm for reconstructing

trees. We keep a graph T ′ that is a connected subgraph of T that we build up by

adding new nodes until T ′ contains all the vertices in T . In attaching a new node u

to T ′, we first determine v, u’s deepest ancestor in T ′. We can do this by recursively

by splitting the nodes in T ′ into roughly equal halves H1 and H2 such that no node

in H2 is an ancestor of a node in H1. In one query we can test whether v is in H1 by
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suppressing all nodes in H2 and firing u; thus, we can find v in log(n) queries. We

then find, by binary search, the set of all ancestors of u in T that are not in T ′, and

we sort them by their distance to the root in T . This gives a path of vertices from

u to v that we can append to T ′ and continue this process until all the vertices are

added to T ′.

In adding a new node u to T ′ we spend O(log(n)) queries to find its deepest

ancestor in T ′, and O(k log(n)) queries to add u’s k ≥ 0 newly found ancestors to

T ′. This costs us an amortized O(log(n)) queries per node, giving an O(n log(n))

algorithm for learning the structure of the tree. We note that the structure is learned

using just zero/non-zero information from the queries.

Finally, to learn the weights of the edges in the tree, because we have a shortest

excitation path for each node, the edge weights can be discovered in n queries by

Lemma 5.3.2.

5.5 Limitations of Excitation Paths

In this section, we construct a family of social networks in which there exists a node,

that when fired, activates the output node with high probability, but any excitation

path experiment for that node has an exponentially small probability of activating

the output. Namely, we will prove the following theorem.

Theorem 5.5.1. There exists a family of social networks S for which there exists a

node v ∈ S and an experiment e where only v is fired, such that for any excitation

path experiment eπ for v,

S(e) = 2Ω(
√

n)S(eπ)

Proof. Let {v1, · · · , vn} be a set of nodes in this network, with v1 the output node.

For all 1 < i < n − 1, let p(i,i+1) = 1; we call these back edges. For all i, j > 0

96



such that i + j ≤ n, create a new node wij and let p(wij ,vi) = 1 and forward edges

p(vi+j ,wij) = 2−j/
√

n. This is illustrated in Figure 5.3.

algorithm for learning the structure of the tree. We note that the structure is
learned using just zero/non-zero information from the queries.

Finally, to learn the weights of the edges in the tree, because we have a
shortest excitation path for each node, the edge weights can be discovered in n
queries by Lemma 3.

5. Limitations of Excitation Paths

In this section, we construct a family of social networks in which there exists
a node, that when fired, activates the output node with high probability, but any
excitation path experiment for that node has an exponentially small probability
of activating the output. Namely, we will prove the following theorem.

Theorem 6. There exists a family of social networks S for which there exists
a node v ∈ S and an experiment e where only v is fired, such that for any
excitation path experiment eπ for v,

S(e) = 2Ω(
√

n)S(eπ)

Proof. Let {v1, · · · , vn} be nodes in this network, with v1 the output node.
For all 1 < i < n − 1, let p(i,i+1) = 1 - we call these back edges. For all
i, j > 0 such that i + j ≤ n, create a new node wij and let p(wij,vi) = 1 and

p(vi+j,wij) = 2−j/
√

n. This is illustrated in Figure 3.

Figure 3: The social network S showing the limitations of excitation paths.

Let e1 be an excitation path experiment for vn, where vn is fired. S(e1) is

13

Figure 5.3: The social network S showing the limitations of excitation paths.

Let e1 be an excitation path experiment for vn, where vn is fired. Let S(e1) be

the probability all edges along the path fire. If e1 uses k forward edges that decrease

the distance to the output by f1, . . . , fk, respectively (we note that
∑

fi ≥ n− 1),

then

S(e1) =
k∏

i=1

2−fi/
√

n

= 2
−

P
fi√
n

= 2−Ω(
√

n).

Let e2 be the experiment where vn is fired and the remaining agents are set free.

We will show there exists a constant c > 0 such that S(e2) ≥ c.

We consider e2. The probability that vn does not fire any other nodes is

n−1∏
i=1

(
1− 2−i/

√
n
)
.

Now, we can bound the probability of the root firing. Let T (i) be the probability
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the root becomes activated given vi has fired. We set up a recurrence

T (1) = 1

T (n) ≥

(
1−

n−1∏
i=1

(
1− 1

2

i/
√

n
))

T (n− 1),

where we have an inequality above because if vn activates any other node, then vn−1

becomes activated due to the back edges.

Thus, T (n) ≥
(
1− 1

2

√
n
)

T (n − 1) because the first
√

n terms of the product

above are ≤ 1/2. Unraveling the recurrence, we get

T (n) ≥
n∏

i=1

(
1− 1

2

√
i
)

.

We know limn→∞ T (n) > 0 if
∑∞

i=1
1
2

√
i

converges. By the Cauchy Condensation

Test,
∑∞

i=1
1
2

√
i

converges if and only if
∑∞

i=1 2n 1
2

√
2n

converges [80]. The ratio test

easily tells us that
∑∞

i=1 2n 1
2

√
2n

converges. Therefore, there exists a constant c > 0

such that ∀ n T (n) ≥ c.

This example shows that many paths, each of which has an exponentially small

effect on the output, can add up to have a detectable effect on the output. When

using non-exact value injection queries, the goal is to learn a circuit to approximate

behavioral equivalence. Yet this example shows us that if the learner has access

only to non-exact value injection queries, then to learn this circuit by only path

based methods like our algorithms do, one would need an exponential number of

experiments to detect the effect on the output. This implies that for non-exact value

injection queries, either the circuits would need a depth limitation, or non path-based

algorithms would need to be developed.
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5.6 Finding Small Influential Sets of Nodes

We now examine a seemingly easier problem. Instead of learning the entire social

network, we consider the task of finding a small set of influential nodes. More

formally, let I ⊂ V such that vn /∈ I, and let eI be the experiment where all nodes in

I are fired and the rest are left free. I has influence p if S(eI) ≥ p; we call such a

set influential. We first show that it is NP-Hard to find the smallest set of certain

influence, even if the structure of the network is known.

Theorem 5.6.1. Given a social network S of size n and a threshold probability p,

it is NP-Hard to approximate the size of the smallest set of nodes having influence p

within o(log(n)).

Proof. We reduce from Set Cover. Take an instance of Set Cover with points

{x1, . . . , xk} and sets {X1, . . . , Xl}. In the social network S, we create a nodes

{v1, . . . , vk} for the points and {w1, . . . , wl} for the sets in the original Set Cover in-

stance. If point xi belongs to set Xj, we make an edge from wj to vi with associated

probability of 1. We set the influence threshold parameter p to 1
2
. We run edges from

all nodes vi to the output, all with associated probability = 1 − 1
2

1/k
. Activating a

node wi corresponds to choosing the set Xi and activating a node vi corresponds to

choosing an arbitrary set Xj that contains xi. The output will fire with probability

≥ 1
2

only if all of the vi’s fire. This completes the reduction. Because Set Cover is

NP-Hard to approximate to within o(log n) [42], so is approximating the size of the

smallest influential set.

Theorem 5.6.2. Let S be a social network of size n and let I be the smallest set

of nodes having influence p, where m = |I|. We can find a set of nodes of size

m log(p/ε) of influence (p− ε) using O(nm log(p/ε)) exact value injection queries.

Consider Algorithm 6. Assume the optimal solution X, where S(eX) ≥ p, has
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Algorithm 6 An Algorithm for Finding a Set of Influential Nodes

Proof. Let S be the target social network.
Let p be the threshold probability.
Let ε be the error tolerance.
Let I = ∅.
Let eI be the experiment where all nodes in I are fired, and the rest are left free.
while S(eI) < p− ε do

Let v = arg maxvj∈V S(eI |vj=1)
I = I ∪ {v}

Return I

size m. We claim that at any stage of the algorithm, if S(eI) < p− ε, greedily adding

one more node w to I makes

S(eI∪{w}) ≥ S(eI) +
p− S(eI)

m
.

We can see this by noting that there exists a set of at most m nodes, namely X, that

will get the probability all the way to p. By Lemma 5.6.3, some node will get us at

least 1
m

th of the way there.

Let k be the number of rounds this algorithm is run. We look at the difference

between p and S(eI) after k rounds. By the observation above, we can compute the

number of rounds to get the difference to within ε. For

p

(
1− 1

m

)k

< ε

it suffices that

e−
k
m <

ε

p

or

k > m log
(p

ε

)
.

Therefore, after m log(p
ε
) rounds, S(eI) is within ε of p. We check O(n) nodes each
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round, making for O(nm log(p
ε
)) queries.

We now reconcile the algorithm and the hardness of approximation result. Given

a social network created by the Set Cover reduction from Theorem 5.6.1, we can try

to learn the influential nodes using Algorithm 6. If we set

ε =
1

2

1
n

− 1

2

1
n−1

=

(
1 +

ln(1/2)

n
+

1

2

(
ln(1/2)

n

)2

+ . . .

)
−

(
1 +

ln(1/2)

n− 1
+

1

2

(
ln(1/2)

n− 1

)2

+ . . .

)

= (1− 1) +

(
ln(1/2)

n
− ln(1/2)

n− 1

)
+

1

6

((
ln(1/2)

n

)2

−
(

ln(1/2)

n− 1

)2
)

+ . . .

= Θ

(
1

n2

)
,

this makes ε small enough to force the algorithm to cover all of the vi’s. It would

find a set of

(m log(pn2)) = O(m log(n))

nodes having influence p, which gives a O(log(n)) approximation and matches the

lower bound. It is worth noting that the greedy algorithm for Set Cover also matches

its hardness of approximation lower bound [83].

We will use Lemma 5.6.3, a version of which is derived in [63]. A function f is

submodular if f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) whenever A ⊆ B.

Lemma 5.6.3. S(eI) is a positive monotone, submodular function of I. [63]

Corollary 5.6.4. If p is the maximum influence of any k node set in the network,

then Algorithm 6, with a threshold of 1, terminated after k steps, produces a set with

influence ≥ (1− 1
e
)p.

Proof. Nemhauser et al. [76] show that greedily maximizing a non-negative, mono-

tone, submodular function on sets gives a (1− 1
e
) approximation to the function on
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k-element sets. Hence, this follows from Lemma 5.6.3.

5.7 Open Problems

We leave open a number of interesting and challenging problems. Our results rely

on exact value injection queries. While these queries are theoretically elegant, in

real-world applications learners would normally have access only to non-exact value

injection queries, and for such queries our algorithms would need to be modified,

mainly because we look for shortest paths, not necessarily the paths least diluted

by the multiplication of probabilities. Noise in measurement also presents potential

problems for real-world learners. The Angluin et al. [11] results on probabilistic

networks adapt an exact value injection query algorithm to work in a non-exact

setting, yet we see no clear way of similarly modifying our algorithms. Furthermore,

in moving to the non-exact setting, because of the results from Section 5.5, either

target network depth would need to be limited, or algorithms would have to be

invented that do not rely on excitation paths.

Another interesting topic to explore is what other classes of cyclic networks can

be learned using similar algorithms? Our algorithms rely on the independence as-

sumption in the independent cascade social network model. However, there are other

more general models of social networks, like the decreasing cascade model [63].

It would be worthwhile exploring their learnability as well.

In the real world, one also rarely has the ability to activate or suppress so many

nodes at once. It is an open question under what restrictions on query size social

networks are learnable. Another option to explore is to make larger queries more

costly to the learner. Finally, graph algorithms often run faster on sparse graphs. It

would be interesting to design an algorithm for learning social networks whose query

complexity was a function of the size of the edge set of the target graph.
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Chapter 6

Inferring Social Networks from

Data

6.1 Introduction

In Chapter 5, we study inferring social networks in the active learning context. Yet,

we often passively observe phenomena that hint at the structure of an underlying

social network. In this chapter, we will consider a passive learner – one who must

observe events as they unfold, without the ability to tamper with the network. Even

though this dissertation focuses on learning in the active context, we can use social

networks to compare the problem of network inference for the active and passive

learners.

In the United States, the Centers for Disease Control and Prevention release

various data1 on persons affected by illnesses. Ideally, at least for the sake of learner,

we would have information on exactly who is affected in each outbreak. If, as in

Chapter 5, we consider persons as agents in a social network, we can try to learn the

network’s underlying structure from this information. In an idealized setting, we can

1For more on CDC statistics, we direct the reader to www.cdc.gov/datastatistics/.
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consider persons infected during one outbreak as connected subsets in a population

– for a disease spreads among persons in close proximity, and such data impose

constraints on the topology of the network. Given such constraints, the problem

would then be to find a maximum likelihood social network from the disease data.

We note that unlike in Chapter 5, our task will be to learn the connections among

the persons in the network, not the probability of them activating one another.

Thus, each set imposes a constraint on the network – namely that it be connected

in its induced subgraph. The goal of the learner is to infer the most probable network

that satisfies the connectivity requirements presented to it.

The learner can also have a prior belief about the probability each edge appears in

the network. Let p(u,v) be the a priori probability of an edge appearing between nodes

u and v. If the prior distribution on edges is independent and each edge appears with

low probability, the goal of finding a maximum likelihood social network given the

constraints is to find a set of edges E that satisfies all of the constraints, for which

the quantity ∏
{u,v}∈E

p(u,v)

∏
{u,v}/∈E

(
1− p(u,v)

)
is maximized. If all quantities p(u,v) are sufficiently small, then this product is ap-

proximated by ∏
{u,v}∈E

p(u,v).

Taking the logarithm, we want a set of edges E that minimizes

∑
{v,u}∈E

− log(p(u,v)),

the sum of log-likelihood costs.

We can now think of the priors in terms of their log-likelihood costs. The goal

of the learner becomes to construct the cheapest network (with respect to the prior
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costs) that satisfy the connectivity constraints.

This task presents various natural variations. We can consider what happens if

the constraints are given to the learner in advance, and when the constraints arrive

online. If they arrive online, they can be chosen adversarially or obliviously. We can

imagine all edges in a network having the same cost, or that edges in a network have

arbitrary costs. There are also cases when some information about the underlying

social network is known, for example, that there exists a path that satisfies all the

constraints.

6.1.1 Past Work

We note that this problem was considered by Korach and Stern [66] in another

context where users in a trusted set in a network want to send messages among

themselves without having the messages travel outside the group. Trusted sets of

users can overlap, creating complicated structures, and these trusted sets form con-

nectivity constraints in their subgraphs, imposing similar requirements to those in

the social network inference problem.

In [66] Korach and Stern analyze the offline version of this problem for the case

where the constraints can be satisfied by a tree. They give a polynomial time algo-

rithm that finds the optimal solution in the tree-realizable case. In [67] Korach and

Stern consider this problem for the case where the optimal solution forms a tree, and

all of the connectivity constraints must be satisfied by stars. They pose as an open

question the case of general graphs. Among our results, we answer their question in

this chapter.

In a different line of work, Alon et al. [5] explore a wide range of network op-

timization problems, including generalized connectivity, cuts, facility location, and

multicast. The connectivity problem they study involves ensuring a network with
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fractional edge weights has a flow of 1 over cuts specified by the constraints. In [4],

Alon et al. also study approximation algorithms for the Online Set Cover problem,

which has connections to Network Inference problems which we explore in this chap-

ter. In [51] Gupta et al. also consider a network design problem for pairwise vertex

connectivity constraints.

In the area of active learning, the problem of discovering networks from connec-

tivity queries has been much studied in [3, 6, 20, 27, 49] and Chapter 3. In active

learning of hidden networks, the object of the algorithm is to learn the network ex-

actly. Our model is similar, except the algorithm has only the constraints it is given,

and the task is to output the most likely network consistent with the constraints.

6.1.2 Preliminaries

In this chapter, we consider the following Network Inference problem. V is a set

of vertices, and for each undirected edge e = (vi, vj), ce is the cost of constructing

edge e. A collection of connectivity constraints S = {S1, S2, . . . , Sr} is given, where

each Si is a subset of V . The task is to construct a set E of edges between vertices

of V such that for each i, the set Si induces a connected subgraph of G = (V, E).

The quality of the solution is measured by comparing the sum of the costs of all the

edges in E with the optimal cost of satisfying all the connectivity constraints.

In the offline version of the problem, the algorithm knows all of the constraints at

the outset; in the Online Network Inference problem, the constraints are given

to the algorithm one by one, and edges must be added to G to satisfy each new

constraint. By default, we allow the edges to have arbitrary costs, but in the

uniform cost version of the problem the edge costs are all equal to 1.

When we restrict the underlying graph in a problem to a smaller class of graphs,

we mean that all constraints Si can be satisfied (for the online case, in hindsight),
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by a graph from that class.

6.1.3 Our Results

In Section 6.2 we analyze the offline problem, where we show that the Uniform Cost

Network Inference problem (and therefore the arbitrary cost one) has a hardness

of approximation lower bound of Ω(log(n)) times the optimal solution. We give an

algorithm that gives an O(log(n) + log(r)) approximation, where r is the number of

constraints. This matches the lower bound when r is polynomial in n.

In Section 6.3, we look at the Online Network Inference Problem. First, in Sub-

section 6.3.1, we look at the case when the underlying uniform cost graph is a star

or path. In both cases, we show that the optimal algorithm has an Ω(log(n))-

competitive ratio and give a matching O(log(n))-competitive algorithm. We also

show that in the case when edges have costs, there is no cn-competitive algorithm

for any c < 1, even when the underlying graph is a path.

Then, in Subsection 6.3.2 we consider the general case of Online Network Infer-

ence, where the topology of the underlying graph is unrestricted. There we give an

O(n log(n))-competitive algorithm for the arbitrary cost case, that almost matches

our lower bound. For the Uniform Cost Network Inference problem, we give an

Ω(
√

n)-competitive lower bound, and in the case of an oblivious adversary, we give

an O(n2/3 log2/3(n))-competitive algorithm.

6.2 Offline Network Inference

We first examine the Uniform Cost Network Inference problem in the offline case.

Theorem 6.2.1. If P 6=NP, the approximation ratio for the Uniform Cost Net-

work Inference problem on n nodes is Ω(log n).
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Proof. We reduce from the Hitting Set problem. The inputs to Hitting Set are

U = {v1, v2, . . . , vn} and {C1, C2, . . . , Cj} with Ci ⊆ U . The Hitting Set problem

is to minimize |H|, where H ⊆ U such that ∀Ci, H ∩ Ci 6= ∅. Let k be a constant.

We define an instance of the Uniform Cost Network Inference problem with nk by

n vertices v(i,j), for all 1 ≤ i ≤ nk (rows) and 1 ≤ j ≤ n (columns). For each i, the

vertices in row i, {v(i,1), v(i,2), . . . , v(i,n)}, correspond to the elements {v1, . . . , vn} in

the Hitting Set instance.

Now we define the connectivity constraints for the Uniform Cost Network Infer-

ence problem. First we enforce that all pairs of vertices in each row i are connected,

by adding a connectivity constraint for each pair of vertices {v(i,j), v(i,k)}. For each

constraint Ci in the Hitting Set problem, we create
(

nk

2

)
connectivity constraints.

Without loss of generality, let Ci = {v1, v2, . . . , vk}. For each pair l 6= j such that

1 ≤ l, j ≤ nk we add a connectivity constraint

Sl,j
Ci

= {v(l,1), v(l,2), . . . , v(l,k), v(j,1), v(j,2), . . . , v(j,k)} (6.1)

in the Uniform Cost Network Inference problem. This enforces the Hitting Set con-

straints pairwise between the nk rows of the network inference problem.

Each pair of rows in our new instance contains the original Hitting Set instance.

First, the algorithm has no choice but to place a clique on each row. Then, let

equation (6.1) be a constraint. To satisfy Sl,j
Ci

, the algorithm must choose some edge

between row l and row j among vertices 1, . . . , k. We observe that if the algorithm

chooses an edge between two vertices corresponding to different elements in the two

rows, it could do at least as well by choosing the edge going between two copies of

one of the two elements. To see this, if edge (v(l,x), v(j,y)), with x 6= y, is chosen to

satisfy the constraint Sl,j
Ci

, edge (v(l,x), v(j,x)) would have also satisfied the constraint

(and corresponds to choosing element x in the Hitting Set). Then, for any other
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constraint between the two rows, (v(l,x), v(j,y)) will satisfy it only if (v(l,x), v(j,x)) will.

Hence an optimal algorithm may choose edges in one-to-one correspondence with the

elements in the original Hitting Set instance.

Because Hitting Set is the complement of Set Cover, if P 6=NP, its optimal approx-

imation ratio is Ω(log(n)) [42], and there are Θ
(

nk

2

)
pairs of Hitting Set instances (or

rows). The optimal solution has
(
nk
(

n
2

)
+ OPT

(
nk

2

))
edges – the first term counts

the pairwise constraints in each row. So unless P=NP, the best polynomial time al-

gorithm will require
(
nk
(

n
2

)
+ Ω

(
log(n)OPT

(
nk

2

)))
edges. Because k can be chosen

to be arbitrarily large, this gives us the result.

Below, we give an algorithm that almost meets this lower bound, even in the

arbitrary cost case.

Theorem 6.2.2. There is an O(log(n)+log(r))-competitive polynomial time approxi-

mation algorithm for the Network Inference problem on n nodes and r constraints.

Proof. The inputs are the vertices {v1, v2, . . . , vn}, the cost ce of each edge e = (vi, vj),

and the constraints {S1, S2, . . . , Sr}. Let C be a potential function that sums over

all constraints Si, the number of components Si induces in G minus 1. As long as

C > 0, the constraints are not satisfied. We have C0 =
∑

i (|Si| − 1) because the

graph initially has no edges, and each constraint Si induces |Si| components in G.

Now, consider the following greedy algorithm: until all constraints are satisfied (while

C > 0), take the edge e that has the lowest ratio of ce to ∆C, the amount by which e

reduces C. If in adding one edge, we have reduced C by k, then we say we have done

k “reductions,” and paid a “price” per reduction of ce/∆C. After C0 reductions, we

are done, so we consider the reductions in the order that they occurred.

Now we consider how much we paid to do the kth reduction. Because (k − 1)

reductions had been done already, Ck−1 was at most (C0 − k + 1). The optimal

algorithm did all the reductions in OPT, so the average price it paid for all the
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remaining reductions is at most OPT/(C0−k+1). However, because we are choosing

greedily, for the kth reduction, we pay a price no more than the optimal algorithm.

So we look at the total price we paid (which is the cost of our algorithm), and

it is
∑C0

k=1 OPT/(C0 − k + 1) = OPT log(C0), which we can bound from above by

OPT log(nr) = OPT(log(n) + log(r)).

6.3 Online Network Inference

In the online setting, the collection of connectivity constraints S1, S2, . . . , Sr is now

given one at a time, and we say that upon being presented Si the algorithm is on

round i. Also, let Ei be the edge set after the algorithm satisfies constraint Si.

To explore the worst-case performance of our algorithms, unless otherwise stated,

we assume an adaptive adversary, meaning that the adversary can wait for the

algorithm to satisfy constraint Si before determining constraint Si+1.

In this section, we are interested in competitive analysis. An algorithm is c-

competitive if the cost of its solution is less than c times OPT, where OPT is the

best solution in hindsight. In the case when we know the underlying graph is, for

instance, a uniform cost path or star, we know that OPT = (n− 1).

First, we prove a lemma helpful for analyzing online algorithms.

Lemma 6.3.1. Let n(G, S) be the number of connected components S ⊆ V induces

in G, and let Gi = (V, Ei). For every algorithm for the Online Network Infer-

ence problem, there is an algorithm that performs at least as well and adds exactly

(n(Gi, Si+1)− 1) edges on every round i.

Proof. Let A be any algorithm for the online network inference problem. We can

make a new algorithm called Alazy, that on each round inserts only a subset of edges

that A has inserted up to that round, enough to keep the constraints satisfied. Each
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edge that A inserts but Alazy does not, Alazy remembers as possible edges for future

rounds and adds them as needed to satisfy future constraints. It is clear that Alazy

needs to put down a spanning tree on the components induced by constraint i, which

is (n(Gi, Si+1)−1) edges; any fewer edges would not satisfy the constraint. Thereby,

Alazy satisfies the constraints, and because Alazy uses a subset of the edges of A, it

performs at least as well.

6.3.1 Stars and Paths

First, we examine the case when the underlying graph is a star. This is a natural

framework for Network Inference Problems because it corresponds to the case when

the constraints can be satisfied by a network with one server (the star’s center) and

the rest clients (the leaves.)

Theorem 6.3.2. The optimal competitive ratio for the Uniform Cost Network

Inference problem on n nodes when the algorithm knows the underlying graph is a

star is Θ(log(n)).

Proof. We first prove the lower bound – that the competitive ratio for any algorithm

is Ω(log(n)). The adversary maintains a partition of the vertices into two sets: C,

the possible centers, and D = (V − C), the non-centers. Initially C has (n − 1)

vertices and D has one vertex, and the initial two constraints given to the algorithm

are V and C. At every step, the adversary looks for a vertex v ∈ C that maximizes

the number of edges (u, v) with u ∈ D given by the algorithm, and moves v from C

to D, that is, C ′ = C \ {v} and D′ = D ∪ {v}. The new constraints given by the

adversary are C ′ ∪ u for all u ∈ D′. Thus, the algorithm must ensure at least one

edge from each element of D′ to some element of C ′. The adversary continues until

it has moved all but one vertex from C to D.

To analyze, we consider the edges from elements of D to the element v moved
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from C to D when |C| = i. Each element of D must have at least one edge to an

element of C, so the maximum number of edges from D to one element of C is at

least the average: (n − i)/i. These edges are all distinct, so the algorithm must

produce at least
∑n−1

i=2 (n− i)/i = Ω(n log(n)) edges in all. Yet, all these constraints

can be satisfied by a star with (n− 1) edges. This completes the proof of the lower

bound.

For the upper bound, we give an O(log(n))-competitive algorithm. The algorithm

will keep track of a set Ci of potential centers and Di = V − Ci known non-centers

at round i. Any node not appearing in some constraint cannot be a center. The

algorithm keeps nodes in Ci connected by a path, and each node in Di is connected

to some node in Ci, such that the number of edges going into each node in Ci from

Di is no more than d(|Di|)/|Ci|e, meaning that all nodes in Ci have close to the same

degree. Initially, C0 = V and is connected by an arbitrary path (costing O(n) edges).

At any stage of the algorithm, when a constraint Si comes in, if it does not eliminate

any potential centers, it is easy to see Si is already satisfied. Otherwise, we remove

any potential centers Ri ⊂ Ci−1 that are now known to be non-centers from Ci−1

(to form Ci), and we add them to Di−1 (to form Di). Further, we ignore all edges

to nodes in Ri. We re-stitch the path connecting nodes in Ci, which takes at most

|Ri|+ 1 edges. Then, we connect (in such a way that keeps the degrees of the nodes

in Ci about equal) all nodes in Ri to nodes in Ci, which takes |Ri| edges, and also all

nodes in Di−1 that became disconnected from Ci because were connected to nodes

in Ri, which takes O
(
|R||Di−1|
|Ci−1|

)
edges. This clearly satisfies constraint Si.

To see why this gives us the needed result, we notice at at most n centers can be

removed from C, and therefore connections involving nodes in Ri take
∑n

i=1 O(|Ri|) =

O(n). The rest of the connections, by the analysis in the paragraph above, cost∑
i O
(
|R||Di−1|
|Ci−1|

)
≤
∑

i O
(
|Ri|n
|Ci−1|

)
. If we consider removing one center at a time

(as opposed to in groups Ri), we can bound this from above by O(n
∑n

i=1
1

n−i
) =
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O(n log(n)).

Next, we examine another natural network structure – when the underlying net-

work is a path. This is the case when the constraints can be realized by a serial

network

Theorem 6.3.3. The optimal competitive ratio for the Uniform Cost Network

Inference problem on n nodes when the algorithm knows the underlying graph is a

path is Θ(log(n)).

Proof. First we prove the lower bound, that any algorithm has a competitive ra-

tio of Ω(log(n)). We show an adversarial strategy that forces the algorithm to use

O(n log(n)) edges when the optimal solution in hindsight uses only (n − 1) edges.

The adversary first shows all the nodes, which by Lemma 6.3.1 the optimal algorithm

connects using (n−1) edges. Then the adversary divides the nodes into two indepen-

dent sets and presents each of them to the algorithm in arbitrary order. The optimal

algorithm must connect the two subgraphs with trees (again by Lemma 6.3.1), and

the adversary repeats this process recursively. We say that each depth in the recur-

sion is a new level in this process. Because the algorithm puts down O(n) edges per

level, given this strategy for the adversary, the optimal algorithm needs to put down

a path at each step so as to balance the sizes of two following independent sets and

limit the algorithm to O(log(n)) levels. Hence, the algorithm uses Ω(n log(n)) edges,

but it is clear that knowing the sets in advance, one can satisfy the connectivity

requirements using O(n) edges - by simply connecting the smallest sets and then

merging them accordingly into a path. This gives us the desired Ω(log(n)) gap.

Now we prove the upper bound by giving an O(log((n))-competitive algorithm.

We first observe that every constraint Si is a sub-interval of the path, and the algo-

rithm must put down enough edges to capture a permutation of the vertices consistent

with the Si’s. The algorithm we introduce maintains a pq-tree – a data structure,
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introduced by Booth and Lueker in [28], that keeps track of all consistent orderings

of nodes given contiguous intervals in a permutation. A pq-tree is a tree that consists

of leaf nodes, p-nodes, and q-nodes. A leaf node is an element (or vertex in our

case), A p-node (permutation node) has 2 or more children of any type, and its

children form a contiguous interval, but can be ordered in any order. A q-node has

3 or more children of any type and its children form an interval in the given order or

its reverse. Each new interval constraint updates the pq-tree, and then the algorithm

adds edges to satisfy the new constraint.

We will show that the algorithm can satisfy the constraints using O(n log(n))

edges by using a potential function to keep track of the evolution of the pq-tree. Let

P be the set of p-nodes in a given tree and Q be the set of q-nodes. Also for any

node p, let c(p) count p’s children. For constants a and b, our potential function is

Φ = a
∑
p∈P

((c(p)− 1)(log(c(p)− 1)) + b|Q|. (6.2)

We observe that the pq-tree before any constraints arrive has one p-node at the root,

and all its children are leaf nodes. This corresponds to an arbitrary permutation

of the vertices. So at the beginning, Φ = Θ(n log(n)). In comparison, when the

permutation is specified, the root is a q-node and the rest of the nodes are leaves. In

that case, Φ = Θ(1).

Now we look at what happens when a constraint comes in. We will argue that

the number of edges we need to insert into our graph is a lower bound on the drop

in the potential function, and because it is always the case that Φ ≥ 0, this will

complete the proof.

We first analyze the most common type of update to a pq-tree. A constraint

comes in and splits a known interval into two, that is, it splits a p-node with m

children into two p-nodes (one with at most (k + 1) children and the other with at
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most (m − k) children), and attaches them to a q-node parent. So the drop in the

potential function is as follows (where H(p) is the binary entropy function.)

−∆Φ = a ((m− 1) log(m− 1)− ((k) log(k) + (m− k − 1) log(m− k − 1)))− b

= a(m− 1)

(
log(m− 1)− k

m− 1
log(k)− m− k − 1

m− 1
log(m− k − 1)

)
− b

= a(m− 1)

(
− k

m− 1
log

(
k

m− 1

)
− m− k − 1

m− 1
log

(
m− k − 1

m− 1

))
− b

= a(m− 1)H

(
k

m− 1

)
− b

≥ a(m− 1) min

(
k

m− 1
,
m− k − 1

m− 1

)
− b

= a min (k,m− k − 1)− b.

Now, 2 min (k,m− k − 1) is exactly how much is required in the worst case to stitch

up a split interval – because we have to connect up all of the nodes in the smaller

new interval, and patch at most as many gaps in the larger interval (similar to the

reasoning in the proof of the lower bound). It takes at most 4 more edges to connect

up the ends of the two new intervals to the rest of the graph, and this can be paid

for if a = 10 and b = 4. We remember min (k,m− k − 1) ≥ 1, so we spend 2 on

splitting the p-node, 4 on re-stitching, and 4 on the new q-node, and thus a = 10.

Booth and Lueker in [28] characterized all of the possible updates to the pq-tree

using 10 patterns: L, P1, P2, P3, P4, P5, P6, Q1, Q2, and Q3. They are given

in Section 6.5. Neither L, Q1, nor P1 changes the number of p-nodes or q-nodes.

P2-P6 split at most one p-node and create at most one q-node, and are covered by

our analysis above. Q2 and Q3 require us to reconnect at most 2 pairs of endpoints

(with 4 edges), but also reduce the number of q-nodes by 1 or 2 (this is why b = 4),

and the edges are paid for by the drop in the potential function.

In the arbitrary cost case, the competitive ratio becomes considerably worse.
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Theorem 6.3.4. There is no (cn)-competitive algorithm for c < 1 for the Online

Network Inference problem on n vertices, even when the underlying graph is a

path.

Proof. We let all edges among (n − 1) of the vertices have cost 0, and all edges

from the remaining vertex, s, have cost 1. The adversary first tells the algorithm

that all the vertices are connected. When the algorithm satisfies this constraint, the

adversary excludes from the next constraint all vertices the algorithm has chosen to

directly connect to s. This continues until the adversary forces the algorithm to use

all the 1 edges. But because each constraint is a subset of the previous constraint,

the optimal solution only needs to contain the final cost 1 edge, and can connect the

remaining vertices using a path that goes through the vertices in the order they were

excluded in the adversary’s choice of constraints. Hence, the algorithm was forced

to pay a cost of (n− 1), while the optimal solution pays a cost of 1.

6.3.2 General Graphs

We introduce the Online Fractional Network Inference problem, in which the

algorithm is similarly given a set of vertices V and edge costs ce for all e = (v, w) ∈ V ,

and sees a sequence of constraints {S1, S2, . . . , Sr}. The task is to assign fractional

weights we to the edges (or pairs of vertices), such that for each i, the maximum flow

between each pair of vertices in Si is at least 1, given the weights we (to be interpreted

as edge capacities). The quality of the solution is measured by comparing
∑

cewe

with the optimal cost of satisfying all the connectivity constraints. In the online

problem, the algorithm may not decrease any edge weights from round to round.

Lemma 6.3.5. There is an O(log(n))-competitive polynomial time algorithm for the

Online Fractional Network Inference problem on n nodes.

Proof. We give Algorithm 7 for the Online Fractional Network Inference problem.
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Algorithm 7 An O(log(n))-competitive Algorithm for the Online Fractional Net-
work Inference Problem

Let |V | = n and |E| = m
Upon seeing first constraint, set all we = 1

m2

for each constraint S do
for each pair v, w ∈ S do

if the flow from v to w in S is at least 1 then
do nothing

else
while the flow from v to w in S is less than 1 do

compute a min-weight cut C between v and w in S.
for each edge e ∈ C, we = we(1 + 1/ce)

Algorithm 7 is a modification of the algorithm in 3.1 of Alon et al. [5], and this

proof closely follows their logic.

We say that the optimal solution OPT has cost α. We assume the value of α

is known, and we can then assume all edges have cost between 1 and m.2 We now

follow the argument in Alon et al. [5], which works for Algorithm 7 almost without

modification. First we note that the algorithm generates a feasible solution. This is

clear from its termination condition.

Now we will prove that the number of weight augmentation steps performed

during the run of the algorithm is O(α log(m)). Consider the potential function

Φ =
∑
e∈E

cew
∗
e lg(we),

where w∗
e is the weight of edge e in OPT. It is clear from the initial edge weights

that the potential function begins as Φ0 = −O(α lg(m)). Because no edge gets

weight more than 2, the potential function never exceeds 2α. And the increase in

2Alon et al. [5] argue that we can use all edges of cost less than α/m and stay within our bound,
and we can ignore all edges with cost greater than α, and then rescale. They also show how to
guess α to within a factor of 2, justifying the assumption that α is known in advance.
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the potential function with each weight augmentation step is at least 1:

∆Φ =
∑
e∈E

cew
∗
e lg(we(1 + 1/ce))−

∑
e∈E

cew
∗
e lg(we)

=
∑
e∈E

cew
∗
e lg(1 + 1/ce)

≥
∑
e∈E

w∗
e

≥ 1.

Finally, we look at the cost of our solution,
∑

e∈E wece, (which begins at ≤ 1) and

notice that in a weight augmentation step, it does not exceed
∑

e∈E
we

ce
ce ≤ 1. So,

whenever Φ increases by at least 1, the cost of our solution increases by no more than

1. This gives us an O(log(m)) = O(log(n)) approximation to the Online Fractional

Network Inference problem.

We can now use Lemma 6.3.5 to develop an algorithm that almost matches the

lower bound from Theorem 6.3.4.

Theorem 6.3.6. There is an O(n log(n))-competitive polynomial time algorithm for

the Online Network Inference problem on n nodes.

Proof. We take the algorithm for solving the Online Fractional Network Inference

problem from Lemma 6.3.5, and use it together with a rounding scheme similar to

the one considered by Buchbinder [32] for solving linear programs, to get our result.

For each edge e, we choose 2n random variables X(e, i) independently and uni-

formly from [0, 1]. For each edge, we let threshold T (e) = min2n
i=1 X(e, i). Then we

run the algorithm for the Online Fractional Network Inference problem, and when-

ever we ≥ T (e), we add e to our integral solution, and continue. Now we claim the

following.

1. The integral solution has expected cost O(n) times the fractional solution.
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2. The integral solution satisfies all the constraints with high probability.

To prove the first claim, for any edge e, the probability that X(e, i) < we is we.

The probability that e is chosen to be in the integral solution is the probability that

some X(i, s) < we – we call this event Ai. Hence, the probability of ∪2n
i=1Ai is 2nwe,

and by linearity of expectation, on every round, the expected cost of our solution

is O(n) times the fractional solution, which is a O(log(n)) approximation of OPT.

Hence our solution is an O(n log(n)) approximation of OPT in expectation.

To prove the second claim, we pick a constraint S. The constraint S is satisfied if

and only if for every cut C ∈ S, there exists an edge crossing C in our solution. We fix

a cut C. The probability the cut is not crossed is the probability we have not chosen

any edge crossing the cut. This probability is
∏

e∈C (1− we)
2n ≤ e(−2n

P
e∈C we). And

because the cut is crossed with a flow of 1 in the fractional solution (i.e.
∑

e∈C we ≥ 1)

at the time it is considered by the algorithm, we can bound this by 1
e2n . There are r

constraints and at most 2n cuts per constraint, so by the union bound, the probability

our solution is not feasible is
(

r2n

e2n

)
. Because r < 2n < en, the probability our solution

is not feasible tends to 0 as n increases, completing the proof.

Alternate Proof. We now give an alternate proof of the theorem by reducing the

Online Network Inference problem to Online Set Cover. In Online Set Cover, X =

{1, 2, . . . , n} is a set of n elements and S is a family of m weighted subsets of X. S

is given to the algorithm in advance, and elements of X ′ ⊆ X arrive one at a time

in arbitrary order online. While X is known to the algorithm, X ′ is not. The goal

of the algorithm is to select a collection of sets from S of lowest weight, such that

at any point in the algorithm, every element that has arrived is contained in some

selected subset. Once a subset is selected, it cannot be unselected.

In reducing the Online Network Inference problem to Online Set Cover, we make

the weighted edges correspond to the weighted sets given to the algorithm. For each
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constraint to arrive online, we make a set cover element element for each possible

cut through the constraint. A set covers an element if its corresponding edge crosses

the cut corresponding to the element. In the Online Network Inference problem,

each cut in a constraint must be crossed by some edge, and if each cut is crossed,

the constraint is satisfied. The cost of the optimal solution to both problems is the

same.

Hence, if the original Online Network Inference problem has n nodes, then the

Online Set Cover instance has O(n2) sets and O(2n) possible elements (or partitions

of vertices). Alon et al. [4] and Buchbinder [32] provide algorithms for Online Set

Cover that give an O(log(m) log(n))-competitive ratio if m is the number of sets and

n is the number of elements. For the Online Network Inference problem, this gives

an O(n log(n))-competitive bound, completing the proof.

We now make a simple observation for the uniform cost case.

Proposition 6.3.7. There is an O(n)-competitive polynomial time algorithm for the

Online Uniform Cost Network Inference problem on n nodes.

Proof. Consider the algorithm that puts down a clique for each constraint presented

to it. Let q ≤ n be the number of nodes that appear in at least one constraint. Our

algorithm uses O(q2) edges, but the optimal algorithm must clearly use at least Ω(q)

edges.

We also present a lower bound for the Online Uniform Cost Network Inference

problem.

Theorem 6.3.8. The Online Uniform Cost Network Inference problem on

n nodes has an Ω(
√

n)-competitive lower bound.

Proof. We divide the vertices into two sets Q and R, with |Q| =
√

n and |R| = n−
√

n.

For each vi ∈ R, the adversary does the following. At stage t = 1 the adversary sets
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Q(i,1) = Q. At stage t, the adversary gives the learner the constraint S(i,t) = Q(i,t)∪vi.

Let C(i,t) be the set of vertices in Q which the learner connects to vi in response to

being presented S(i,t). The adversary sets Q(i,t+1) = Q(i,t) \C(i,t) and continues to the

next stage. The adversary stops when Q(i,t) = ∅.

To analyze this strategy for the adversary, for each vi, we order the edges from

vi to R by the stage in which the learner has placed them, breaking ties arbitrarily.

It is clear that the last edge the learner places is sufficient to connect vi to R for

all constraints S(i,t). Hence, all of these constraints can be satisfied in retrospect by

placing a clique on Q using
(√

n
2

)
= O(n) edges and one edge per vertex in R, also

using O(n) edges. However, the learner places Ω(n) edges per vertex in Q, amounting

to Ω (n
√

n) edges in total, giving the desired result.

We now consider the Online Network Inference problem with an oblivious ad-

versary – an adversary who commits to the constraints {S1, S2, . . . , Sr} before pre-

senting any of them to the algorithm.

Theorem 6.3.9. There is a randomized polynomial time algorithm for the Online

Uniform Cost Network Inference problem on n nodes that gives an expected

O(n2/3 log2/3(n))-competitive ratio against an oblivious adversary.

Proof. We assume that the optimal solution has m = Ω(n) edges (that each vertex

appears in some constraint). We then create an Erdös Rényi random graph on our

graph G, by putting in edges independently with a specified probability. Random

graph connectivity has a sharp threshold of c log(n)
n

for c > 1 [41]. When p = c log2/3(n)

n1/3 ,

G has O(n5/3 log2/3(n)) edges in expectation. Now, our algorithm is simple – for

each constraint Si such that |Si| ≥ n1/3 log1/3(n), because of our choice of p, Si

is already connected with high probability in G. Because we assume that there are

only polynomially many constraints (even in the offline case, as in Theorem 6.2.2), for

large enough c, all such constraints are satisfied in expectation. For every constraint
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Si of size < n1/3 log1/3(n) that we see, we can put a clique with O(n2/3 log2/3(n))

edges on that constraint, and each time we do that, we are guaranteed to hit at least

one edge in OPT. Hence, this costs us O(n5/3 log2/3(n) + n2/3 log2/3(n)OPT) edges

in expectation, and because m = Ω(n), we have an O(n2/3 log2/3(n)) approximation

ratio.

6.4 Discussion and Open Problems

In this paper we present a theoretical study of the Network Inference problem. This

model allows us to estimate connections among people (or other populations) from

data that exposes certain constraints. While in practical settings, we rarely have good

prior estimates of the probability of connections among people, these algorithms

should give some idea of the structure of actual social networks. One challenge

in using this model to learn real-world networks is that often times, due to issues

of privacy, data is anonymized (for example disease data), and it is hard to tell

when the same person participates in multiple constraints. However, there are other

settings where this would not be an issue. For network construction problems, our

algorithms give network designers methods of optimizing costs while satisfying their

users’ constraints, especially in the offline setting.

We leave open some interesting questions. In the offline case, we give an Ω(log(n))

hardness of approximation lower bound and an O(log(n) + log(r)) approximation

algorithm for both the arbitrary cost and uniform cost Network Inference problems.

If r is polynomial in n these bounds match, but otherwise there is a gap. We also

have a log(n) asymptotic gap for the Online Network Inference problem. For the

Online Uniform Cost Network Inference problem, we have an Ω(
√

n) adversarial

lower bound and an O(n2/3/log1/3(n)) algorithm for the oblivious case. Improving

these bounds is an important problem.
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Another open problem is to find tight bounds for trees in the uniform cost case.

For stars and paths, the bounds are tight, and our arguments can be adapted to

give a Ω(log(n))-competitive lower bounds against an oblivious adversary. Perhaps

an O(log(n))-competitive algorithm can be found for trees in general, but our algo-

rithms for paths and stars rely on their specific properties and do not immediately

generalize. Finally, one can consider generalizations of the Network Inference Prob-

lem, for example constraints could require the vertices to be k-connected in the

induced subgraphs.

6.5 Appendix: Updating a pq-tree

We briefly describe the patterns in [28] for updating pq-trees, as broken down into

10 cases. This can be used as a guide for tracking the changes in Equation 6.2.

L This pattern simply relabels some leaf nodes.

P1 This pattern simply relabels a p-node.

P2 This pattern moves some children of a p-node into their own p-node.

P3 This pattern moves some children of a p-node into their own p-node and creates

a parent q-node.

P4 This pattern moves some children of a p-node to be children of a newly created

p-node, whose parent is a q-node that is a child of the original p-node.

P5 This pattern moves some children of a p-node into their own p-node that is the

child of the original p-node, which becomes transformed to a q-node.

P6 This pattern moves some children of a p-node to their own p-node that is moved

to be the child of a newly created q-node formed by merging two q-nodes.
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Q1 This pattern simply relabels a q-node.

Q2 This pattern deletes a q-node and moves its children to become children of its

parent q-node.

Q3 This pattern deletes two q-nodes and merges their children to become children

of their parent q-node.
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Chapter 7

Learning Automata from Labels

7.1 Introduction

The problem of learning the behavior of a finite automaton has been considered in

several domains, including language learning and environment learning by robots.

Many interesting questions remain about the kinds of information that permit effi-

cient learning of finite automata.

One basic result is that finite automata are not learnable using a polynomial

number of membership queries. Consider a “password machine”, that is, an acceptor

with (n + 2) states that accepts exactly one binary string of length n; the learner

may query (2n − 1) strings before finding the one that is accepted. In this case, the

learner gets no partial information from the unsuccessful queries.

However, Freund et al. [44] show that regardless of the topology of the underlying

automaton, if its states are randomly labeled with 0 or 1, then a robot taking a

random walk on the automaton can learn to predict the labels while making only

a polynomial number of errors of prediction. Random labels on the states provide

a rich source of information that can be used to distinguish otherwise difficult-to-

distinguish pairs of states.
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In a different setting, Becerra-Bonache et al. [25] introduced correction queries

to model a kind of correction provided by a teacher to a learner when the learner’s

utterance is not grammatically correct. In their model, a correction query with a

string w gives the learner not only membership information about w, but also, if

w is not accepted, either the minimum continuation of w that is accepted, or the

information that no continuation of w is accepted. In certain cases, corrections may

provide a substantial amount of partial information for the learner. For example,

for a password machine, a prefix of the password will be answered with the rest of

the password. We may think of correction queries as labeling each state q of the

automaton with the string rq that is the response to any correction query w that

arrives at q.

In both of these cases, labels on states may facilitate the learning of finite au-

tomata: randomly chosen labels in the work of Freund et al. and meaningfully chosen

labels in the work of Becerra-Bonache et al. In this chapter we explore the general

idea of adding labels to the states of an automaton to make it easier to learn. That

is, we allow a teacher to prepare an automaton M for learning by adding labels to

its states (either carefully or randomly chosen). When the learner queries a string,

the learner receives not only the original output of M for that string, but also the

label attached to that state by the teacher. In an extension of this idea, we also

allow the teacher to “unfold” the machine M to produce copies of a state that may

then be given different labels. These ideas are also relevant to automata testing [69]

– labeling and unfolding automata can make their structure easier to verify.

Depending on how labels are assigned, learning may or may not become easier.

If each state is assigned a unique label, the learning task becomes easy because the

learner knows which state the machine reaches on any given query. However, if the

labels are all the same, they give no additional information and learning may require

an exponential number of queries (as in the case of membership queries.)
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Hence we focus on questions of the following sort. Given an automaton, how can

a teacher use a limited set of labels to make the learning problem easier? If random

labels are sprinkled on the states of an automaton, how much does that help the

learner? How few labels can we use and still make the learning problem tractable?

Other questions concern the structure of the automaton itself. For example, we may

consider changing the structure of the automaton before labeling it. We also consider

the problem of learning randomly labeled automata with random structure.

7.2 Preliminaries

We consider finite automata with output, defined as follows. A finite automaton M

has a finite set Q of states, an initial state q0 ∈ Q, a finite alphabet X of input

symbols, a finite alphabet Y of output symbols, an output function γ mapping Q to

Y and a transition function τ mapping Q ×X to Q. We extend τ to map Q ×X∗

to Q in the usual way. A finite acceptor is a finite automaton with output alphabet

Y = {0, 1}; if γ(q) = 1 then q is an accepting state, otherwise, q is a rejecting state.

In this chapter we assume that there are at least two input symbols and at least two

output symbols, that is, |X| ≥ 2 and |Y | ≥ 2.

For any string w ∈ X∗, we define M(w) to be γ(τ(q0, w)), that is, the output of

the state reached from q0 on input w. Two finite automata M1 and M2 are output-

equivalent if they have the same input alphabet X and the same output alphabet

Y and for every string w ∈ X∗, M1(w) = M2(w).

If M is a finite automaton with output, then an output query with string

w ∈ X∗ returns the symbol M(w). This generalizes the concept of a membership

query for an acceptor. That is, if M is an acceptor, an output query with w returns 1

if w is accepted by M and 0 if w is rejected by M . We note that Angluin’s polynomial

time algorithm to learn finite acceptors using membership queries and equivalence
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queries generalizes in a straightforward way to learn finite automata with output

using output queries and equivalence queries [10].

If q1 and q2 are states of a finite automaton with output, then q1 and q2 are

distinguishable if there exists a distinguishing string for them, namely, a string

w such that γ(τ(q1, w)) 6= γ(τ(q2, w)), that is, w leads from q1 and q2 to two states

with different output symbols. If M is minimized, every pair of its states are distin-

guishable, and M has at most one sink state.

If d is a nonnegative integer, the d-signature tree of a state q is the finite

function mapping each input string z of length at most d to the output symbol

γ(τ(q, z)). We picture the d-signature tree of a state as a rooted tree of depth d

in which each internal node has |X| children labeled with the elements of X, and

each node is labeled with the symbol from Y that is the output of the state reached

from q on the input string z that leads from the root to this node. The d-signature

tree of a state gives the output behavior in a local neighborhood of the automaton

reachable from that state.

For any finite automaton M with output, we may consider its transition graph,

which is a finite directed graph (possibly with multiple edges and self-loops) defined

as follows. The vertices are the states of M and there is an edge from q to q′ for each

transition τ(q, a) = q′. Properties of the transition graph are applied to M ; that is,

M is strongly connected if its transition graph is strongly connected. Similarly,

the out-degree of M is |X| for every node, and the in-degree of M is the maximum

number of edges entering any node of its transition graph. For a positive integer k,

we define an automaton M to be k-concentrating if there is some set Q′ of at most

k states of M such that every state of M can reach at least one state in Q′. Every

strongly connected automaton is 1-concentrating.
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7.2.1 Labelings

If M is a finite automaton with output, then a labeling of M is a function ` mapping

Q to a set L of labels, the label alphabet. We use M to construct a new automaton

M ` by changing the output function to γ′(q) = (γ(q), `(q)). That is, the new output

for a state is a pair incorporating the output symbol for the state and the label

attached to the state. For the scenario of learning with labels, we assume that

the learner has access to output queries for M ` for some labeling ` of the hidden

automaton M . For the scenario of learning with unfolding and labels, we

assume that the learner has access to output queries for M `
1 for some labeling `

of some automaton M1 that is output-equivalent to M . In these two scenarios, the

queries will be referred to as label queries. The goal of the learner in either scenario

is to use label queries to find a finite automaton M ′ output-equivalent to M . Thus,

the learner must discover the output behavior of the hidden automaton, but not

necessarily its topology or labeling. We assume the learner is given both X and |Q|.

7.3 Learning with Labels

First, we show a lower bound on the number of label queries required to learn a

hidden automaton M with n states and an arbitrary labeling `.

Proposition 7.3.1. Let L be a finite label alphabet. Learning a hidden automaton

with n states and a labeling ` using symbols from L requires

Ω

(
|X|n log(n)

1 + log(|L|))

)

label queries in the worst case.

Proof. Recall that we have assumed that |X| and |Y | are both at least 2; we consider
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|Y | = 2. Domaratzki et al. [39] have shown that there are at least

(|X| − o(1))n2n−1n(|X|−1)n

distinct languages accepted by acceptors with n states. Because each label query

returns one of at most 2 · |L| values, an information theoretic argument gives the

claimed lower bound on the number of label queries. As a corollary, when |X| and

|L| are constants, we have a lower bound of Ω(n log(n)) label queries.

7.3.1 Labels Carefully Chosen

In this section, we examine the case where a limit is placed on the number of different

labels the teacher may use, and the teacher is able to label the states after examining

the automaton. Moreover, the learning algorithm may take advantage of knowing

the labeling strategy of the teacher. In this setting the problem takes on an aspect of

coding, and indicates the maximum extent to which labeling may facilitate efficient

learning. We begin with a simple proposition.

Proposition 7.3.2. An automaton with n states, helpfully labeled using n different

labels, can be learned using |X|n label queries.

Proof. The teacher assigns a unique integer label between 1 and n to each state.

The learner asks a label query with the empty string to determine the output and

label of the start state, and then explores the transitions from the start state by

querying each a ∈ X. After querying an input string w, the label indicates whether

this state has been visited before. If the state is new, the learner explores all the

transitions from it by querying wa for each a ∈ X. Thus, after querying at most

|X|n strings, the learner knows the structure and outputs of the entire automaton.

The lower bound shows that this is asymptotically optimal if the label set L has n

130



elements.

We next consider limiting the teacher to a constant number of different labels: a

polynomial number of label queries suffices in this case.

Theorem 7.3.3. For each automaton with n states, there is a helpful labeling using

2|X| different labels such that the automaton can be learned using O(|X|n2) label

queries.

Proof. Given an automaton M of n states, the teacher chooses an outward-directed

spanning tree T rooted at q0 of the transition graph of the automaton, and labels

the states of M to communicate T to the learner as follows. The label of state q is

the subset of X corresponding to the edges of T from q to other nodes. The label of

q directs the learner to q’s children. Using at most n label queries and the structure

of T , the learner can create a set S of n input strings such that for each state q of

M , there is one string w ∈ S such that τ(q0, w) = q.

In [8], Angluin gives an algorithm for learning a regular language using member-

ship queries given a live complete sample for the language. A live complete sample

for a language L is a set of strings P , that for every state q (other than the dead

state) of the minimal acceptor for L, contains a string that leads from the start state

to q. Given a live complete sample P , a learner can find the regular language using

O(k|P |n) membership queries, where k is the size of the input alphabet. A straight-

forward generalization of this algorithm to automata with output shows that the set

S and O(|X|n2) output queries can be used to find an automaton output equivalent

to M .

However, the number of queries, O(n2), does not meet the Ω(n log n) lower bound,

and the number of different labels is large. For a restricted class of automata, there

is a helpful labeling with fewer labels that permits learning with an asymptotically
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optimal O(n log n) label queries. To appreciate the generality of Theorem 7.3.4, we

note once more that every strongly connected automaton is 1-concentrating, and as

we will see in Lemma 7.4.2, automata with a small input alphabet can be unfolded

to have small in-degree.

Theorem 7.3.4. Let k and c be positive integers. Any automaton in the class of

c-concentrating automata with in-degree at most k can be helpfully labeled with at

most (3k|X|+ c) labels so that it can be learned using O(|X|n log(n)) label queries.

Proof. We give the construction for 1-concentrating automata and indicate how to

generalize it at the end of the proof. Given a 1-concentrating automaton M the

teacher chooses as the root a node reachable from all other nodes in the transition

graph of M . The depth of a node is the length of the shortest path from that node

to the root. The teacher then chooses a spanning tree T directed inward to the root

by choosing a parent for each non-root node. (One way to do this is to let the parent

of a node q be the first node reached along a shortest path from q to the root.) The

teacher assigns, as part of the label for each node q, an element a ∈ X such that

τ(q, a) is the parent of q.

The teacher now adds more information to the labels of the nodes, which we call

color, using the colors yellow, red, green, and blue. The root is the unique node

colored yellow. Let t = dlog ne; t bits are enough to give a unique identifier for every

node of the graph. Each node at depth a multiple of (t + 1) is colored red. For each

red node v we choose a unique identifier of t bits (c1, c2, . . . , ct) encoded as green and

blue labels. Now consider the maximal subtree rooted at v containing no red nodes.

For each level i from 1 to the depth of the subtree, all the nodes at level i of the

subtree are colored with ci (which is either blue or green.) The teacher has (so far)

used 3|X| + 1 labels – a direction and one of three colors per non-root node, and a

unique identifier for the root.
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Given this labeling, the learner can start from any state and reach a localization

state whose identifier is known, as follows. The learner uses the parent component of

the labels to go up the tree until it passes one red node and arrives at a second red

node, or arrives at the root (whichever comes first), keeping track of the labels seen.

If the learner reaches the root, it knows where it is. Otherwise, the learner interprets

the labels seen between the first and second red node encountered as an identifier for

the node v reached. This involves observing at most (2t+2) labels. Thus, even if the

in-degree is not bounded, a 1-concentrating automaton can be labeled so that with

O(log(n)) label queries the learner can reach a uniquely identified localizing state.

If each node of the tree T also has in-degree bounded by k, another component of

the label for each non-root node identifies which of the k possible predecessors of its

parent it is (numbered arbitrarily from 1 to at most k.) If the learner collects these

values on the path from u to its localization node v, then we have an identifier for u

with respect to v. Thus it takes O(log(n)) label queries to learn any node’s identifier.

If the node has not been encountered before, its |X| transitions must be explored, as

in Proposition 7.3.2. This gives us a learning algorithm using O(|X|n log(n)) label

queries. The labeling uses at most 3k|X|+ 1 different labels.

If the automaton is c-concentrating for some c > 1, then the teacher selects a set

of at most c nodes such that every node can reach at least one of them and constructs

a forest of at most c inward directed disjoint spanning trees, and proceeds as above.

This increases the number of unique identifiers for the roots from 1 to c.

An open question is whether an arbitrary finite automaton with n states can

be helpfully labeled with O(1) labels in such a way that it can be learned using

O(|X|n log n) label queries.
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7.3.2 Labels Randomly Chosen

In this section we turn from labels carefully chosen by the teacher to an independent

uniform random choice of labels for states from a label alphabet L. With nonzero

probability the labeling may be completely uninformative, so results in this scenario

incorporate a confidence parameter δ > 0 that is an input to the learner. The

goal of the learner is to learn an automaton that is output equivalent to the hidden

automaton M with probability at least (1− δ), where this probability is taken over

the labelings of M . Results on random labelings can be used in the careful labeling

scenario: the teacher generates a number of random labelings until one is found that

has the desired properties.

We first review the learning scenario considered by Freund et al. [44]. There is a

finite automaton over the input alphabet X = {0, 1} and output alphabet {+,−},

where the transition function and start state of the automaton are arbitrary, but the

output symbol for each state is chosen independently and uniformly from {+,−}.

The learner moves from state to state in the target automaton according to a random

walk (the next input symbol is chosen independently and uniformly from {0, 1}) and,

after learning what the next input symbol will be, attempts to predict the output

(+ or −) of the next state. After the prediction, the learner is told the correct

output and the process repeats with the next input symbol in the random walk. If

the learner’s prediction was incorrect, this counts as a prediction mistake. In the

first scenario they consider, the learner may reset the machine to the initial state by

predicting “?” instead of “+” or “−”; this counts as a default mistake. In this

model, the learner is completely passive, dependent upon the random walk process

to disclose useful information about the behavior of the underlying automaton. For

this setting they prove the following.

Theorem 7.3.5 (Freund et al. [44]). There exists a learning algorithm that takes n
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and δ as input, runs in time polynomial in n and 1/δ and with probability at least

(1 − δ) makes no prediction mistakes and an expected O((n5/δ2) log(n/δ)) default

mistakes.

The main idea is to use the d-signature tree of a state as the identifier for the

state, where d ≥ 2 log(n2/δ). For this setting, there are at least n4/δ2 strings in a

signature tree of depth d. The following theorem of Trakhtenbrot and Barzdin’ [84]

establishes that signature trees of this depth are sufficient.

Theorem 7.3.6 (Trakhtenbrot and Barzdin’ [84]). For any natural number d and

for any finite automaton with n states and randomly chosen outputs from Y , the

probability that for some pair of distinguishable states the shortest distinguishing

string is of length greater than d is less than

n2(1/|Y |)d/2.

We may apply these ideas to prove the following.

Theorem 7.3.7. For any positive integer s, any finite automaton with n states,

over the input alphabet X and output alphabet Y , with its states randomly labeled

with labels from a label alphabet L with |L| = |X|s can be learned using

O

(
|X|n

1+4/s

δ2/s

)

label queries, with probability at least (1− δ) (with respect to the choice of labeling.)

Proof. Assume that the learning algorithm is given n, a bound on the number of

states of the hidden automaton, and the confidence parameter δ > 0. It calculates

a bound d = d(n, δ) (described below) and proceeds as follows, starting with the

empty input string. To explore the input string w, the learning algorithm calculates
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the d signature tree (in the labeled automaton) of the state reached by w by making

label queries on wz for all input strings z of length at most d. This requires O(|X|d)

queries. If this signature tree has not been encountered before, then the algorithm

explores the transitions wa for all a ∈ X. Assuming that the labeling is “good”, that

is, that all distinguishable pairs of states have a distinguishing string in the labeled

automaton of length at most d, then this correctly learns the output behavior of the

hidden automaton using O(|X|d+1n) label queries.

To apply Theorem 7.3.6, we assume that the hidden automaton M is an arbitrary

finite automaton with output with at most n states, input alphabet X and output

alphabet Y . The labels randomly chosen from L then play the role of the random

outputs in Theorem 7.3.6. There is a somewhat subtle issue: states distinguishable

in M by their outputs may not be distinguishable in the labeled automaton by their

labels alone. Fortunately, Freund et al. [44] have shown us how to address this point.

In the first case, if two states of M are distinguishable by their outputs in M by a

string of length at most d, then their d signature trees (in the labeled automaton)

will differ. Otherwise, if the shortest distinguishing string for the two states (using

just outputs) is of length at least d+1, then generalizing the argument for Theorem 2

in [44] from |Y | = 2 to arbitrary |Y |, the probability that this pair of states is not

distinguished by the random labeling by a string of length at most d is bounded

above by (1/|Y |)(d+1)/2. Summing over all pairs of states gives the required bound.

Thus, choosing

d ≥ 2

log |L|
log

(
n2

δ

)
,

suffices to ensure that the labeling is “good” with probability at least (1 − δ). If

we use more labels, the signature trees need not be so deep and the algorithm does

not need to make as many queries to determine them. In particular, if |L| = |X|s,

then the bound of O(|X|d+1n) on the number of label queries used by the algorithm
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becomes

O

(
|X|n

1+4/s

δ2/s

)
,

completing the proof.

Corollary 7.3.8. Any finite automaton with n states can be learned using O(|X|n1+ε)

label queries with probability at least 1/2, when it is randomly labeled with |L| =

f(|X|, ε) labels.

Proof. With δ = 1/2 a choice of |L| ≥ |X|4/ε suffices.

We remark that this implies that there exists a careful labeling with O(|X|4)

labels that achieves learnability with O(|X|n2) label queries, substantially improving

on the size of the label set used in Theorem 7.3.3. An open question is whether a

random labeling with O(1) labels enables efficient learning of an arbitrary n state

automaton with O(n log n) queries with high probability.

7.4 Unfolding Finite Automata

We now consider giving more power to the teacher. Because many automata have

the same output behavior, we ask what happens if a teacher can change the under-

lying machine (without changing its output behavior) before placing labels on it. In

Sections 7.3.1 and 7.3.2, the teacher had to label a fixed machine. Now we will ex-

amine what happens when a teacher can unfold an automaton before putting labels

on it. That is, given M , the teacher chooses another automaton M ′ with the same

output behavior as M and labels the states of M ′ for the learner.

137



7.4.1 Unfolding and then Labeling

We first remark that unfolding an automaton M from n to O(n log n) states allows

a careful labeling with just 2 labels to encode a description of the machine.

Proposition 7.4.1. Any finite automaton with n states can be unfolded to have

N = O(|X|n log(n) + n log(|Y |)) states and carefully labeled with 2 labels, in such a

way that it can be learned using N label queries.

Proof. The total number of automata with output having n states, input alphabet

X and output alphabet Y is at most

n|X|n+1|Y |n.

Thus, N = O(|X|n log(n) + n log(|Y |)) bits suffice to specify any one of these ma-

chines.

The teacher chooses a ∈ X and unfolds the target automaton M as follows. The

strings ai for i = 0, 1, . . . , N−1 each send the learner to a newly created state, which

act (with respect to transitions on other input symbols and output behavior) just

like their counterparts in the original machine. The remaining states are unchanged.

The unfolded automaton is output equivalent to M . The teacher then specifies M

by labeling these N new states with the bits of the specification of M . The learner

simply asks a sequence of N queries on strings of the form ai to receive the encoding

of the hidden machine.

This method does not work if we restrict the unfolding to O(|X|n) states, but we

show that this much unfolding is sufficient to reduce the in-degree of the automaton

to O(|X|).

Lemma 7.4.2. Let M be an arbitrary automaton of n states. There is an automaton
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M ′ with the same output behavior as M , with at most (|X| + 1)n states whose in-

degree is bounded by 2|X|+ 1.

Proof. Given M , we repeat the following process until it terminates. While there is

some state q with in-degree greater than 2|X| + 1, split q into two copies, dividing

the incoming edges as evenly as possible between the two copies, and duplicating all

|X| outgoing edges for the second copy of q.

It is clear that each step of this process preserves the output behavior of M . To see

that it terminates, for each node q let f(q) be the maximum of 0 and din(q)−(|X|+1),

where din(q) is the in-degree of q. Consider the potential function Φ that is the sum

of f(q) for all nodes q in the transition graph. Φ is initially at most |X|n− (|X|+1),

and each step reduces it by at least 1 = (|X|+1)−|X|. Thus, the process terminates

after no more than |X|n steps producing an output-equivalent automaton M ′ with

no more than (|X|+ 1)n states and in-degree at most 2|X|+ 1.

In particular, an automaton with a sink state of high in-degree will be unfolded

by this process to have multiple copies of the sink state. Using this idea for degree

reduction, the teacher may use linear unfolding and helpful labeling to enable a

strongly connected automaton to be learned with O(n log n) label queries.

Corollary 7.4.3. For any strongly connected automaton M of n states, there is an

unfolding M ′ of M with at most (|X|+ 1)n states and a careful labeling of M ′ using

O(|X|2) labels that allows the behavior of M to be learned using O(|X|2n log n) label

queries.

Proof. Given a strongly connected automaton M with n states, the teacher uses

the method of Lemma 7.4.2 to produce an output equivalent machine M ′ with at

most (|X|+ 1)n states and in-degree bounded by 2|X|+ 1. This unfolding may not

preserve the property of being strongly connected, but there is at least one state q
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that has at most (|X|+1) copies in the unfolded machine M ′. Because M is strongly

connected, every state of M ′ must be able to reach at least one of the copies of q, so

M ′ is (|X| + 1)-concentrating. Applying the method of Theorem 7.3.4, the teacher

can use 3(2|X|+ 1)|X|+ (|X|+ 1) labels to label M ′ so that it can be learned with

O(|X|2n log n) label queries.

We now consider uniform random labelings of the states when the teacher is

allowed to choose the unfolding of the machine.

Theorem 7.4.4. Any automaton with n states can be unfolded to have O(n log(n/δ))

states and randomly labeled with 2 labels, such that with probability at least (1− δ),

it can be learned using O(|X|n(log(n/δ))2) queries.

Proof. Given n and δ, let t = dlog(n2/δ)e. The teacher chooses a ∈ X and unfolds

the target machine M to construct the machine M ′ as follows. M ′ has nt states (q, i)

where q is a state of M and 0 ≤ i ≤ (t − 1). The start state is (q0, 0), where q0 is

the start state of M . The output symbol for (q, i) is γ(q, ai), where γ is the output

function of M . For 0 < i < (t− 1), the a transition from (q, i) is to (q, (i + 1)). The

a transition from (q, t − 1) is to (q′, 0), where q′ = τ(q, at) and τ is the transition

function of M . For all other input symbols b with b 6= a, the b transition from (q, i)

is to (q′, 0), where q′ = τ(q, aib).

To see that M ′ is an unfolding of M , that is, M ′ is output equivalent to M ,

we show that each state (q, i) of M ′ is output equivalent to state τ(q, ai) of M .

By construction, these two states have the same output. If i < (t − 1) then the a

transition from (q, i) is to (q, i + 1), which has the same output symbol as τ(q, ai+1).

The a transition from (q, t− 1) is to (q′, 0), where q′ = τ(q, at), which has the same

output symbol as τ(τ(q, at−1), a). If b 6= a is an input symbol, then the b transition

from (q, i) is to (q′, 0) where q′ = τ(q, aib), which has the same output symbol as

τ(τ(q, ai), b).

140



Suppose M ′ is randomly labeled with two labels. For each state q of M , define

its label identifier in M ′ to be the sequence of labels of (q, i) for i = 0, 1, . . . , (t− 1).

For two distinct states q1 and q2 of M , the probability that their label identifiers in

M ′ are equal is (1/2)t, which is at most δ/n2. Thus, the probability that there exist

two distinct states q1 and q2 with the same label identifier in M ′ is at most δ.

Given n and δ, the learning algorithm takes advantage of the known unfolding

strategy to construct states (j, i) for 0 ≤ j ≤ n − 1 and 0 ≤ i ≤ (t − 1) with a

transitions from (j, i) to (j, i + 1) for i < (t − 1). It starts with the empty input

string and uses the following exploration strategy. Given an input string w that is

known to arrive at some (q, 0) in M ′, the learning algorithm makes label queries on

wai for i = 0, 1, . . . , (t− 1) to determine the label identifier of q in M ′. If this label

identifier has not been seen before, the learner uses the next unused (j, 0) to represent

q and records the outputs and labels for the states (j, i) for i = 0, 1, . . . , (t − 1). It

must also explore all unknown transitions from the states (j, i). If distinct states

of M receive distinct label identifiers in M ′, the learner learns a finite automaton

output equivalent to M using O(|X|nt2) label queries.

7.5 Automata with Random Structure

We may also ask whether randomly labeled finite automata are hard to learn “on

average”. We consider automata with randomly chosen transition functions and

random labels. The model of random structure that we consider is as follows. Let

the states be qi for i = 0, 1, . . . , (n − 1), where q0 is the start state. For each state

qi and input symbol a ∈ X, choose j uniformly at random from 0, 1, . . . , (n− 1) and

let τ(qi, a) = qj.

Theorem 7.5.1. A finite automaton with n states, a random transition function and

a random labeling can be learned using O(n log(n)) label queries, with high probability.
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The probability is over the choice of transition function and labeling.

Proof. This was first proved by Korshunov in [68]; here we give a simpler proof.

Korshunov showed that the signature trees only need to be of depth asymptotically

equal to log|X|(log|L|(n)) for the nodes to have unique signatures with high probabil-

ity. We use a method similar to signature trees, but simpler to analyze. Instead of

comparing signature trees for two states to tell whether or not they are distinct, we

compare the labels along at most four sets of transitions, which we call signature

paths – like a signature tree consisting only of four paths.

Lemmas 7.5.2 and 7.5.3 show that given X and n there are at most four signature

paths, each of length 3 log(n), such that for a random finite automaton of n states

with input alphabet X and for any pair s1 and s2 of different states, the probability

is O
(

log6(n)
n3

)
that s1 and s2 are distinguishable but not distinguished by any of the

strings in the four signature paths. By the union bound, the probability that there

exist two distinguishable states that are not distinguished by at least one of the

strings in the four signature paths is at most

(
n

2

)(
O

(
log6(n)

n3

))
= o(1).

Hence, by running at most four signature paths, each of length 3 log(n), per newly

reached state, we get unique labels on the states. Then for each of the n states, we

can find their |X| transitions, and learn the machine, as in Proposition 7.3.2.

We now turn to the two lemmas used in the proof of Theorem 7.5.1. We first

consider the case |X| > 2. If a, b, c ∈ X and ` is a nonnegative integer, let D`(a, b, c)

denote the set of all strings ai, bi, and ci such that 0 ≤ i ≤ `.

Lemma 7.5.2. Let s1 and s2 be two different states in a random automaton with

|X| > 2. Let a, b, c ∈ X and ` = 3 log(n). The probability that s1 and s2 are
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distinguishable, but not by any string in D`(a, b, c) is O
(

log6(n)
n3

)
.

Proof. We analyze the three (attempted) paths from two states s1 and s2, which

we will call π1
s1

, π2
s1

, π3
s1

and π1
s2

, π2
s2

, π3
s2

, respectively. Each path will have length

3 log(n). We define each of the πi as a set of nodes reached by its respective set of

transitions.

We first look at the probability that the following event does not happen: that

both |π1
s1
| > 3 log(n) and |π1

s2
| > 3 log(n), and that π1

s1
∩ π1

s2
= ∅, that is the

probability that both of these strings succeed in reaching 3 log(n) different states,

and that they share no states in common. We call the event that two sets of states π1

and π2 have no states in common, and both have size at least l, S(π1, π2, l) (success)

and the failure event F (π1, π2, l) = S(π1, π2, l). So,

P (F (π1
s1

, π1
s2

, 3 log(n))) ≤
3 log(n)∑

i=1

(
i + |π1

s1
|

n

)
+

3 log(n)∑
i=1

(
i + |π1

s2
|

n

)

≤ 2

3 log(n)∑
i=1

(
i + 3 log(n)

n

)
= O

(
log2(n)

n

)
. (7.1)

Now we look at the probability that F (π2
s1

, π2
s2

, 3 log(n)) given that we failed on the

first paths, or F (π1
s1

, π1
s2

, 3 log(n)), with l = 3 log(n),

P
(
F (π2

s1
, π2

s2
, l)|F (π1

s1
, π1

s2
, l)
)
≤

3 log(n)∑
i=1

(
i + |π2

s1
|+ |π1

s1
|+ |π1

s2
|

n

)

+

3 log(n)∑
i=1

(
i + |π2

s2
|+ |π1

s1
|+ |π1

s2
|

n

)

≤ 2

3 log(n)∑
i=1

(
i + 9 log(n)

n

)
= O

(
log2(n)

n

)
.
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So the probability of failing on both of the first two paths is

P
(
F (π2

s1
, π2

s2
, l), F (π1

s1
, π1

s2
, l)
)
≤ P

(
F (π2

s1
, π2

s2
, l)|F (π1

s1
, π1

s2
, l)
)

P (F (π1
s1

, π1
s2

, 3 log(n)))

= O

(
log2(n)

n

)
O

(
log2(n)

n

)
= O

(
log4(n)

n2

)
. (7.2)

Now, we will compute the probability that F (π3
s1

, π3
s2

, 3 log(n)) given failures on the

previous two pairs of states. Let l = 3 log(n),

P
(
F (π3

s1
, π3

s2
, l)|F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, l)
)
≤ 2

3 log(n)∑
i=1

(
i + 25 log(n)

n

)
= O

(
log2(n)

n

)
.

Last, we compute the probability none of these pairs of paths made it to l = 3 log(n),

or P (failure) = P
(
F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, l), F (π3

s1
, π3

s2
, l)
)

P (failure) = P (F (π1
s1

, π1
s2

, l)) · P
(
F (π2

s1
, π2

s2
, l)|F (π1

s1
, π1

s2
, l)
)
·

P
(
F (π3

s1
, π3

s2
, l)|F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, 1)
)

= O

(
log2(n)

n

)
O

(
log2(n)

n

)
O

(
log2(n)

n

)
= O

(
log6(n)

n3

)
. (7.3)

Thus, given two distinct states with corresponding nonoverlapping signature paths

of length 3 log(n), the probability that all of the randomly chosen labels along the

paths will be the same is 23 lg(n) = 1
n3 = O

(
log6(n)

n3

)
, which is the probability that no

string in D`(a, b, c) distinguishes s1 from s2.
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When |X| = 2, we do not have enough alphabet symbols to construct three

completely independent paths as in the proof of Lemma 7.5.2, but four paths suffice.

If a, b ∈ X and ` is a nonnegative integer, let D`(a, b) denote the set of all strings ai,

bi, abi and bai such that 0 ≤ i ≤ `.

Lemma 7.5.3. Let s1 and s2 be two different states in a random automaton with

|X| = 2. Let a, b ∈ X and ` = 3 log(n). The probability that s1 and s2 are distin-

guishable, but not by any string in D`(a, b) is O
(

log6(n)
n3

)
.

Proof. We do a case analysis that uses reasoning similar to that of Lemma 7.5.2.

If s1 and s2 are assigned different labels, then they are distinguished by the empty

string, so assume that they are assigned the same label. If we consider τ(s1, a) and

τ(s2, a), there are four cases, as follows.

1. Neither of τ(s1, a) and τ(s2, a) is in the set {s1, s2}, and τ(s1, a) 6= τ(s2, a).

In this case, we use the argument from Lemma 7.5.2 that shows that the

probability that the paths ai, abi and bi fail to produce a distinguishing string

for s1 and s2 is bounded by O(log6(n)/n3) from Equation 7.3.

2. Exactly one of τ(s1, a) and τ(s2, a) is in the set {s1, s2}. This happens with

probability O(1/n), and in this case an argument similar to Equation 7.2 shows

that the probability that the paths ai and bi do not produce a distinguishing

string for s1 and s2 is bounded by O(log4(n)/n2), for a total failure probability

of O(log4(n)/n3) for this case.

3. Both of τ(s1, a) and τ(s2, a) are in the set {s1, s2}. This happens with proba-

bility O(1/n2), and in this case an argument similar to Equation 7.1 that the

probability that the path bi does not produce a distinguishing string for s1 and

s2 is bounded by O(log2(n)/n), for a total failure probability of O(log2(n)/n3)

for this case.
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4. Neither of τ(s1, a) and τ(s2, a) is in the set {s1, s2}, but τ(s1, a) = τ(s2, a).

This happens with probability O(1/n), and we proceed to analyze four parallel

subcases for τ(s1, b) and τ(s2, b).

(a) We have τ(s1, b) 6= τ(s2, b) and neither of them is in the set {s1, s2}. We

can show that the probability that the paths bi and bai do not produce

a distinguishing string for s1 and s2 is bounded by O(log4(n)/n2) (via

Equation 7.2), for a failure probability of O(log4(n)/n3) in this subcase,

because the probability of case (4) is O(1/n).

(b) Exactly one of τ(s1, b) and τ(s2, b) is in the set {s1, s2}. In this subcase, we

can show (via Equation 7.1) that the probability that the path bi fails to

produce a distinguishing string for s1 and s2 is bounded by O(log2(n)/n),

for a total failure probability in this subcase of O(log2(n)/n3), because the

probability of case (4) is O(1/n) and the probability that one of τ(s1, b)

and τ(s2, b) is in {s1, s2} is O(1/n).

(c) Both of τ(s1, b) and τ(s2, b) are in {s1, s2}. The probability of this happen-

ing is O(1/n2), for a total probability of this subcase of O(1/n3), because

the probability of case (4) is O(1/n).

(d) We have τ(s1, b) = τ(s2, b). Then because we are in case (4), τ(s1, a) =

τ(s2, a) and the labels assigned s1 and s2 are equal, so the states s1 and

s2 are equivalent and therefore indistinguishable.
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