Contextual Bandit Algorithms with Supervised Learning Guarantees

AISTATS 2011

Alina Beygelzimer IBM Reasearch John Langford Yahoo! Research Lihong Li Yahoo! Research

Lev Reyzin Georgia Tech Robert E. Schapire Princeton University

Outline

- Formally define the setting.
- Show ideas that fail.
- Give a high probability optimal algorithm.
- Dealing with VC sets.
- Experiments

The Contextual Bandit Setting

- T rounds, K possible actions, N policies π in Π (context \rightarrow actions)
- for t=1 to T
 - world commits to rewards $r(t)=r_1(t),r_2(t),...,r_K(t)$
 - world provides context x_t
 - learner's policies recommend $\pi_1(x_t), \pi_2(x_t), ..., \pi_N(x_t)$
 - learner chooses action j_t
 - learner receives reward $r_{j_t}(t)$
- want to compete with following the best policy in hindsight

Some Observations

- This is harder than supervised learning. In the bandit setting we do not know the rewards of actions not taken.
- This is not the traditional K-armed bandit setting. In the traditional bandit setting there is no context (or experts).
 - In the simpler K-armed bandit setting, there is no context. We just compete with best arm in hindsight.
 - The traditional setting is akin to showing everyone the same advertisement, article, etc.

Previous Results

Algorithm	Regret	High Prob?	Contextual?
Exp4 [ACFS '02]	Õ(KT ln(N)) ^{1/2}	No	Yes
ε -greedy, epoch- geedy [LZ '07]	$\tilde{O}((K \ln(N)^{1/3})T^{2/3})$	Yes	Yes
Exp3.P[ACFS '02] UCB [Auer '00]	Õ(KT) ^{1/2}	Yes	No

 $\Omega(\sqrt{KT})$ lower bound [ACFS '02]

Our Result

Algorithm	Regret High Pro		Contextual?
Exp4 [ACFS '02]	Õ(KT ln(N)) ^{1/2}	No	Yes
ε -greedy, epoch- geedy [LZ '07]	$\tilde{O}((K \ln(N)^{1/3})T^{2/3})$	Yes	Yes
Exp3.P[ACFS '02] UCB [Auer '00]	Õ(KT) ^{1/2}	Yes	No
Exp4.P [BLLRS '10]	Õ(KT ln(N/δ)) ^{1/2}	Yes	Yes
$\Omega(\sqrt{KT})$ lower bound [ACFS '02]			

Outline

- Formally define the setting.
- Show ideas that fail.
- Give a high probability optimal algorithm.
- Dealing with VC sets.
- Experiments

First Some Failed Approaches

- **Bad idea 1:** Maintain a set of plausible hypotheses and randomize uniformly over their predicted actions.
 - Adversary has two actions, one always paying off 1 and the other 0. Hypothesis generally agree on correct action, except for a different one which defects each round. This incurs regret of ~T/2.

First Some Failed Approaches

- **Bad idea 1:** Maintain a set of plausible hypotheses and randomize uniformly over their predicted actions.
 - Adversary has two actions, one always paying off 1 and the other 0. Hypothesis generally agree on correct action, except for a different one which defects each round. This incurs regret of ~T/2.

18

• **Bad idea 2:** Maintain a set of plausible hypotheses and randomize uniformly among the hypothesis.

First Some Failed Approaches

- **Bad idea 1:** Maintain a set of plausible hypotheses and randomize uniformly over their predicted actions.
 - Adversary has two actions, one always paying off 1 and the other 0. Hypothesis generally agree on correct action, except for a different one which defects each round. This incurs regret of ~T/2.
- **Bad idea 2:** Maintain a set of plausible hypotheses and randomize uniformly among the hypothesis.
 - Adversary has two actions, one always paying off 1 and the other 0. If all but one of > 2T hypothesis always predict wrong arm, and only 1 hypothesis always predicts good arm, with probability > 1/2 it is never picked and algorithm incurs regret of T.

epsilon-greedy

- Rough idea of \mathcal{E} -greedy (or epoch-greedy [Langford and Zhang '07]): act randomly for \mathcal{E} rounds, otherwise go with best action (or policy).
- Even if we know the number of rounds in advance, epsilon-first won't get us regret O(T)^{1/2}, even in the non-contextual setting.
- Rough analysis: even for just 2 arms, we suffer regret: $\varepsilon + (T \varepsilon)/(\varepsilon^{1/2})$.

- $\varepsilon \approx T^{2/3}$ is optimal tradeoff.
- gives regret $\approx T^{2/3}$
- in comparison, in this paper we achieve $\approx T^{1/2}$

Outline

- Formally define the setting.
- Show ideas that fail.
- Give a high probability optimal algorithm.

- Dealing with VC sets.
- Experiments

Ideas Behind Exp4.P

• exponential weights

• keep a weight on each expert that drops exponentially in the expert's (estimated) performance

• upper confidence bounds

• use an upper confidence bound on each expert's estimated reward

• ensuring exploration

• make sure each action is taken with some minimum probability

• importance weighting

• give rare events more importance to keep estimates unbiased

Exponential Weight Algorithm for Exploration and Exploitation with Experts

(EXP4) [Auer et al. '95]

Initialization: $\forall \pi \in \Pi : w_t(\pi) = 1$

For each t = 1, 2, ...:

1. Observe x_t and let for $a = 1, \ldots, K$

$$p_t(a) = (1 - K p_{\min}) rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

(slide from Beygelzimer &

Langford ICML 2010

tutorial)

where $p_{\min} = \sqrt{\frac{\ln |\Pi|}{KT}}$.

- 2. Draw a_t from p_t , and observe reward $r_t(a_t)$.
- 3. Update for each $\pi \in \Pi$

$$w_{t+1}(\pi) = \begin{cases} w_t(\pi) \exp\left(p_{\min}\frac{r_t(a_t)}{p_t(a_t)}\right) & \text{if } \pi(x_t) = a_t \\ w_t(\pi) & \text{otherwise} \end{cases}$$

Exponential Weight Algorithm for Exploration and Exploitation with Experts (Exp4.P) [Beygelzimer, Langford, Li, R, Schapire '10] Initialization: $\forall \pi \in \Pi : w_t(\pi) = 1$ For each t = 1, 2, ...1. Observe x_t and let for a = 1, ..., K

$$p_t(a) = (1 - \kappa p_{\min}) rac{\sum_{\pi} \mathbf{1}[\pi(x_t) = a] w_t(\pi)}{\sum_{\pi} w_t(\pi)} + p_{\min},$$

where $p_{\min} = \sqrt{\frac{\ln |\Pi|}{KT}}$.

- 2. Draw a_t from p_t , and observe reward $r_t(a_t)$. $\hat{y}_i(t)$
- 3. Update for each $\pi \in \Pi$

$$w_{t+1}(\pi) = w_t(\pi) \exp\left(\frac{p_{\min}}{2} \left(\mathbf{1}[\pi(x_t) = a_t] \frac{r_t(a_t)}{p_t(a_t)} + \frac{1}{p_t(\pi(x_t))} \sqrt{\frac{\ln N/\delta}{\kappa T}}\right)\right)$$

 $\hat{v}_i(t)$

Lemma 1

The estimated reward of an expert is $\hat{G}_i \doteq \sum_{t=1}^T \hat{y}_i(t)$. We also define $\hat{\sigma}_i \doteq \sqrt{KT} + \frac{1}{\sqrt{KT}} \sum_{t=1}^T \hat{v}_i(t)$.

Lemma
$$\Pr\left[\exists i: G_i \geq \hat{G}_i + \sqrt{\ln(N/\delta)}\hat{\sigma}_i\right] \leq \delta.$$

Proof uses a new Freedman-style martingale inequality.

Lemma 2

$$\hat{U} = \max_{i} \left(\hat{G}_{i} + \hat{\sigma}_{i} \cdot \sqrt{\ln(N/\delta)} \right).$$

$$\mathbf{Lemma} \begin{array}{ll} G_{\mathrm{Exp4.P}} & \geq & \left(1 - 2\sqrt{\frac{K\ln N}{T}}\right)\hat{U} - 2\sqrt{KT\ln(N/\delta)} \\ & & -\sqrt{KT\ln N} - \ln(N/\delta). \end{array}$$

Proof tracks the weights of experts, similar to Exp4.

Lemmas 1 and 2 imply : $G_{\text{Exp4.P}} \ge G_{\text{max}} - 6\sqrt{KT \ln(N/\delta)}$.

One Problem...

- This algorithm requires keeping explicit weights on the policies.
 - Okay for polynomially many policies.
 - Okay for some special cases.
 - Not efficient in general.
- Want an efficient algorithm that would (for example) work with an ERM Oracle
 - epoch-greedy [Langford and Zhang '07] has this property.

Results

Algorithm	Regret	H.P.?	Context?	Efficient?	
Exp4 [ACFS '02]	Õ(T) ^{1/2}	No	Yes	No	
ε -greedy, epoch- geedy [LZ '07]	Õ(T ^{2/3})	Yes	Yes	Yes	
Exp3.P[ACFS '02] UCB [Auer '00]	Õ(T) ^{1/2}	Yes	No	Yes	
Exp4.P [BLLRS '10]	Õ(T) ^{1/2}	Yes	Yes	No	
28					

Outline

- Formally define the setting.
- Show ideas that fail.
- Give a high probability optimal algorithm.
- Dealing with VC sets.
- Experiments

Infinitely Many Policies

- What if we have an infinite number of policies?
- Our bound of $\tilde{O}(K \ln(N)T)^{1/2}$ becomes vacuous.
- If we assume our policy class has a finite VC dimension d, then we can tackle this problem.
- Need i.i.d. assumption. We will also assume k=2 to illustrate the argument.

VC Dimension

- The VC dimension of a hypothesis class captures the class's expressive power.
- It is the cardinality of the largest set (in our case, of contexts) the class can shatter.
 - Shatter means to label in all possible configurations.

VE, an Algorithm for VC Sets

The VE algorithm:

- Act uniformly at random for τ rounds.
- This partitions our policies Π into equivalence classes according to their labelings of the first τ examples.
- Pick one representative from each equivalence class to make Π '.
- Run Exp4.P on Π' .

Outline of Analysis of VE

- Sauer's lemma bounds the number of equivalence classes to (e τ /d)^d.
 - Hence, using Exp4.P bounds, VE's regret to Π' is ≈ τ + O (Td ln(τ))
- We can show that the regret of Π' to Π is ≈ (T/τ)(dlnT)
 by looking at the probability of disagreeing on future data given agreement for τ steps.
- $\tau \approx (\text{Td ln } 1/\delta)^{1/2}$ achieves the optimal trade-off.
- Gives Õ(Td)^{1/2} regret.
- Still inefficient!

Outline

- Formally define the setting.
- Show ideas that fail.
- Give a high probability optimal algorithm.
- Dealing with VC sets.
- Experiments

Experiments on Yahoo! Data

- We chose a policy class for which we could efficiently keep track of the weights.
 - Created 5 clusters, with users (at each time step) getting features based on their distances to clusters.
 - Policies mapped clusters to article (action) choices.
 - Ran on personalized news article recommendations for Yahoo! front page.
- We used a learning bucket on which we ran the algorithms and a deployment bucket on which we ran the greedy (best) learned policy.

Experimental Results

• Reported normalized estimated click-through-rates (rewards). Over 41M visits, with 253 articles and 21 candidate articles per visit.

	Exp4.P	Exp4	ε -greedy
learning eCTR	1.0525	1.0988	1.3829
deployment eCTR	1.6512	1.5309	1.4290

Summary

- Described Exp4P, the first optimal high probability algorithm for the contextual bandit problem.
- Showed how to compete with a VC-Set.
- Experimental Evidence for Exp4.Ps effectiveness.
- Main drawback is efficiency. We only have efficient algorithms for restricted classes, eg. our experiments, linear bandits (Auer 2002, Chu Li R Schapire 2011), etc.
- <u>Main Open Problem</u>: Find an **efficient** optimal algorithm for the contextual bandits problem!

37

• Check out John Langford's talk at Snowbird!