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Outline 

•  Formally define the setting. 

•  Show ideas that fail. 

•  Give a high probability optimal algorithm. 

•  Dealing with VC sets. 

•  Experiments 
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The Contextual Bandit Setting 

•  T rounds, K possible actions, N policies π in Π (context 
 actions) 

•  for t=1 to T 
•  world commits to rewards r(t)=r1(t),r2(t),…,rK(t) 
•  world provides context xt 

•  learner’s policies recommend π1(xt), π2(xt), …, πN(xt) 
•  learner chooses action jt  
•  learner receives reward rjt

(t) 

•  want to compete with following the best policy in 
hindsight 
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Regret 

•  reward of  algorithm A: 

•  expected reward of  policy i: 

•  algorithm A’s regret: 

€ 

GA T( ) ˙ = rjt t( )
t=1

T

∑

€ 

Gi T( ) ˙ = π i xt( ) ⋅ r t( )
t=1

T

∑

€ 

max
i
Gi T( ) −GA (T)
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Regret 

•  algorithm A’s regret: 

•  expected regret: 

•  high probability regret: 

€ 

max
i
Gi T( ) −GA (T)

€ 

max
i
Gi T( ) − E[GA (T)]

€ 

P[max
i

Gi T( ) −GA (T) > ε] ≤ δ
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Some Observations 

•  This is harder than supervised learning.  In the 
bandit setting we do not know the rewards of  actions 
not taken. 

•  This is not the traditional K-armed bandit setting.  In 
the traditional bandit setting there is no context (or 
experts). 
•  In the simpler K-armed bandit setting, there is no 

context.  We just compete with best arm in hindsight. 
•  The traditional setting is akin to showing everyone the 

same advertisement, article, etc. 
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Previous Results 

Algorithm Regret High Prob? Contextual? 

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes 

ε-greedy, epoch-
geedy [LZ ’07] 

Õ((K ln(N) 1/3)T2/3) Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Õ(KT)1/2  Yes No 

€ 

Ω KT( ) lower bound [ACFS ’02] 
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Our Result 

Algorithm Regret High Prob? Contextual? 

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes 

ε-greedy, epoch-
geedy [LZ ’07] 

Õ((K ln(N) 1/3)T2/3) Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Õ(KT)1/2  Yes No 

Exp4.P [BLLRS ’10] Õ(KT ln(N/δ))1/2  Yes Yes 

€ 

Ω KT( ) lower bound [ACFS ’02] 



Outline 

•  Formally define the setting. 

•  Show ideas that fail. 

•  Give a high probability optimal algorithm. 

•  Dealing with VC sets. 

•  Experiments 
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First Some Failed Approaches 

•  Bad idea 1: Maintain a set of  plausible hypotheses and 
randomize uniformly over their predicted actions. 
•  Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 
one which defects each round.  This incurs regret of  ~T/2. 

•  Bad idea 2: Maintain a set of  plausible hypotheses and 
randomize uniformly among the hypothesis. 
•  Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and only 
1 hypothesis always predicts good arm, with probability > ½ it is 
never picked and algorithm incurs regret of  T. 
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epsilon-greedy 

•  Rough idea of  ε-greedy (or epoch-greedy [Langford and 
Zhang ’07] ): act randomly for ε rounds, otherwise go 
with best action (or policy). 

•  Even if  we know the number of  rounds in advance, 
epsilon-first won’t get us regret O(T)1/2, even in the non-
contextual setting. 

•  Rough analysis: even for just 2 arms, we suffer regret: ε+
(T-ε)/(ε1/2). 
•  ε≈ T2/3  is optimal tradeoff. 
•  gives regret ≈ T2/3  
•  in comparison, in this paper we achieve ≈ T1/2 
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Ideas Behind Exp4.P 

•  exponential weights 
•  keep a weight on each expert that drops exponentially in the 

expert’s (estimated) performance 

•  upper confidence bounds 
•  use an upper confidence bound on each expert’s estimated 

reward 

•  ensuring exploration 
•  make sure each action is taken with some minimum probability 

•  importance weighting 
•  give rare events more importance to keep estimates unbiased 
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(slide from Beygelzimer & 
Langford ICML 2010 
tutorial) 



(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire ’10] 
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€ 

ˆ y i(t)

€ 

ˆ v i(t)



Lemma 1 
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Proof  uses a new Freedman-style martingale inequality.  



Lemma 2 
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Proof  tracks the weights of  experts, similar to Exp4. 

Lemmas 1 and 2 imply : 



One Problem… 

•  This algorithm requires keeping explicit weights on 
the policies. 
•  Okay for polynomially many policies. 

•  Okay for some special cases. 

•  Not efficient in general. 

•  Want an efficient algorithm that would (for example) 
work with an ERM Oracle 
•  epoch-greedy [Langford and Zhang ’07] has this 

property. 
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Results 

Algorithm Regret H.P.? Context? Efficient? 

Exp4 [ACFS ’02] Õ(T)1/2 No Yes No 

ε-greedy, epoch-
geedy [LZ ’07] 

Õ(T2/3) Yes Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Õ(T)1/2  Yes No Yes 

Exp4.P [BLLRS ’10] Õ(T)1/2  Yes Yes No 
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Infinitely Many Policies 

•  What if  we have an infinite number of  policies? 

•  Our bound of  Õ(K ln(N)T)1/2 becomes vacuous. 

•  If  we assume our policy class has a finite VC 
dimension d, then we can tackle this problem. 

•  Need i.i.d. assumption. We will also assume k=2 to 
illustrate the argument. 
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VC Dimension 

•  The VC dimension of  a hypothesis class captures the 
class’s expressive power. 

•  It is the cardinality of  the largest set (in our case, of  
contexts) the class can shatter. 
•  Shatter means to label in all possible configurations. 
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VE, an Algorithm for VC Sets 

The VE algorithm: 

•  Act uniformly at random for τrounds. 

•  This partitions our policies Π into  equivalence classes 
according to their labelings of  the first τexamples. 

•  Pick one representative from each equivalence class to 
make Π’. 

•  Run Exp4.P on Π’. 
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Outline of  Analysis of  VE 

•  Sauer’s lemma bounds the number of  equivalence classes 
to (eτ/d)d.  
•  Hence, using Exp4.P bounds, VE’s regret to Π’ is ≈τ+ O 

(Td ln(τ)) 

•  We can show that the regret of  Π’ to Π is ≈ (T/τ)(dlnT) 
•  by looking at the probability of  disagreeing on future data 

given agreement for τ steps.  

•  τ≈ (Td ln 1/δ)1/2 achieves the optimal trade-off. 

•  Gives Õ(Td)1/2 regret. 

•  Still inefficient! 

33 



Outline 

•  Formally define the setting. 

•  Show ideas that fail. 

•  Give a high probability optimal algorithm. 

•  Dealing with VC sets. 

•  Experiments 

34 



Experiments on Yahoo! Data 

•  We chose a policy class for which we could efficiently 
keep track of  the weights. 
•  Created 5 clusters, with users (at each time step) getting 

features based on their distances to clusters. 
•  Policies mapped clusters to article (action) choices. 
•  Ran on personalized news article recommendations for 

Yahoo! front page. 

•  We used a learning bucket on which we ran the 
algorithms and a deployment bucket on which we ran the 
greedy (best) learned policy. 
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Experimental Results 

•  Reported normalized estimated click-through-rates 
(rewards). Over 41M visits, with 253 articles and 21 
candidate articles per visit. 
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Exp4.P Exp4 ε-greedy 

learning eCTR 1.0525 1.0988 1.3829 

deployment eCTR 1.6512 1.5309 1.4290 



Summary 

•  Described Exp4P, the first optimal high probability 
algorithm for the contextual bandit problem. 

•  Showed how to compete with a VC-Set. 

•  Experimental Evidence for Exp4.Ps effectiveness. 

•  Main drawback is efficiency.  We only have efficient 
algorithms for restricted classes, eg. our experiments, 
linear bandits (Auer 2002, Chu Li R Schapire 2011), etc.   

•  Main Open Problem: Find an efficient optimal algorithm 
for the contextual bandits problem!  
•  Check out John Langford’s talk at Snowbird! 
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