
Contextual Bandit Algorithms with
Supervised Learning Guarantees

Alina Beygelzimer John Langford Lihong Li
 IBM Reasearch Yahoo! Research Yahoo! Research

 Lev Reyzin Robert E. Schapire
 Georgia Tech Princeton University

1

AISTATS 2011

Serving Content to Users

Query, IP address, browser properties, etc.

2

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

3

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

4

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

5

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

6

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

7

Outline

•  Formally define the setting.

•  Show ideas that fail.

•  Give a high probability optimal algorithm.

•  Dealing with VC sets.

•  Experiments

8

The Contextual Bandit Setting

•  T rounds, K possible actions, N policies π in Π (context
 actions)

•  for t=1 to T
•  world commits to rewards r(t)=r1(t),r2(t),…,rK(t)
•  world provides context xt

•  learner’s policies recommend π1(xt), π2(xt), …, πN(xt)
•  learner chooses action jt
•  learner receives reward rjt

(t)

•  want to compete with following the best policy in
hindsight

9

Regret

•  reward of algorithm A:

•  expected reward of policy i:

•  algorithm A’s regret:

€

GA T() ˙ = rjt t()
t=1

T

∑

€

Gi T() ˙ = π i xt() ⋅ r t()
t=1

T

∑

€

max
i
Gi T() −GA (T)

10

Regret

•  algorithm A’s regret:

•  expected regret:

•  high probability regret:

€

max
i
Gi T() −GA (T)

€

max
i
Gi T() − E[GA (T)]

€

P[max
i

Gi T() −GA (T) > ε] ≤ δ

11

Some Observations

•  This is harder than supervised learning. In the
bandit setting we do not know the rewards of actions
not taken.

•  This is not the traditional K-armed bandit setting. In
the traditional bandit setting there is no context (or
experts).
•  In the simpler K-armed bandit setting, there is no

context. We just compete with best arm in hindsight.
•  The traditional setting is akin to showing everyone the

same advertisement, article, etc.

12

Previous Results

Algorithm Regret High Prob? Contextual?

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes

ε-greedy, epoch-
geedy [LZ ’07]

Õ((K ln(N) 1/3)T2/3) Yes Yes

Exp3.P[ACFS ’02]
UCB [Auer ’00]

Õ(KT)1/2 Yes No

€

Ω KT() lower bound [ACFS ’02]
13

Our Result

Algorithm Regret High Prob? Contextual?

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes

ε-greedy, epoch-
geedy [LZ ’07]

Õ((K ln(N) 1/3)T2/3) Yes Yes

Exp3.P[ACFS ’02]
UCB [Auer ’00]

Õ(KT)1/2 Yes No

Exp4.P [BLLRS ’10] Õ(KT ln(N/δ))1/2 Yes Yes

€

Ω KT() lower bound [ACFS ’02]

Outline

•  Formally define the setting.

•  Show ideas that fail.

•  Give a high probability optimal algorithm.

•  Dealing with VC sets.

•  Experiments

15

First Some Failed Approaches

•  Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
•  Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

•  Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.
•  Adversary has two actions, one always paying off 1 and the other 0.

If all but one of > 2T hypothesis always predict wrong arm, and only
1 hypothesis always predicts good arm, with probability > ½ it is
never picked and algorithm incurs regret of T.

16

First Some Failed Approaches

•  Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
•  Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

•  Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.
•  Adversary has two actions, one always paying off 1 and the other 0.

If all but one of > 2T hypothesis always predict wrong arm, and only
1 hypothesis always predicts good arm, with probability > ½ it is
never picked and algorithm incurs regret of T.

17

First Some Failed Approaches

•  Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
•  Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

•  Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.
•  Adversary has two actions, one always paying off 1 and the other 0.

If all but one of > 2T hypothesis always predict wrong arm, and only
1 hypothesis always predicts good arm, with probability > ½ it is
never picked and algorithm incurs regret of T.

18

First Some Failed Approaches

•  Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
•  Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

•  Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.
•  Adversary has two actions, one always paying off 1 and the other 0.

If all but one of > 2T hypothesis always predict wrong arm, and only
1 hypothesis always predicts good arm, with probability > ½ it is
never picked and algorithm incurs regret of T.

19

epsilon-greedy

•  Rough idea of ε-greedy (or epoch-greedy [Langford and
Zhang ’07]): act randomly for ε rounds, otherwise go
with best action (or policy).

•  Even if we know the number of rounds in advance,
epsilon-first won’t get us regret O(T)1/2, even in the non-
contextual setting.

•  Rough analysis: even for just 2 arms, we suffer regret: ε+
(T-ε)/(ε1/2).
•  ε≈ T2/3 is optimal tradeoff.
•  gives regret ≈ T2/3
•  in comparison, in this paper we achieve ≈ T1/2

20

Outline

•  Formally define the setting.

•  Show ideas that fail.

•  Give a high probability optimal algorithm.

•  Dealing with VC sets.

•  Experiments

21

Ideas Behind Exp4.P

•  exponential weights
•  keep a weight on each expert that drops exponentially in the

expert’s (estimated) performance

•  upper confidence bounds
•  use an upper confidence bound on each expert’s estimated

reward

•  ensuring exploration
•  make sure each action is taken with some minimum probability

•  importance weighting
•  give rare events more importance to keep estimates unbiased

22

23

(slide from Beygelzimer &
Langford ICML 2010
tutorial)

(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire ’10]

24

€

ˆ y i(t)

€

ˆ v i(t)

Lemma 1

25

Proof uses a new Freedman-style martingale inequality.

Lemma 2

26

Proof tracks the weights of experts, similar to Exp4.

Lemmas 1 and 2 imply :

One Problem…

•  This algorithm requires keeping explicit weights on
the policies.
•  Okay for polynomially many policies.

•  Okay for some special cases.

•  Not efficient in general.

•  Want an efficient algorithm that would (for example)
work with an ERM Oracle
•  epoch-greedy [Langford and Zhang ’07] has this

property.

27

Results

Algorithm Regret H.P.? Context? Efficient?

Exp4 [ACFS ’02] Õ(T)1/2 No Yes No

ε-greedy, epoch-
geedy [LZ ’07]

Õ(T2/3) Yes Yes Yes

Exp3.P[ACFS ’02]
UCB [Auer ’00]

Õ(T)1/2 Yes No Yes

Exp4.P [BLLRS ’10] Õ(T)1/2 Yes Yes No

28

Outline

•  Formally define the setting.

•  Show ideas that fail.

•  Give a high probability optimal algorithm.

•  Dealing with VC sets.

•  Experiments

29

Infinitely Many Policies

•  What if we have an infinite number of policies?

•  Our bound of Õ(K ln(N)T)1/2 becomes vacuous.

•  If we assume our policy class has a finite VC
dimension d, then we can tackle this problem.

•  Need i.i.d. assumption. We will also assume k=2 to
illustrate the argument.

30

VC Dimension

•  The VC dimension of a hypothesis class captures the
class’s expressive power.

•  It is the cardinality of the largest set (in our case, of
contexts) the class can shatter.
•  Shatter means to label in all possible configurations.

31

VE, an Algorithm for VC Sets

The VE algorithm:

•  Act uniformly at random for τrounds.

•  This partitions our policies Π into equivalence classes
according to their labelings of the first τexamples.

•  Pick one representative from each equivalence class to
make Π’.

•  Run Exp4.P on Π’.

32

Outline of Analysis of VE

•  Sauer’s lemma bounds the number of equivalence classes
to (eτ/d)d.
•  Hence, using Exp4.P bounds, VE’s regret to Π’ is ≈τ+ O

(Td ln(τ))

•  We can show that the regret of Π’ to Π is ≈ (T/τ)(dlnT)
•  by looking at the probability of disagreeing on future data

given agreement for τ steps.

•  τ≈ (Td ln 1/δ)1/2 achieves the optimal trade-off.

•  Gives Õ(Td)1/2 regret.

•  Still inefficient!

33

Outline

•  Formally define the setting.

•  Show ideas that fail.

•  Give a high probability optimal algorithm.

•  Dealing with VC sets.

•  Experiments

34

Experiments on Yahoo! Data

•  We chose a policy class for which we could efficiently
keep track of the weights.
•  Created 5 clusters, with users (at each time step) getting

features based on their distances to clusters.
•  Policies mapped clusters to article (action) choices.
•  Ran on personalized news article recommendations for

Yahoo! front page.

•  We used a learning bucket on which we ran the
algorithms and a deployment bucket on which we ran the
greedy (best) learned policy.

35

Experimental Results

•  Reported normalized estimated click-through-rates
(rewards). Over 41M visits, with 253 articles and 21
candidate articles per visit.

36

Exp4.P Exp4 ε-greedy

learning eCTR 1.0525 1.0988 1.3829

deployment eCTR 1.6512 1.5309 1.4290

Summary

•  Described Exp4P, the first optimal high probability
algorithm for the contextual bandit problem.

•  Showed how to compete with a VC-Set.

•  Experimental Evidence for Exp4.Ps effectiveness.

•  Main drawback is efficiency. We only have efficient
algorithms for restricted classes, eg. our experiments,
linear bandits (Auer 2002, Chu Li R Schapire 2011), etc.

•  Main Open Problem: Find an efficient optimal algorithm
for the contextual bandits problem!
•  Check out John Langford’s talk at Snowbird!

37

