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The Contextual Bandit Setting

« T rounds, K possible actions, N policies  in [T (context
—> actions)

fort=1to T

* world commits to rewards r(t)=r,(t),r,(t),...,rx(t)
world provides context x,
learner’s policies recommend 7,(x,), T,(X,), .., Tn(X)
learner chooses action j,
learner receives reward rjt(t)

want to compete with following the best policy in
hindsight




Regret

T
» reward of algorithm A: G, (T) = 2 r (t)

t=1

T
 expected reward of policy i: Gi(T) = 2@()@)' I’(t)

t

* algorithm A’s regret: max Gi(T) -G A (T)
l




Regret

- algorithm A’s regret: max Gi(T) -G, (T)
i

« expected regret: mlax G, (T) - E[G,(T)]

» high probability regret: P[max Gi(T) -G 2 (T)>¢] =< 0

l




Some Observations

* This is harder than supervised learning. In the

bandit setting we do not know the rewards of actions
not taken.

This 1s not the traditional K-armed bandit setting. In

the traditional bandit setting there 1s no context (or
experts).

* In the simpler K-armed bandit setting, there is no
context. We just compete with best arm in hindsight.

 The traditional setting is akin to showing everyone the
same advertisement, article, etc.




Previous Results

High Prob? Contextual?

Exp4 [ACFS '02] O(KT In(N))!/2

g -greedy, epoch- | O((K In(N) 1/3)T2/3)
geedy [LZ ’07]
Exp3.P[ACFS '02] O(KT)!/2
UCB [Auer ’00]

Q(W/KT ) lower bound [ACFS ’'02]




Our Result

Algorithm High Prob? Contextual?

Exp4 [ACFS '02] O(KT In(N))!/2

g -greedy, epoch- | O((K In(N) 1/3)T2/3)
geedy [LZ ’07]

Exp3.P[ACFS '02] O(KT)!/2 No
UCB [Auer ’00]

Q(W/KT ) lower bound [ACFS ’'02]
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First Some Failed Approaches

* Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
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First Some Failed Approaches

* Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

» Adversary has two actions, one always paying off 1 and the other O.
Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

 Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.

+ Adversary has two actions, one always paying off 1 and the other O.
If all but one of > 2T hypothesis always predict wrong arm, and only
1 hypothesis always predicts good arm, with probability > % it is
never picked and algorithm incurs regret of T.




epsilon-greedy

* Rough idea of € -greedy (or epoch-greedy [Langford and
Zhang ’07] ): act randomly for € rounds, otherwise go
with best action (or policy).

Even if we know the number of rounds in advance,
epsilon-first won’t get us regret O(T)!/2, even in the non-
contextual setting.

Rough anal;rs1s even for just 2 arms, we suffer regret: € +
(T-& )/ (el

€= T?3 is optimal tradeoff.

- gives regret = T?/3

* in comparison, in this paper we achieve ~ T1/2
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Ideas Behind Exp4.P

exponential weights

* keep a weight on each expert that drops exponentially in the
expert’s (estimated) performance

upper confidence bounds

* use an upper confidence bound on each expert’s estimated
reward

ensuring exploration
* make sure each action 1s taken with some minimum probability

importance weighting
* give rare events more importance to keep estimates unbiased




Exponential Weight Algorithm for Exploration and
Exploitation with Experts

(EXP4) [Auer et al. '95] (slide from Beygelzimer &

Langford ICML 2010
Initialization: Vrr € T : wy(m) =1 tutorial)

Foreacht =1,2,...:

1. Observe x; and letfora=1,..., K
1[r(x:) = a] we()
E‘rr Wt(ﬂ-)

pt(a) — (1 - Kpmin)z:"r + Pmin;

where pmin = '1,(@
2. Draw a; from p:, and observe reward r:(a;).

3. Update for each 7 € [1

oo () = w; () exp (pm;n;%(%‘t%) if m(x:) = a;
a —
’ w; () otherwise




Exponential Weight Algorithm for Exploration and
Exploitation with Experts
(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire '10]
Initialization: Vrr € T1: we(m) =1
Foreacht =1,2,...:

1. Observe x; and letfora=1,..., K
1[r(x:) = a] we()
Z’ir Wt(ﬂ-)

pe(a) = (1 — Kpmin) 2

+ Pmins

In (I
where pmin = —Kl?l

2. Draw a; from p:, and observe reward r:(a:). _ )
yi()  vi(0)
3. Update for each 7 € [1
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Lemma 1

The estimated reward of an expert is

T
We also define &; = VET + — Z
=1

Lemma Pr [32’ .G > Gi + \/111(2\"/(5)62-] < 4.

Proof uses a new Freedman-style martingale inequality.




Lemma 2

[ = max (éz + 6 \/m)

2

(1 _ o /BN ) U —2/KTIn(N/5)

T
—VEKTIn N — In(N/§).

Proof tracks the weights of experts, similar to Exp4.

Lemmas 1 and 2 imply :  Gexpa.p = Guax — 6/ KT In(N/4).
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One Problem...

» This algorithm requires keeping explicit weights on
the policies.
* Okay for polynomially many policies.
» Okay for some special cases.
* Not efficient in general.

 Want an efficient algorithm that would (for example)
work with an ERM Oracle

- epoch-greedy [Langford and Zhang ’07] has this
property.




Algorithm

Exp4 [ACFS ’02]

(”)(T)l/z

€ -greedy, epoch-
geedy [LZ ’07]

O(TZ/ 3)

Exp3.P[ACFS ’02]
UCB [Auer '00]

(”)(T)l/z

Exp4.P [BLLRS ’10]

(”)(T)l/z

H.P.? Context? Efficient?
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Infinitely Many Policies

What 1f we have an infinite number of policies?
Our bound of O(K In(N)T)!/2 becomes vacuous.

If we assume our policy class has a finite VC
dimension d, then we can tackle this problem.

Need 1.1.d. assumption. We will also assume k=2 to
illustrate the argument.




VC Dimension

* The VC dimension of a hypothesis class captures the
class’s expressive power.

It is the cardinality of the largest set (in our case, of
contexts) the class can shatter.

» Shatter means to label in all possible configurations.




VE, an Algorithm for VC Sets

The VE algorithm:
Act uniformly at random for 7T rounds.

This partitions our policies 1T into equivalence classes
according to their labelings of the first T examples.

Pick one representative from each equivalence class to
make TT".

Run Exp4.P on IT".




Outline of Analysis of VE

Sauer’s lemma bounds the number of equivalence classes
to (e T /d)d.

* Hence, using Exp4.P bounds, VE’s regretto 11 "is =7 + O
(Td ln( 7))

We can show that the regret of 11 to IT is = (T/ T )(dInT)

* by looking at the probability of disagreeing on future data
given agreement for T steps.

T = (TdIn 1/ &)Y2 achieves the optimal trade-off.
Gives O(Td)!/2 regret.

Still inefficient!
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Experiments on Yahoo! Data

*  We chose a policy class for which we could efficiently
keep track of the weights.

* Created 5 clusters, with users (at each time step) getting
features based on their distances to clusters.

* Policies mapped clusters to article (action) choices.

* Ran on personalized news article recommendations for
Yahoo! front page.

We used a learning bucket on which we ran the
algorithms and a deployment bucket on which we ran the
greedy (best) learned policy.




Experimental Results

* Reported normalized estimated click-through-rates
(rewards). Over 41M visits, with 253 articles and 21
candidate articles per visit.

Exp4.P Exp4 € -greedy
learning eCTR 1.0525 1.0988 1.3829
deployment eCTR 1.6512 1.5309 1.4290




Summary

Described Exp4P, the first optimal high probability
algorithm for the contextual bandit problem.

Showed how to compete with a VC-Set.
Experimental Evidence for Exp4.Ps effectiveness.

Main drawback 1s efficiency. We only have efficient

algorithms for restricted classes, eg. our experiments,
linear bandits (Auer 2002, Chu L1 R Schapire 2011), etc.

Main Open Problem: Find an efficient optimal algorithm
for the contextual bandits problem!

* Check out John Langford’s talk at Snowbird!




