OPTIMALLY LEARNING SOCIAL NETWORKS WITH ACTIVATIONS AND SUPPRESSIONS

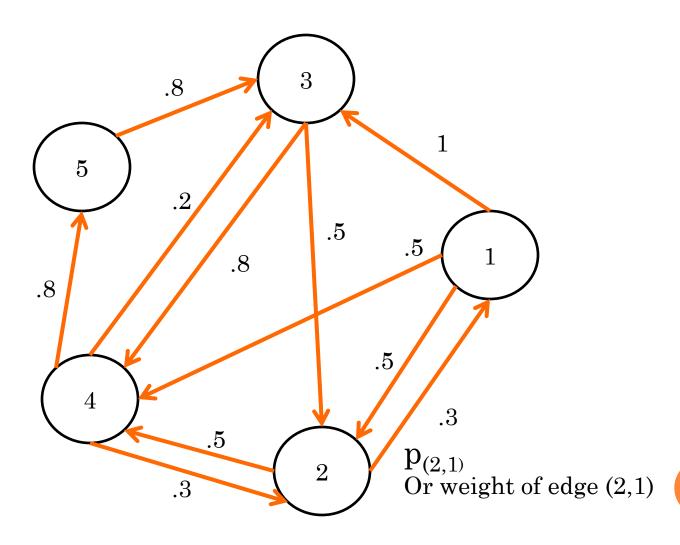
ALT 2008

James Aspnes, Dana Angluin, Lev Reyzin Yale University

TALK OUTLINE

- Independent Cascade Social Networks (SNs)
- Introduce Value Injection Queries (VIQs) on SNs
 - VIQs override the values of node (or gates in the case of circuits)
 - These were introduced by AACW (STOC '06), extended in AACR (COLT '07) and AACER (COLT '08)
- Show lower bound for learning SNs with VIQs
- Give an idea of the algorithm for learning SNs
- Other results
 - Approximation algorithm
 - Special case of trees
 - Exponential attenuation of paths

INDEPENDENT CASCADE SOCIAL NETWORKS



TALK OUTLINE

• Independent Cascade Social Networks (SNs)

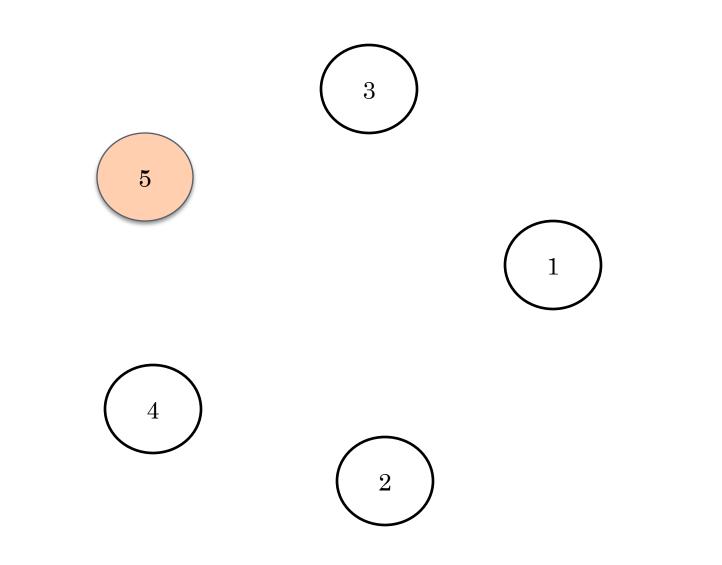
• Introduce Value Injection Queries (VIQs) on SNs

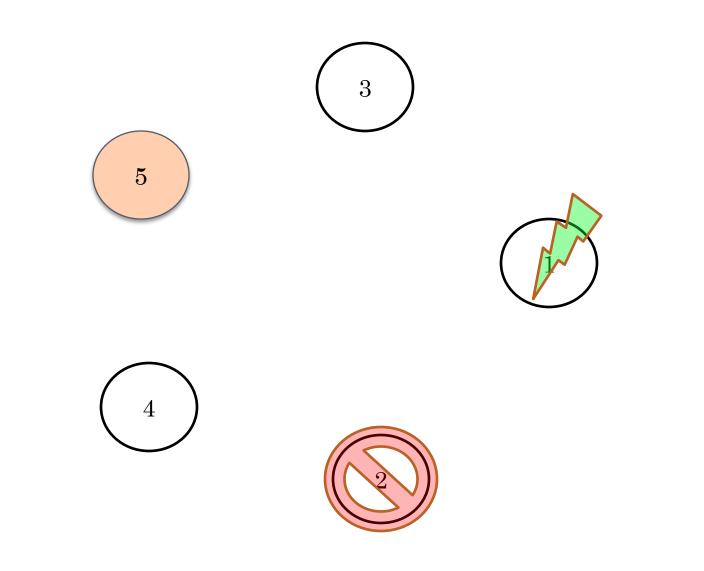
- These were introduced by AACW (STOC '06), extended in AACR (COLT '07) and AACER (COLT '08)
- Show lower bound for learning SNs with VIQs
- Give an idea of the algorithm for learning SNs

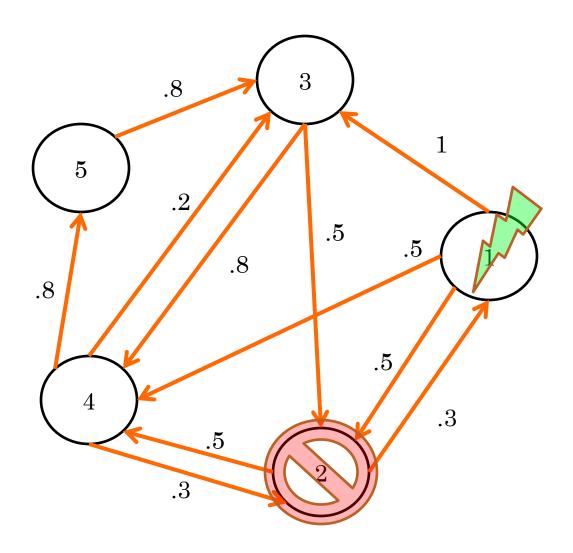
• Other results

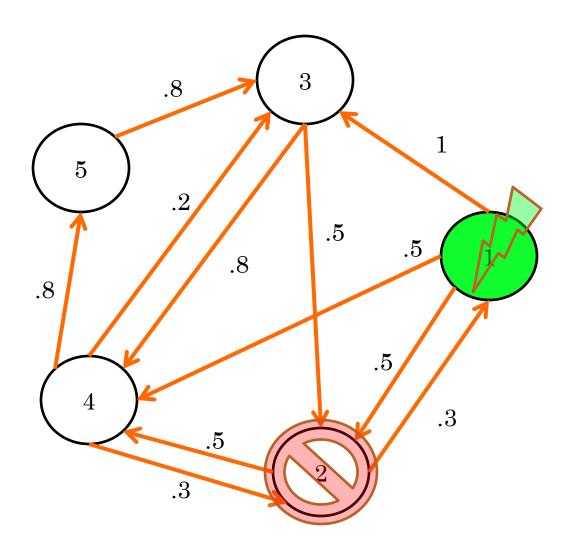
- Approximation algorithm
- Special case of trees
- Exponential attenuation of paths

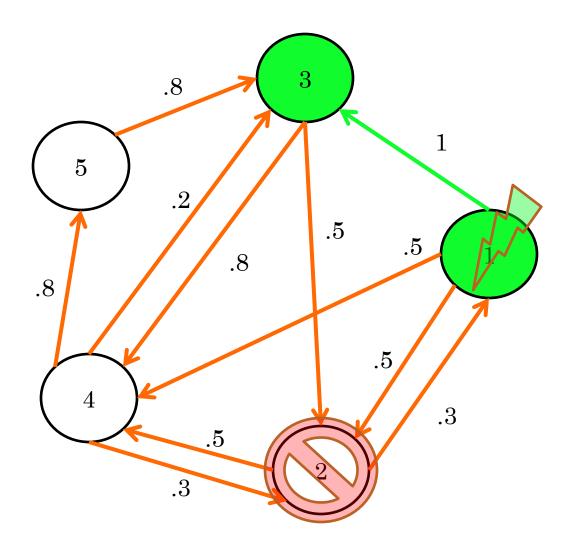
WHAT THE LEARNER SEES

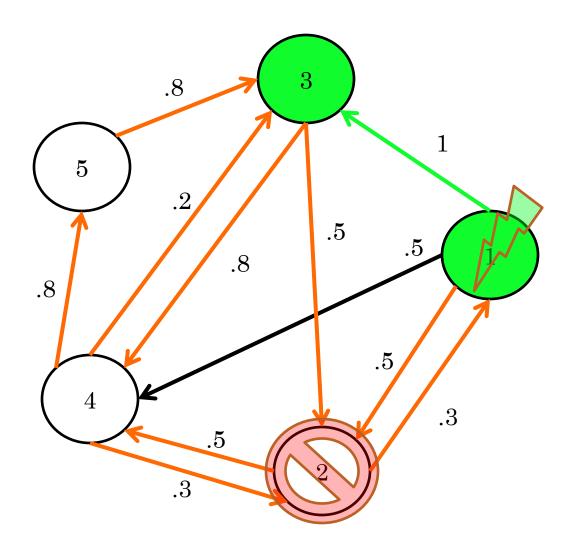


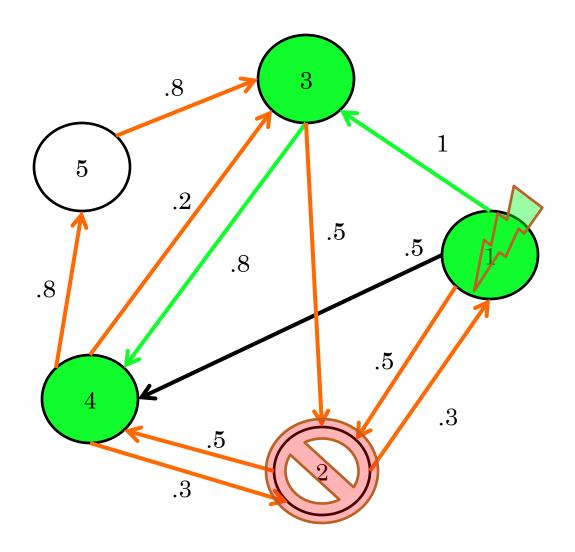


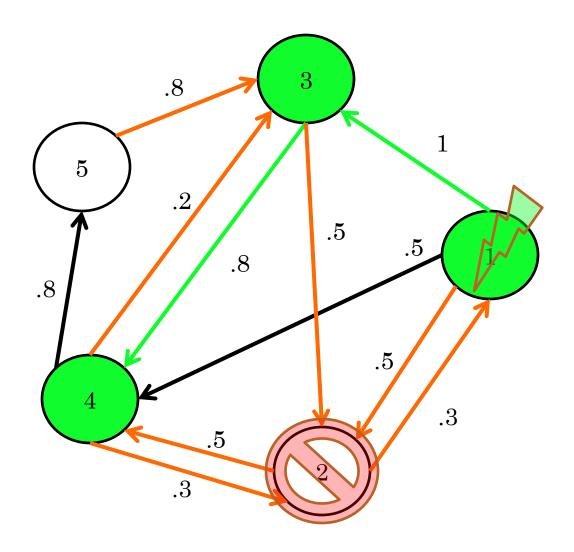


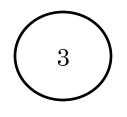


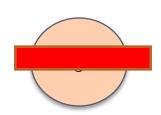


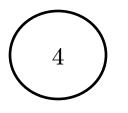


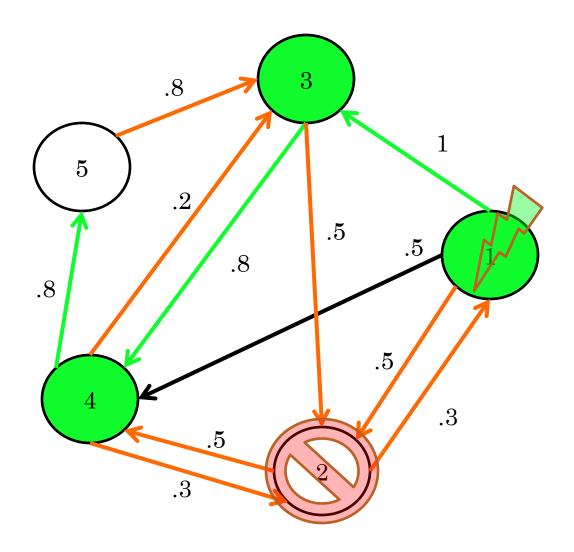


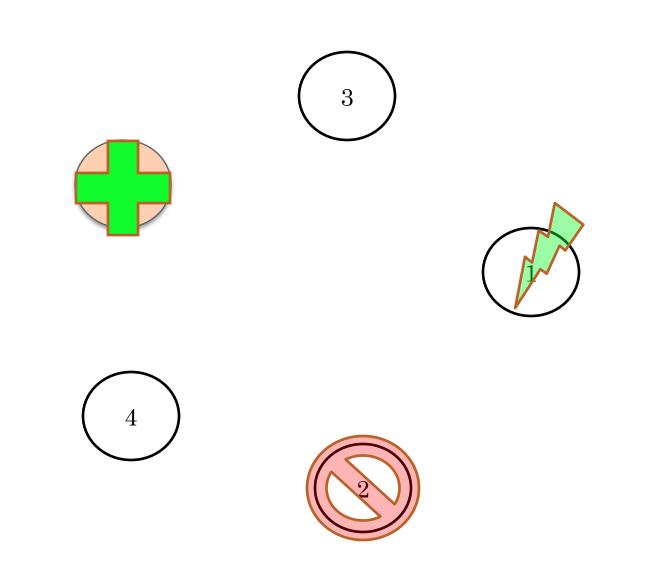






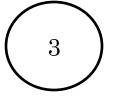


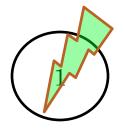


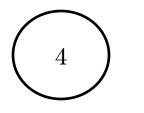


EXACT VALUE INJECTION QUERIES

0.72 5







THE LEARNING TASK

• Two social networks S and S' are behaviorally equivalent if for any experiment e, S(e) = S'(e)

• Give access to a hidden social network S*, the learning problem is to find a social network S behaviorally equivalent to S* using value injection queries.

THE PERCOLATION MODEL

Given a network S and a VIQ

- All edges entering or leaving a suppressed node are automatically "closed."
- Each remaining edge (u,v) is "open" with probability $p_{(u,v)}$ and "closed" with probability (1- $p_{(u,v)})$
- The result of a VIQ is the probability there is a path from a fired node to the output via open edges in S

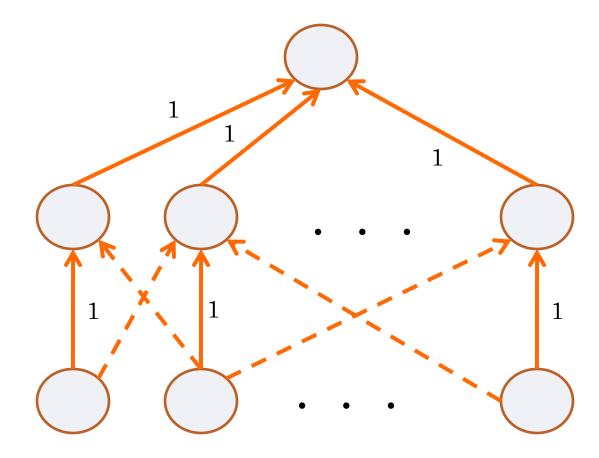
DISCOVERABLE EDGES

- Let S be a social network and S' be another social network that differs from S only in edge (u,v).
- We say edge (u,v) is discoverable if there is an experiment e such that $S(e) \neq S'(e)$.
- We can view the learning problem as having to find all discoverable edges.

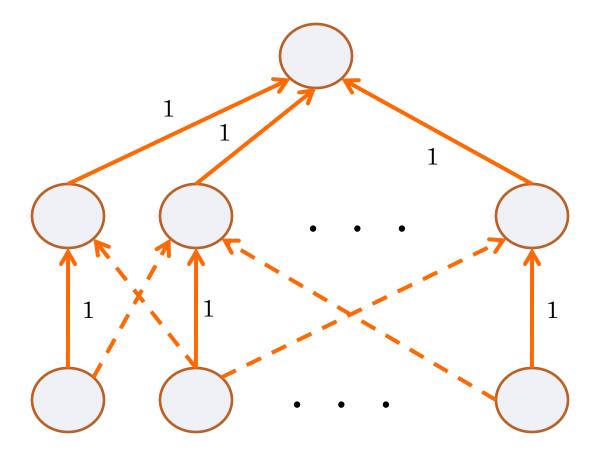
TALK OUTLINE

- Independent Cascade Social Networks (SNs)
- Introduce Value Injection Queries (VIQs) on SNs
 - These were introduced by AACW (STOC '06), extended in AACR (COLT '07) and AACER (COLT '08)
- Show lower bound for learning SNs with VIQs
- Give an idea of the algorithm for learning SNs
- Other results
 - Approximation algorithm
 - Special case of trees
 - Exponential attenuation of paths

A LOWER BOUND

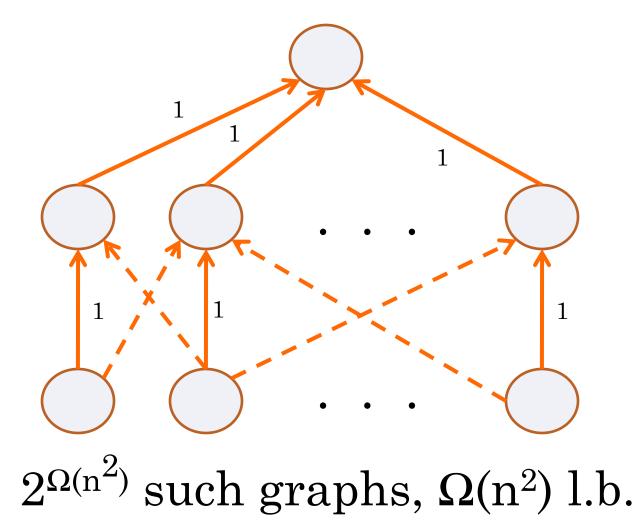


A LOWER BOUND



All queries give 1-bit answers

A LOWER BOUND



TALK OUTLINE

- Independent Cascade Social Networks (SNs)
- Introduce Value Injection Queries (VIQs) on SNs
 - These were introduced by AACW (STOC '06), extended in AACR (COLT '07) and AACER (COLT '08)
- Show lower bound for learning SNs with VIQs
- Give an idea of the algorithm for learning SNs
- Other results
 - Approximation algorithm
 - Special case of trees
 - Exponential attenuation of paths

FIRST SOME DEFINITIONS

- The depth of a node is its distance to the root
- An Up edge is an edge from a node of larger depth to a node of smaller depth
- A Level edge is an edge between two nodes of same depth
- A Down edge is an edge from a node at smaller depth to a node at higher depth
- A leveled graph of a social network is the graph of Up edges

EXCITATION PATHS

• An excitation path for a node n is a VIQ in which a subset of the free agents form a simple directed path from n to the output. All agents not on the path with inputs into the path are suppressed.

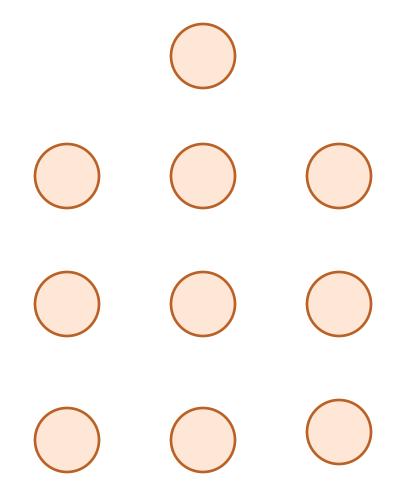
• We also have a shortest excitation path

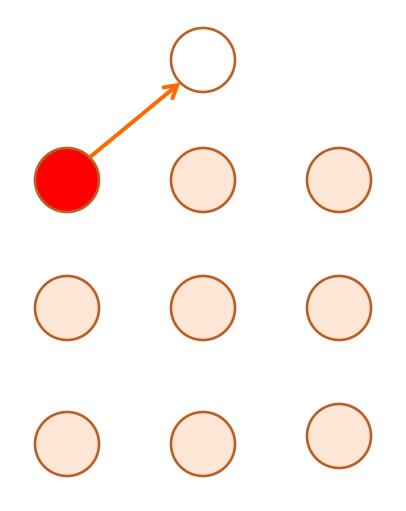
THE LEARNING ALGORITHM FOR NETWORKS WITHOUT 1 EDGES

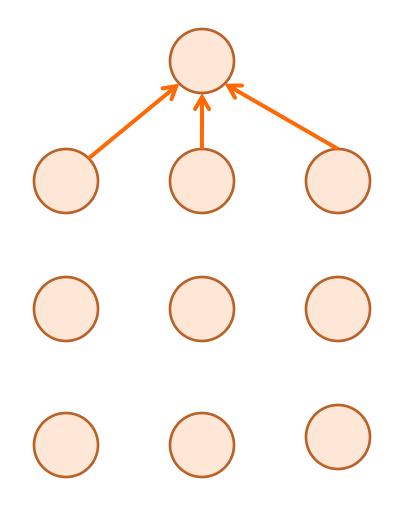
• First Find-Up-Edges to learn the leveled graph of S

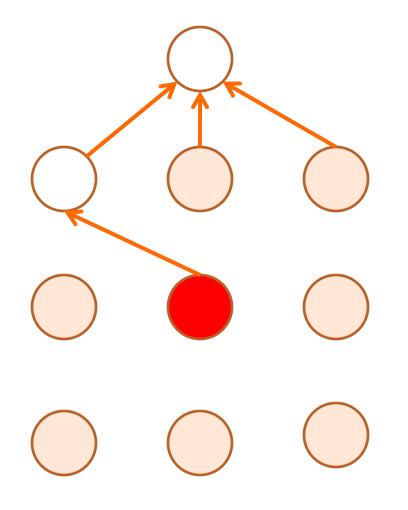
• For each level, Find-Level-Edges

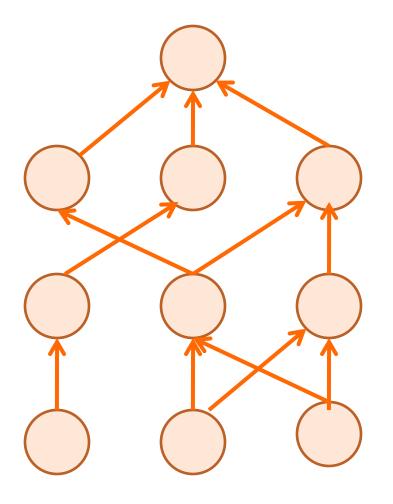
• For each level, bottom-down, Find-Down-Edges



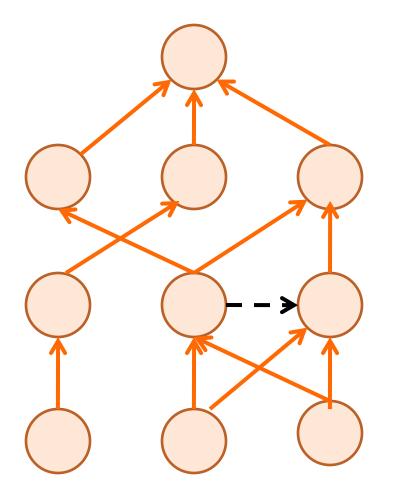




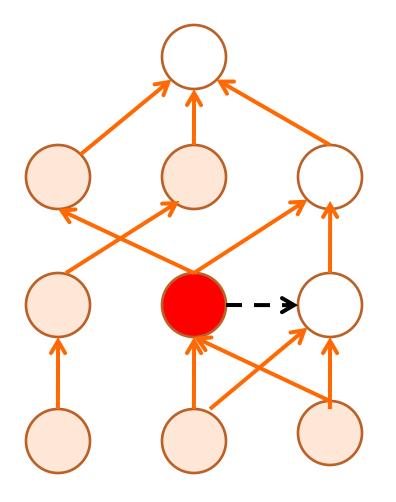




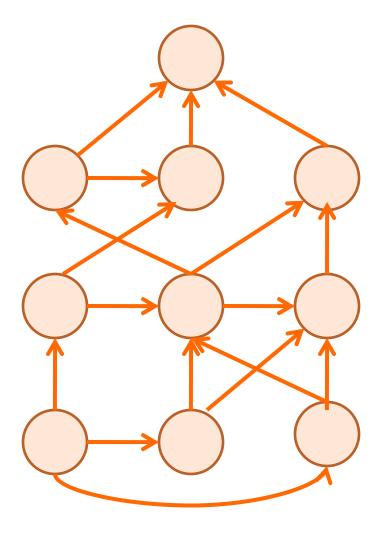
FIND-LEVEL-EDGES



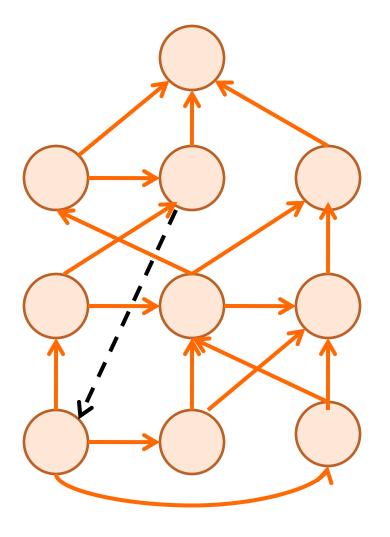
FIND-LEVEL-EDGES

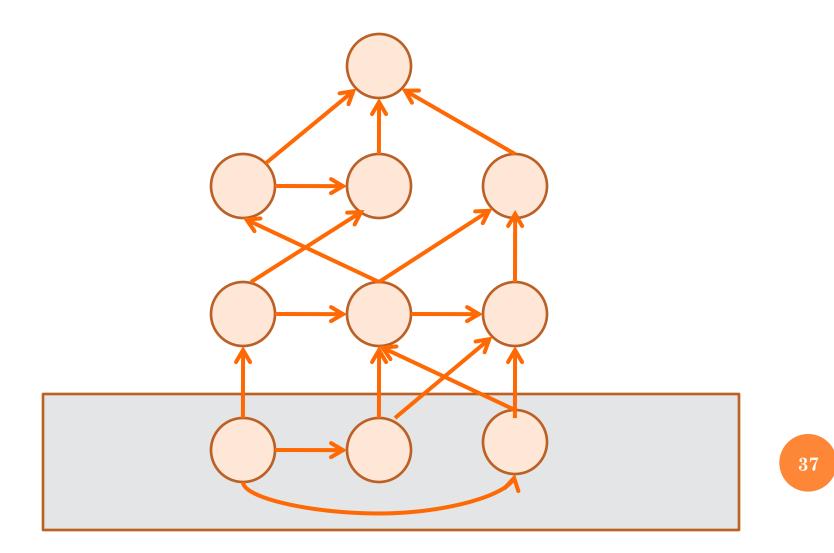


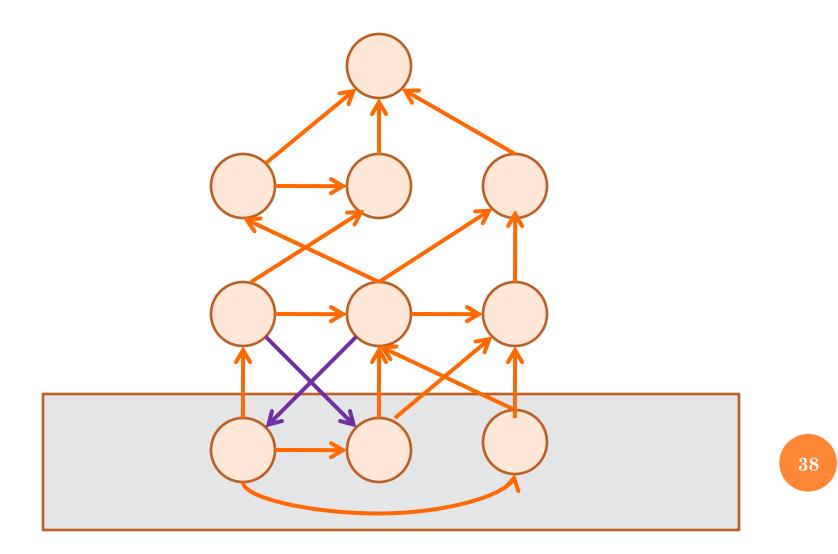
FIND-LEVEL-EDGES

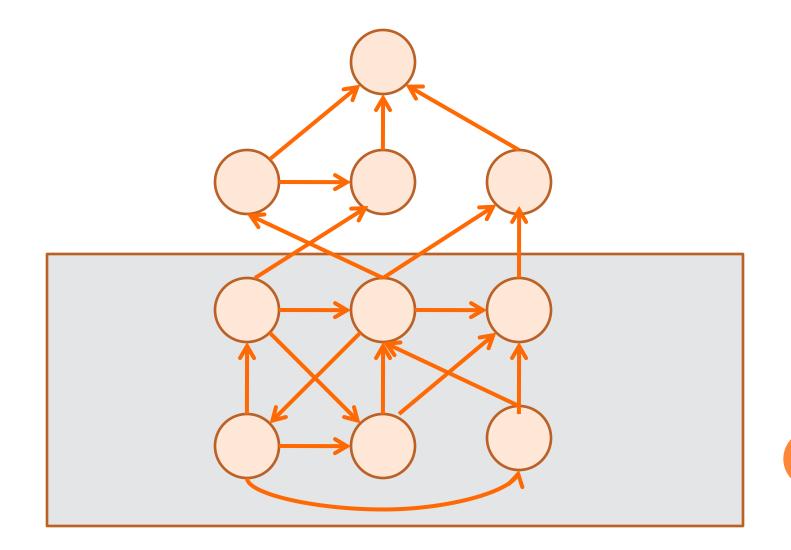


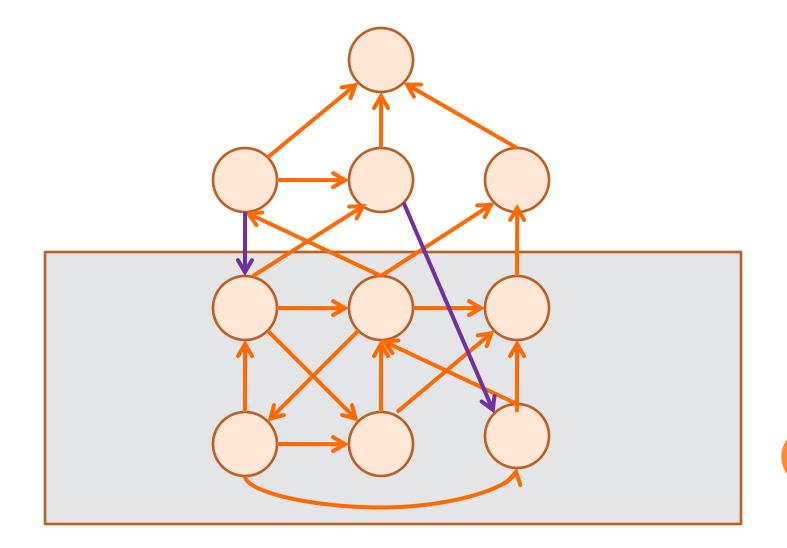
FIND-DOWN-EDGES

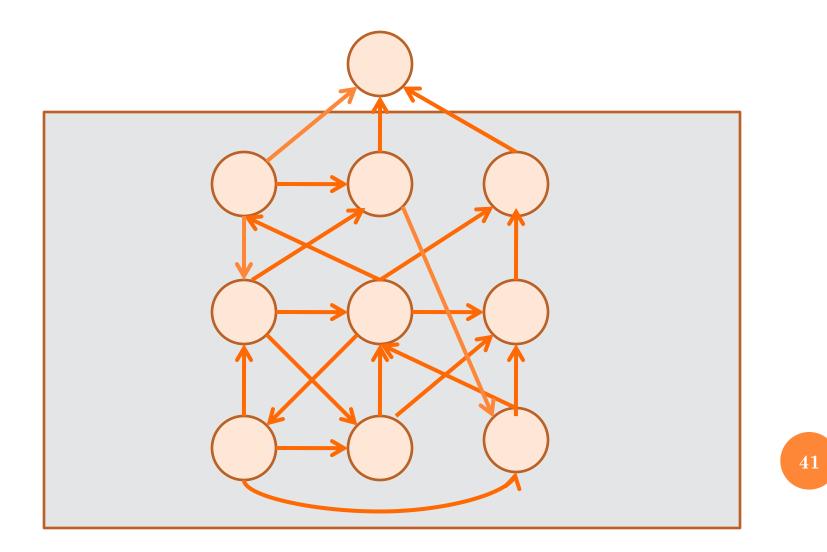


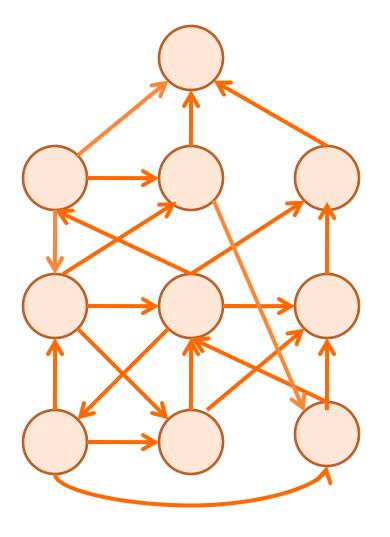








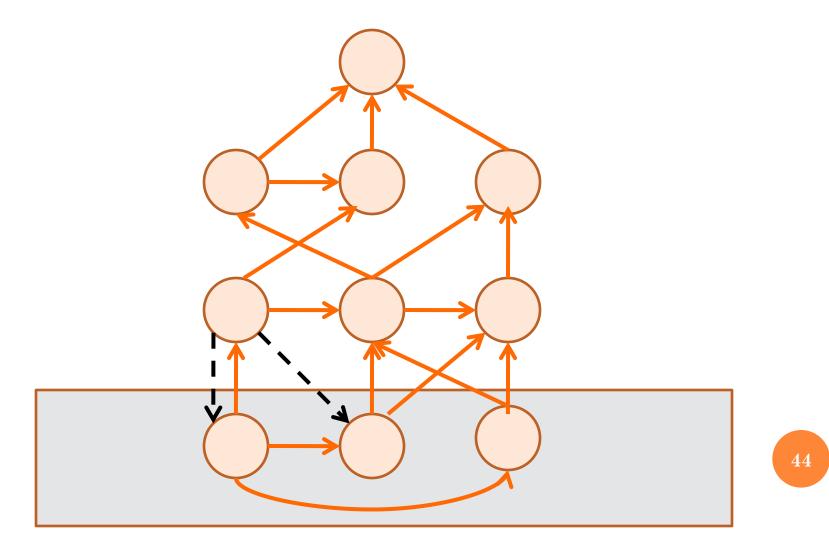




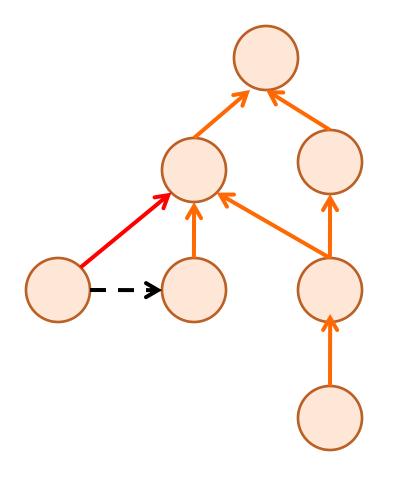
• For each node u at current level

- Sort each node v_i in C (complete set) by distance to the root in $G-\{u\}$
- Let $v_1 \dots v_k$ be the sorted $v_i s$
- Let $pi_1 \hdots pi_k$ be their corresponding shortest paths to the root in $G-\{u\}$
- For i from 1 to k
 - Do experiment of firing u, leaving pi_i free, and suppressing the rest of the nodes.

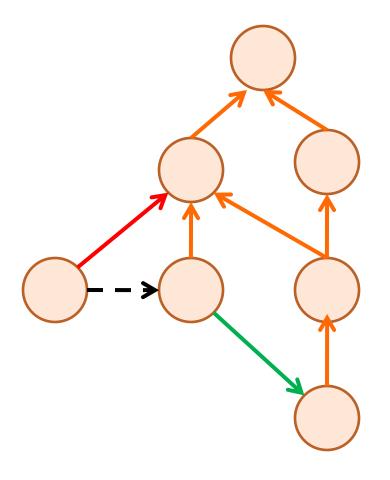
FOR EXAMPLE



With ONES - A Problem



With ONES - A Problem



WITH ONES

- Algorithm gets more complicated
- Level edges and down edges are found in one subroutine
- In looking for down edges from u, need to avoid not just u, but also all nodes reachable from u by 1 edges
- There always exists some pair of nodes, with source in L (current level) and destination in C + L where you can look for an edge.

IN THE END

• We do 1 query per each possible edge, giving an O(n²) algorithm

• Matches the $\Omega(n^2)$ lower bound

TALK OUTLINE

- Independent Cascade Social Networks (SNs)
- Introduce Value Injection Queries (VIQs) on SNs
 - These were introduced by AACW (STOC '06), extended in AACR (COLT '07) and AACER (COLT '08)
- Show lower bound for learning SNs with VIQs
- Give an idea of the algorithm for learning SNs

• Other results

- Approximation algorithm
- Special case of trees
- Exponential attenuation of paths

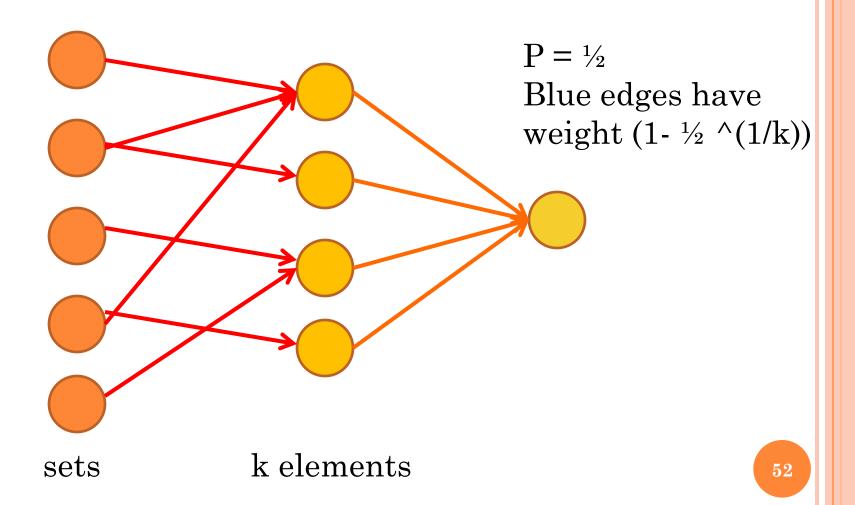
FINDING INFLUENTIAL NODES

- Suppose instead of learning the social network, we wanted to find an influential set of nodes quickly.
- A set of nodes is influential if, when activated, activates the output with probability at least p

FINDING INFLUENTIAL NODES

- Suppose instead of learning the social network, we wanted to find an influential set of nodes quickly.
- A set of nodes is influential if, when activated, activates the output with probability at least p
- NP Hard to Approximate to log n, even if we know the structure of the network

REDUCTION FROM SET COVER



AN APPROXIMATION ALGORITHM

- Say the optimal solution has m nodes
- Suppose we wanted to fire the output with probability $(p \varepsilon)$
- Let I be the set of chosen influential nodes.
- Observation: at any point in the algorithm, greedily adding one more node w to I makes

$$S(e_{I\cup\{w\}}) \ge S(e_I) + \frac{p - S(e_I)}{m}$$

ANALYZING GREEDY

• Using a greedy algorithm, we let k be the number of rounds the algorithm is run

For

$$p\left(1-\frac{1}{m}\right)^k < \epsilon$$

it suffices that

$$e^{-\frac{k}{m}} < \frac{\epsilon}{p}$$

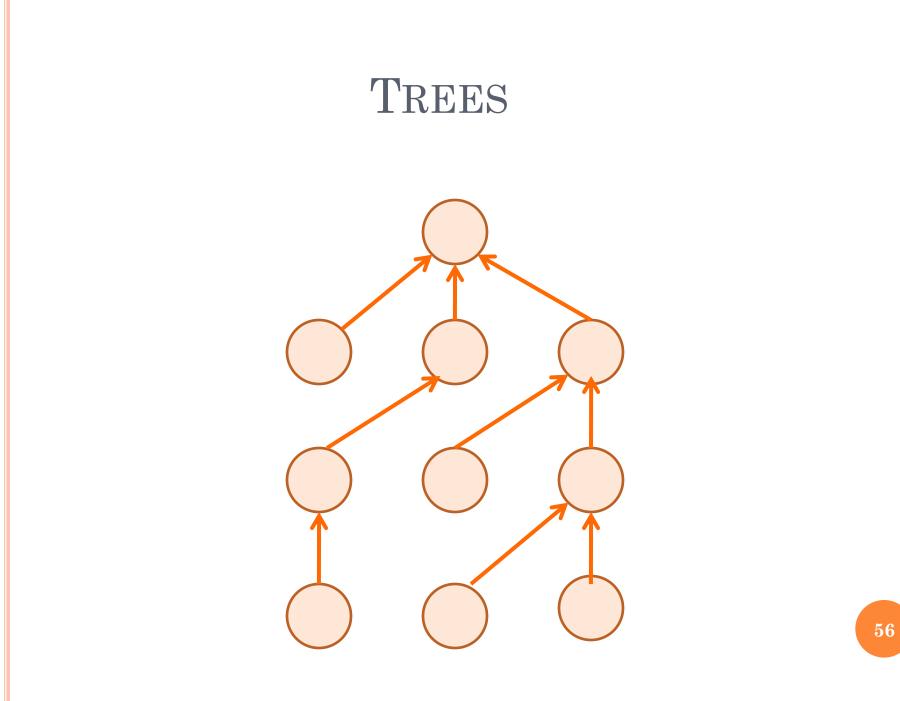
or

$$k > m \log\left(\frac{p}{\epsilon}\right).$$

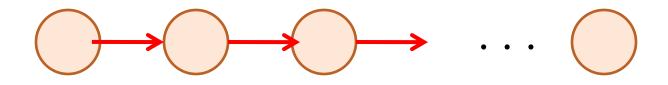
54

RECONCILING GREEDY

- Therefore after m log(p/ε) rounds, we get to within ε of p.
- To reconcile with the set cover reduction, if we set $\varepsilon = \frac{1}{2}(1/n) \frac{1}{2}(1/(n-1)) = \theta(1/n^2)$, this forces us to cover all the elements.
- Giving a m log (p n^2) = O(m log (n)) approximation. Matches the set cover lower bound.



LOWER BOUND



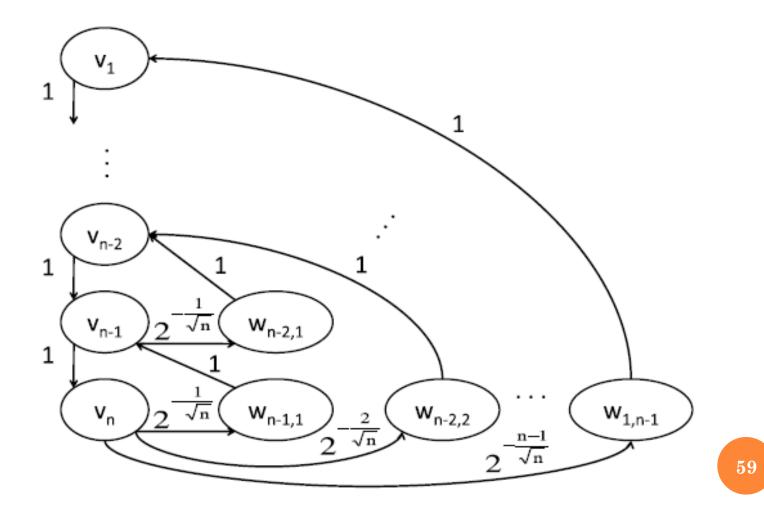
Like sorting with comparisons

Gives a $\Omega(n \log n)$ lower bound

THE IDEA FOR ALGORITHM

- Ancestor Test. To test if u has an ancestor in set S, fire u and suppress all nodes in S.
- We can build up a tree by adding one node at a time and binary searching where it belongs in the tree using ancestor tests.

IF WE DON'T HAVE EXACT VIQS



DISCUSSIONS AND OPEN PROBLEMS

- Interesting model to study various hidden structures.
- Finding non-path based methods for social networks. (Actually also an open question for learning circuits with VIQs)
- Reducing Query Size
- Other models.