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  A social network consists of nodes (agents) and 
edges (connections).  The goal is to determine the 
structure of a target network. 

  Active Learning – activate some nodes in the 
network and observe the effects. 
◦  eg. [Angluin, Aspnes, and Reyzin ’08] 
◦  Often requires the learner having a lot of power. 

  Passive Learning – observe the network from the 
outside and make conclusions about its structure. 
◦  This work lies here. 
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2009 Swine Flu – Initial Cases 
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  The social network is an unknown graph, where 
nodes are agents. 
◦  The vertices are known to the learner. 
◦  The edges are to be learned or estimated. 

  Let p(u,v) be the a priori probability of an edge 
between nodes u and v. 

  Each observed outbreak induces (or exposes) a 
constraint. 
◦  Namely the graph is connected on the induced subset. 
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  If the prior distribution is independent (and 
probabilities are small), the maximum 
likelihood social network maximizes 

 This is equivalent to minimizing the sum of 
the log-likelihood costs 

   while satisfying the connectivity constraints. 
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 Given: 
◦  vertices V = {v1,…,vn} 

◦  costs ce for each edge e={vi,vj} 
◦  a constraint set S = {S1,…,Sr}, with  

  Find: a set E of edges of lowest cost such 
that each Si induces a connected subgraph 
of G=(V,E) 
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 We consider both the offline and online 
version of this problem.  We also consider 
the arbitrary and uniform cost versions. 

  Solved for the case where all constraints 
can be satisfied by a tree [Korach & Stern 
’03] – they left the general case open. 
◦ Our problem is closely related to many 

network optimization problems. 
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 Theorem: If P ≠ NP, the approximation 
ratio for the Uniform Cost Network 
Inference problem is Ω(log n). 

 Proof (reduction from Hitting Set) 
◦ U = {v1, v2,…,vn} 
◦ C = {C1, C2,…,Cj}, with 
◦ The Hitting Set problem is to minimize |H|, 

where  
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 Reduction from Hitting Set 
  For a constant k, We make a N.I. instance 
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 Reduction from Hitting Set 
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corresponds to 
the elements in 
the Hitting Set 
instance 
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 Constraints: first, for each row, give all pairwise 
constraints: 

…
 

…
 

…
 

…
 

… 

… 

… 

nk 

n 15 



 Constraints: first, for each row, give all pairwise 
constraints: 

 This will force the learner to put down a 
clique on each row 

… 
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 Now we have nk rows of cliques 
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  For each pair of rows: 

… 

… 
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  For each pair of rows: 
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  For each pair of rows: 

 w.l.o.g. for the Hitting Set constraint  
◦ Ci = {v1,v2,…,vk} 
◦ we will add the constraint: 
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to H 

never better 
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 Unless P=NP, optimal Hitting Set 
approximation is Ω(log(n)) [Feige ’98].   

 The optimal algorithm pays: 

 But the learner pays: 

 k can be chosen to be sufficiently large. 
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 Theorem: There is a O(log(r)) approximation 
algorithm to OPT 

 Algorithm:  
◦  Let C(E) sum over all constraints Si, 1 minus the 

number of components Si induces in G(V,E). 
◦ Consider the greedy algorithm: while C(E) < 0, add 

to E the edge that has the lowest ratio of ce to ∆C. 
◦ Note that at the completion of the algorithm, the 

constraints are all satisfied. 
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  The greedy algorithm: while C(E) < 0, add to E 
the edge that has the lowest ratio of ce to ∆C. 

  C(E) is submodular in its edge set. 

  A Greedy algorithm for maximizing an integer-
valued submodular function on x gives an H(m) 
approx, where m = maxxf({x}) [Wolsey ’82] 

  Each edge can increase C by at most r, so m < r. 
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 Constraints Si come in online 

 Must satisfy each constraint as it comes in. 

 Can add but not remove edges. 

  Seemingly good ideas like placing an MST on 
each constraint can perform very badly. 
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O(n2/3log2/3n)-competitive algorithm for the 
uniform cost problem. 
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O(n2/3log2/3n)-competitive algorithm for the 
uniform cost problem. 
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O(n2/3log2/3n)-competitive algorithm 
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost 

surely connected 
 All constraints Si, |Si| < n1/3 log1/3(n) that are 

not already covered, we can put a clique on, 
and hit at least 1 edge in OPT 

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) 
edges in expectation. 

  Because OPT = Ω(n), we are done. 
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  The uniform cost problem has a             -
competitive lower bound 

  The competitive ratio for uniform cost stars 
and paths is θ(log n). 
◦  for paths, we use pq-trees [Booth and Lueker ’76] 

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm. 

€ 

Ω n( )
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 New model for passively learning social 
networks. 
◦ Also relevant to network optimization.. 

 Many interesting results. 
◦  Solve open problem from network optimization. 

 Lots of good open problems left! 
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