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Social Network Models

* A social network consists of nodes (agents) and
edges (connections). The goal is to determine the
structure of a target network.

e Active Learning — activate some nodes in the
network and observe the effects.

o eg. [Angluin, Aspnes, and Reyzin '08]
> Often requires the learner having a lot of power.

e Passive Learning — observe the network from the
outside and make conclusions about its structure.

o This work lies here.
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The Constraints

e The social network is an unknown graph, where
nodes are agents.

> The vertices are known to the learner.
> The edges are to be learned or estimated.

* Let p,, be the a priori probability of an edge
between nodes u and v.

e Each observed outbreak induces (or exposes) a
constraint.

> Namely the graph is connected on the induced subset.



Finding the Cheapest Network

e If the prior distribution is independent (and
probabilities are small), the maximum
likelihood social network maximizes

H P(u,w)

uveV

 This is equivalent to minimizing the sum of
the log-likelihood costs

Z _ l“‘h’(l)( w,v) )

v,ueV

while satisfying the connectivity constraints.



Finding the Cheapest Network
Consistent with the Constraints
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The Network Inference Problem

e Given:
o verticesV = {v,...,v.}
> costs ¢, for each edge e={v,v}
° a constraint set S = {§,,...,S,}, with §. CV

* Find: a set E of edges of lowest cost such
that each S. induces a connected subgraph

of G=(V,E)



Problem Variants

* We consider both the offline and online
version of this problem. We also consider
the arbitrary and uniform cost versions.

* Solved for the case where all constraints
can be satisfied by a tree [Korach & Stern
‘03] — they left the general case open.

> Qur problem is closely related to many
network optimization problems.



An Offline Lower Bound

» Theorem: If P # NP, the approximation
ratio for the Uniform Cost Network
Inference problem is Q(log n).

* Proof (reduction from Hitting Set)
o U ={v,Vp...,V,}
- C={C,C,....CLwith C,C U
> The Hitting Set problem is to minimize |H|,
where H CUst.VC, HNC, = ¢



An Offline L.B. continued

* Reduction from Hitting Set
e For a constant k,VWe make a N.l. instance
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An Offline L.B. continued

* Reduction from Hitting Set
e For a constant k,VWe make a N.l. instance
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An Offline L.B. continued

» Constraints: first, for each row, give all pairwise
constraints:
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An Offline L.B. continued

» Constraints: first, for each row, give all pairwise

constraints:

 This will force the learner to put down a
clique on each row




An Offline L.B. continued

* Now we have nk rows of cliques
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An Offline L.B. continued

* For each pair of rows:




An Offline L.B. continued

* For each pair of rows:

.. n-1 n

| 2 3 4 5 ...k ...
90000---0---00

O0006G--0---0 0
| 2 3 4 5 ...k ...n-l n



An Offline L.B. continued

* For each pair of rows:

..k ...n-l n

| 2 3 45
90000---0---0 0

0 00O6G---0:---0 0
| 2 3 4 5 ...k ...n-l n

* w.l.o.g. for the Hitting Set constraint
o C = {V|,\Vp.. sV }
> we will add the constraint:



An Offline L.B. continued

* For each pair of rows:

(|2345...
XXX

n n
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90000---0|--00
\I 2 3 45 ...U..n-l n

* w.l.o.g. for the Hitting Set constraint

o C = {V|,\Vp.. sV }
o we will add the constraint;



An Offline L.B. continued

/I2345...k\ /I2345...k\
1““---‘ wﬁ---Q
90000 0000600
\I2345...k/ \I2345...k/
corresponds to adding v, never better
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An Offline L.B. continued
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corresponds to adding v,
to H
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Finishing the Lower Bound

e Unless P=NP, optimal Hitting Set
approximation is )(log(n)) [Feige "98].
e The optimal algorithm pays:

ot

* But the learner pays:

nk(n)+§2
2

* k can be chosen to be sufficiently large.

log(n)OPT(nzk ] )




Offline Network Inference Algorithm

e Theorem:There is a O(log(r)) approximation
algorithm to OPT

e Algorithm:

> Let C(E) sum over all constraints S, | minus the
number of components S, induces in G(V,E).

> Consider the greedy algorithm: while C(E) < 0, add
to E the edge that has the lowest ratio of c_ to AC.

> Note that at the completion of the algorithm, the
constraints are all satisfied.



Algorithm Analysis

e The greedy algorithm: while C(E) < 0,add to E
the edge that has the lowest ratio of c_ to AC.

e C(E) is submodular in its edge set.

* A Greedy algorithm for maximizing an integer-
valued submodular function on x gives an H(m)
approx, where m = max f({x}) [VVolsey '82]

e Each edge can increase C by at most ,som <r.



The Online Problem

» Constraints S; come in online
* Must satisfy each constraint as it comes in.
e Can add but not remove edges.

* Seemingly good ideas like placing an MST on
each constraint can perform very badly.



Online Algorithm Against Oblivious
Adversary

O(n?3log%3n)-competitive algorithm for the

uniform cost problem.



Online Algorithm Against Oblivious
Adversary

O(n?3log%3n)-competitive algorithm for the

uniform cost problem.
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Online Algorithm Against Oblivious
Adversary

O(n?3log?3n)-competitive algorithm
* All constraints S, |S.| 2 n'3log!/3(n) are almost
surely connected

* All constraints S, |S;| < n'/3 log!/3(n) that are
not already covered, we can put a clique on,
and hit at least | edge in OPT

» We used O(n*3log%3(n)+n%3log?3(n)OPT)
edges in expectation.

e Because OPT = Q(n), we are done.



Other Online Results

* The uniform cost problem has a o(~/n) -
competitive lower bound

e The competitive ratio for uniform cost stars
and paths is B(log n).

o for paths, we use pg-trees [Booth and Lueker '76]

e The arbitrary cost problem has an Q(n)-
competitive lower bound and O(n log n)-
competitive algorithm.



Online Results: Competitive Ratios
for Adaptive Adversaries

-H

uniform  O(n) 7 O (logn) O (logn)
cost Q2 (n'7?2) Q2 (logn)

arbitrary  O(nlogn)  O(nlogn)  O(nlogn)  O(nlogn)
cost G2 (n) G2 (n) 7 G2 (n)
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Summary

* New model for passively learning social
networks.

> Also relevant to network optimization..

e Many interesting results.

> Solve open problem from network optimization.

 Lots of good open problems left!



