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  A social network consists of nodes (agents) and 
edges (connections).  The goal is to determine the 
structure of a target network. 

  Active Learning – activate some nodes in the 
network and observe the effects. 
◦  eg. [Angluin, Aspnes, and Reyzin ’08] 
◦  Often requires the learner having a lot of power. 

  Passive Learning – observe the network from the 
outside and make conclusions about its structure. 
◦  This work lies here. 
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2009 Swine Flu – Initial Cases 
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  The social network is an unknown graph, where 
nodes are agents. 
◦  The vertices are known to the learner. 
◦  The edges are to be learned or estimated. 

  Let p(u,v) be the a priori probability of an edge 
between nodes u and v. 

  Each observed outbreak induces (or exposes) a 
constraint. 
◦  Namely the graph is connected on the induced subset. 
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  If the prior distribution is independent (and 
probabilities are small), the maximum 
likelihood social network maximizes 

 This is equivalent to minimizing the sum of 
the log-likelihood costs 

   while satisfying the connectivity constraints. 
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 Given: 
◦  vertices V = {v1,…,vn} 

◦  costs ce for each edge e={vi,vj} 
◦  a constraint set S = {S1,…,Sr}, with  

  Find: a set E of edges of lowest cost such 
that each Si induces a connected subgraph 
of G=(V,E) 
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 We consider both the offline and online 
version of this problem.  We also consider 
the arbitrary and uniform cost versions. 

  Solved for the case where all constraints 
can be satisfied by a tree [Korach & Stern 
’03] – they left the general case open. 
◦ Our problem is closely related to many 

network optimization problems. 
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 Theorem: If P ≠ NP, the approximation 
ratio for the Uniform Cost Network 
Inference problem is Ω(log n). 

 Proof (reduction from Hitting Set) 
◦ U = {v1, v2,…,vn} 
◦ C = {C1, C2,…,Cj}, with 
◦ The Hitting Set problem is to minimize |H|, 

where  
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 Reduction from Hitting Set 
  For a constant k, We make a N.I. instance 
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 Reduction from Hitting Set 
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Each row 
corresponds to 
the elements in 
the Hitting Set 
instance 
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 Constraints: first, for each row, give all pairwise 
constraints: 
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 Constraints: first, for each row, give all pairwise 
constraints: 

 This will force the learner to put down a 
clique on each row 

… 
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 Now we have nk rows of cliques 
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  For each pair of rows: 
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  For each pair of rows: 

 w.l.o.g. for the Hitting Set constraint  
◦ Ci = {v1,v2,…,vk} 
◦ we will add the constraint: 
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 Unless P=NP, optimal Hitting Set 
approximation is Ω(log(n)) [Feige ’98].   

 The optimal algorithm pays: 

 But the learner pays: 

 k can be chosen to be sufficiently large. 
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 Theorem: There is a O(log(r)) approximation 
algorithm to OPT 

 Algorithm:  
◦  Let C(E) sum over all constraints Si, 1 minus the 

number of components Si induces in G(V,E). 
◦ Consider the greedy algorithm: while C(E) < 0, add 

to E the edge that has the lowest ratio of ce to ∆C. 
◦ Note that at the completion of the algorithm, the 

constraints are all satisfied. 
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  The greedy algorithm: while C(E) < 0, add to E 
the edge that has the lowest ratio of ce to ∆C. 

  C(E) is submodular in its edge set. 

  A Greedy algorithm for maximizing an integer-
valued submodular function on x gives an H(m) 
approx, where m = maxxf({x}) [Wolsey ’82] 

  Each edge can increase C by at most r, so m < r. 
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 Constraints Si come in online 

 Must satisfy each constraint as it comes in. 

 Can add but not remove edges. 

  Seemingly good ideas like placing an MST on 
each constraint can perform very badly. 
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O(n2/3log2/3n)-competitive algorithm for the 
uniform cost problem. 
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O(n2/3log2/3n)-competitive algorithm for the 
uniform cost problem. 
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O(n2/3log2/3n)-competitive algorithm 
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost 

surely connected 
 All constraints Si, |Si| < n1/3 log1/3(n) that are 

not already covered, we can put a clique on, 
and hit at least 1 edge in OPT 

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) 
edges in expectation. 

  Because OPT = Ω(n), we are done. 
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  The uniform cost problem has a             -
competitive lower bound 

  The competitive ratio for uniform cost stars 
and paths is θ(log n). 
◦  for paths, we use pq-trees [Booth and Lueker ’76] 

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm. 
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 New model for passively learning social 
networks. 
◦ Also relevant to network optimization.. 

 Many interesting results. 
◦  Solve open problem from network optimization. 

 Lots of good open problems left! 
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