
Lev Reyzin
Georgia Institute of Technology

with
Dana Angluin and James Aspnes

Yale University

ALT 2010

2

  A social network consists of nodes (agents) and
edges (connections). The goal is to determine the
structure of a target network.

  Active Learning – activate some nodes in the
network and observe the effects.
◦  eg. [Angluin, Aspnes, and Reyzin ’08]
◦  Often requires the learner having a lot of power.

  Passive Learning – observe the network from the
outside and make conclusions about its structure.
◦  This work lies here.

3

2009 Swine Flu – Initial Cases

4

  The social network is an unknown graph, where
nodes are agents.
◦  The vertices are known to the learner.
◦  The edges are to be learned or estimated.

  Let p(u,v) be the a priori probability of an edge
between nodes u and v.

  Each observed outbreak induces (or exposes) a
constraint.
◦  Namely the graph is connected on the induced subset.

5

  If the prior distribution is independent (and
probabilities are small), the maximum
likelihood social network maximizes

 This is equivalent to minimizing the sum of
the log-likelihood costs

 while satisfying the connectivity constraints.
6

7

75

9

30 3

10

9

1

5
25

7

7

75

9

30 3

10

9

1

5
25

8

7

75

9

30 3

10

9

1

5
25

9

 Given:
◦  vertices V = {v1,…,vn}

◦  costs ce for each edge e={vi,vj}
◦  a constraint set S = {S1,…,Sr}, with

  Find: a set E of edges of lowest cost such
that each Si induces a connected subgraph
of G=(V,E)

10

 We consider both the offline and online
version of this problem. We also consider
the arbitrary and uniform cost versions.

  Solved for the case where all constraints
can be satisfied by a tree [Korach & Stern
’03] – they left the general case open.
◦ Our problem is closely related to many

network optimization problems.

11

 Theorem: If P ≠ NP, the approximation
ratio for the Uniform Cost Network
Inference problem is Ω(log n).

 Proof (reduction from Hitting Set)
◦ U = {v1, v2,…,vn}
◦ C = {C1, C2,…,Cj}, with
◦ The Hitting Set problem is to minimize |H|,

where

12

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n 13

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n

Each row
corresponds to
the elements in
the Hitting Set
instance

14

 Constraints: first, for each row, give all pairwise
constraints:

…

…

…

…

…

…

…

nk

n 15

 Constraints: first, for each row, give all pairwise
constraints:

 This will force the learner to put down a
clique on each row

…

16

 Now we have nk rows of cliques

…

…

…

…nk

17

  For each pair of rows:

…

…

18

  For each pair of rows:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

19

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

20

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

21

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

22

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

23

 Unless P=NP, optimal Hitting Set
approximation is Ω(log(n)) [Feige ’98].

 The optimal algorithm pays:

 But the learner pays:

 k can be chosen to be sufficiently large.
24

 Theorem: There is a O(log(r)) approximation
algorithm to OPT

 Algorithm:
◦  Let C(E) sum over all constraints Si, 1 minus the

number of components Si induces in G(V,E).
◦ Consider the greedy algorithm: while C(E) < 0, add

to E the edge that has the lowest ratio of ce to ∆C.
◦ Note that at the completion of the algorithm, the

constraints are all satisfied.
25

  The greedy algorithm: while C(E) < 0, add to E
the edge that has the lowest ratio of ce to ∆C.

  C(E) is submodular in its edge set.

  A Greedy algorithm for maximizing an integer-
valued submodular function on x gives an H(m)
approx, where m = maxxf({x}) [Wolsey ’82]

  Each edge can increase C by at most r, so m < r.

26

 Constraints Si come in online

 Must satisfy each constraint as it comes in.

 Can add but not remove edges.

  Seemingly good ideas like placing an MST on
each constraint can perform very badly.

27

O(n2/3log2/3n)-competitive algorithm for the
uniform cost problem.

28

O(n2/3log2/3n)-competitive algorithm for the
uniform cost problem.

29

O(n2/3log2/3n)-competitive algorithm
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost

surely connected
 All constraints Si, |Si| < n1/3 log1/3(n) that are

not already covered, we can put a clique on,
and hit at least 1 edge in OPT

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT)
edges in expectation.

  Because OPT = Ω(n), we are done.
30

  The uniform cost problem has a -
competitive lower bound

  The competitive ratio for uniform cost stars
and paths is θ(log n).
◦  for paths, we use pq-trees [Booth and Lueker ’76]

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

€

Ω n()

31

32

any G trees stars paths

uniform
cost

O(n)
Ω(n1/2)

??
Ω(logn)

Θ(logn) Θ(logn)

arbitrary
cost

O(nlogn)
Ω(n)

O(nlogn)
Ω(n)

O(nlogn)
??

O(nlogn)
Ω(n)

 New model for passively learning social
networks.
◦ Also relevant to network optimization..

 Many interesting results.
◦  Solve open problem from network optimization.

 Lots of good open problems left!

33

