New Algorithms for
Contextual Bandits

Lev Reyzin
Yahoo! Research, NY

Serving Content to Users

Query, IP address, browser properties, etc.

i; ' | _H"_d_’:k.
\ \'Ill /
l @ ™
— gj\i:: .

Serving Content to Users

Query, IP address, browser properties, etc.

. f —— result (ie. ad, news story) @ . 7
| _
W | & @\c (
R T ——
T 7

¥

\

Serving Content to Users

Query, IP address, browser properties, etc.

@ f — . result (1e ad, news story)

YA a—— @\c (
D

T

click or not

Serving Content to Users

Query, IP address, browser properties, etc.

-

result (ie. ad, news story)

— =
.TM

click or not

— e -

Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

|

click or not

— e -

Serving Content to Users

context X,

. action j, ’
pl . ™

reward r; (t)

_—

Outline

Formally define the setting.

Show 1deas that fail.

G1ve a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

The Setting

T rounds, K possible actions, N policies « in IT (context
-> actions)

fort=1to T

* world commits to rewards r(t)=r,(t),r,(t),...,1(t)
world provides context x,
learner’s policies recommend mt(x,), T,(X,), ..., Tn(X)
learner chooses action j,
learner receives reward rjt(t)

want to compete with following the best policy in
hindsight

Regret

T
» reward of algorithm A: G, (T) Y Z r; (t)

t=1

T
* expected reward of policy 1: G, (T) Y Z TT, (x t)- r(t)

t=1

* algorithm A’s regret: Mmax Gl. (T)— G y (7)
i

Regret

+ algorithm A’s regret: max G, (T) -G, (T)
l

* expected regret: max G, (T) - E|G,(T)]

 high probability regret: P[max Gl, (T)— G ’ (T) > g] <0

Some Observations

* This is harder than supervised learning. In our
setting we do not know the rewards of actions not
taken.

This 1s not the traditional K-armed bandit setting. In

the traditional bandit setting there 1s no context (or

experts).

* In the simpler K-armed bandit setting, there is no
context. We just compete with best arm in hindsight.

 The traditional setting 1s akin to showing everyone the
same advertisement, article, etc.

Previous Results

Algorithm Regret High Prob? Context?

Exp4 [ACFS ’02] O(KT In(N))!/2 No Yes

e-greedy, epoch- | O((K In(N) 1/3)T2/3) Yes
geedy [LZ '07]
Exp3.P[ACFS ’02] O(KT)!2 No
UCB [Auer ’'00]

Q(\/KT)lower bound [ACFS ’02]

Our Result

Algorithm Regret High Prob? Context?

Exp4 [ACFS ’02] O(KT In(N))!/2 No Yes

e-greedy, epoch- | O((K In(N) 1/3)T2/3) Yes
geedy [LZ ’07]

Exp3.P[ACFS ’02] O(KT)!2 No
UCB [Auer ’'00]

Q(\/KT)lower bound [ACFS ’02]

Outline

Formally define the setting.

Show ideas that fail.

G1ve a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

First Some Failed Approaches

 Badidea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

First Some Failed Approaches

 Badidea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
» Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

First Some Failed Approaches

 Badidea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
» Adversary has two actions, one always paying off 1 and the other 0.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

* Badidea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.

First Some Failed Approaches

 Badidea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

+ Adversary has two actions, one always paying off 1 and the other 0.
Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

* Badidea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.

» Adversary has two actions, one always paying off 1 and the other 0.
If all but one of > 2T hypothesis always predict wrong arm, and
only 1 hypothesis always predicts good arm, with probability > %2 1t
1s never picked and algorithm incurs regret of T.

epsilon-greedy

* Rough 1dea of e-greedy (or e-first): act randomly for
¢ rounds, then go with best (arm or expert).

Even 1f we know the number of rounds 1n advance,
epsilon-first won’t get us regret O(T)!/2, even in the
non-contextual setting.

Rough analysis: even for just 2 arms, we suffer
regret: e+(T-€)/(¢!/?).

« ¢=T?/3 is optimal.

- gives regret T%/3

Outline

Formally define the setting.

Show 1deas that fail.

Give a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

Ideas Behind Exp4.P

exponential weights

* keep a weight on each expert that drops exponentially in the
expert’s (estimated) performance

upper confidence bounds

* use an upper confidence bound on each expert’s estimated
reward

ensuring exploration
* make sure each action is taken with some minimum probability

importance weighting
* give rare events more importance to keep estimates unbiased

Exponential Weight Algorithm for Exploration and
Exploitation with Experts

(EXP4) [Auer et al. '95] (slide from Beygelzimer &

Langford ICML 2010
Initialization: Vor € I : wy(7) =1 tutorial)

Foreacht =1,2,...:

1. Observe x; and let fora=1,..., K
1[m(x:) = a] we(m)
ZTI." Wt(ﬂ-)

pe(3) = (1 — Kpuin) 222 + P,

where pmin = '%'%l.
2. Draw a; from p:, and observe reward r:(a;).

3. Update for each w € I

n(a)) _
Wt_|_]_('ﬂ') _ {Wt(ﬂ') eEXp (Pmln Pf:{at]) if 'FI'(Xt) = a;

w; () otherwise

Exponential Weight Algorithm for Exploration and
Exploitation with Experts
(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire '10]

Initialization: Vr € I : wy(m) =1
Foreacht =1,2,...:
1. Observe x; and let fora=1,..., K
1{m(x:) = a] we(m)

p:(a) = (1 — KPmin)Zﬂ S wi(n)

+ Pmin;

where pmin = '%'%l.
2. Draw a; from p:, and observe reward r:(a;).

3. Update for each w € I

wes1(m) = we(m) exp (

Why Should This Work?

Why Should This Work?

i i N /i
WK (#r[zjﬂ"mﬁ"]LT J))
\ J
|

~ ZT: P.(0) +\/ln(N/é)/KTZT:\3,~(l‘)

~ G, ++/In(N /)6,
using a martingale

inequality
26

so we have

Proof Outline

G ++In(N/&)&, > G, wp. 21-6

Proof Outline

sowehave G, ++[In(N/8)6,>G w.p. >1-6

letting U= max(@i + \/ In(N/d)o i]

by looking at In(W,.,/W,)

wecanshow G, ,>(1-2VKInN/T)U~In(N/5)
2+ KTInN —~/KTIn(N/5)

so we have

Proof Outline

G ++In(N/&)&, > G, wp. 21-6

Gepar= (1-2/KInN/T)U ~In(N/9)
2+vKTInN —~/KTIn(N/5)

Proof Outline

sowehave G, ++[In(N/8)6,>G w.p. >1-6

Gepar= (1-2/KInN/T)U ~In(N/9)
2+KTInN —~/KTIn(N/5)

Exp4P beats epslion-greedy in practice [BLLRS '10] and performs negligibly
worse (on average) than Exp4.

30

One Problem...

* This algorithm requires keeping explicit weights on
the policies.
* Okay for polynomially many policies.
» Okay for some special cases.
* Not efficient in general.

* Want an efficient algorithm that would (for example)
work with an ERM Oracle

- epoch-greedy [Langford and Zhang ’07] has this
property.

Algorithm

Exp4 [ACFS *02]

(”)(T)l/z

e-greedy, epoch-
geedy [LZ ’07]

()(TZ/ 3)

Exp3.P[ACFS *02]
UCB [Auer *00]

O(T)l/z

Exp4.P [BLLRS ’10]

(’”)(T)l/z

H.P.? Context? Efficient?

Outline

Formally define the setting.

Show 1deas that fail.

G1ve a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

Infinitely Many Policies

What if we have an infinite number of policies?
Our bound of O(K In(N)T)!/2 becomes vacuous.

If we assume our policy class has a finite VC
dimension d, then we can tackle this problem.

Need 1.1.d. assumption. We will also assume k=2 to
illustrate the argument.

VC Dimension

* The VC dimension of a hypothesis class captures the
class’s expressive power.

» It is the cardinality of the largest set (in our case, of
contexts) the class can shatter.

 Shatter means to label in all possible configurations.

VE, an Algorithm for VC Sets

The VE algorithm [Beygelzimer, Langford, Li, R,
Schapire '10] :

Act uniformly at random for trounds.

This partitions our policies Il into equivalence classes
according to their labelings of the first texamples.

Pick one representative from each equivalence class to
make IT.

Run Exp4.P on IT.

Outline of Analysis of VE

Sauer’s lemma bounds the number of equivalence classes
to (et/d)d.

 Hence, using Exp4.P bounds, VE'’s regret to IT is =1+ O (Td
In(1))

We can show that the regret of IT to ITis = (T/1)(dInT)

* by looking at the probability of disagreeing on future data
given agreement for Tt steps.

1=~ (Td In 1/8)!/? achieves the optimal trade-off.
Gives O(Td)!/2 regret.

Still inefficient!

Outline

Formally define the setting.

Show 1deas that fail.

G1ve a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

When Do Efficient Algorithms Exist?

* One example 1s the linear payoff functions setting.

* In this setting, on each round, we observe a d
dimensional context (feature vector) for each arm.

- Equivalent to the contextual bandit setting.

* We assume there exists an unknown vector, whose
dot product with each arm feature gives the expected
regret of that arm.

 Similar to a realizability assumption.

Linear Payoffs

LinRel [Auer ’02] gives a polynomial time algorithm with O(Td)!/2
regret.

LinRel tries to estimate the reward of the current round by looking at
past rounds.

- LinRel decomposes the feature vector of the current round into a linear
combination of feature vectors seen on previous rounds.

+ Looks at previous rewards to compute coefficients.
+ Uses these estimates to compute reward estimates.

Matches the Q(Td)!/2? lower bound [Chu, Li, R, Schapire "10] up to log
factors.

LinUCB (a similar algorithm to LinRel) outperforms epsilon-greedy on
Yahoo! Homepage data. [Li, Chu, Langford, Schapire '10].

Outline

Formally define the setting.

Show 1deas that fail.

G1ve a high probability optimal algorithm.
Dealing with VC sets.

Linear Payoff Functions.

Slates.

Slates

Web Images Video Local Shopping Mews More

. Fum:h:m Furhar
.ﬁ. Computor 5 @ programmadie maching inal recenes mpul,
stores and manipuiates data, and provides autpet in a usedul
freal
wn.wikipadia org mikACompubar - 1875 - Cachad

eompulel A devics tha) computes, asgasally 8 programmalie slecironG machns
porforms high-spoed mathematical or logical cperatians or thad
WAL ANSWErS. com oo cicomputer-1 - 333k - Cached

_ or lurg-u bl.EIrIHI Cell =-u4u1.|-un: mrﬂfulh' rl-ud-l.nd Fn:| your solutions with Dell
lapbops, deskiops, MmOniam, prinlers ang compubir ALCAAE0MAE, ..,
winew dlleom

The IEEE Computer Sociaty

Paba Yalvon! v ofipage | Ml

Search Cpbanis

Largest selection of computer
madfication supplies and case

W.-Frn-mtl’i.l.r.um

Encuenima a Computadars gue
bizcas an M an Sensan
Arrarila LISA

v Baeeicniumarill alls, ¢ o

Erea Adverising
Fral ads frea, Fast ard sasy, Mo
ragistration,

 Peoop.com

Slates

* Oftentimes, we have to choose multiple actions
(without replacement).

 Different models:
» All slots equal.
» Positional factors.

» Interaction via “properties.”

Slates

For T time steps, K actions, s slots, N experts
choosing slates, we can get the following regret
bounds [Kale, R, Schapire "10]:

* O((sKTInN)!/?) for unordered slates

* O(s(KTInN)!/?) for ordered slates

Beats a straightforward reduction to Exp4.
Uses a variant of multiplicative weights.

Not efficient.

Summary

Described Exp4P, the first optimal high probability
algorithm for the contextual bandit problem.

Showed how to compete with a VC-Set.

Discussed an efficient linear-payoftf algorithm.

Introduced the slates problem.

Open Problems

* Main Open Problem: Find an efficient optimal
algorithm for the contextual bandits problem!

1.e. make the Exp4P algorithm efficient with an
ERM (Empirical Risk Minimization) oracle.
* Instead of updating weights explicitly for each policy,

feed rewards for actions into an oracle, which can
return a good policy.

» This oracle could be a standard efficient learning
algorithm.

Open Problems

Find good classes of policies for contextual bandit
problems. Linear policies seem to do well...

Get r1d of the realizability assumption in LinRel or
LinUCB for linear payoffs.

Deal with interaction in slates!

More experimental evaluation.

