
New Algorithms for 

Contextual Bandits

Lev Reyzin

Yahoo! Research, NY

1



Serving Content to Users

Query, IP address, browser properties, etc.

2



Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

3



Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

4



Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

5



Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

6



Serving Content to Users

Query, IP address, browser properties, etc.

result (ie. ad, news story)

click or not

7



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff  Functions.

• Slates.

8



The Setting

• T rounds, K possible actions, N policies π in Π (context 
 actions)

• for t=1 to T

• world commits to rewards r(t)=r1(t),r2(t),…,rK(t)

• world provides context xt

• learner’s policies recommend π1(xt), π2(xt), …, πN(xt)

• learner chooses action jt
• learner receives reward rjt

(t)

• want to compete with following the best policy in 
hindsight

9



Regret

• reward of  algorithm A:

• expected reward of  policy i:

• algorithm A’s regret:



GA T Ý  rjt
t 

t1

T





Gi T Ý   i xt  r t 
t1

T





max
i

Gi T GA (T)

10



Regret

• algorithm A’s regret:

• expected regret:

• high probability regret:



max
i

Gi T GA (T)



max
i

Gi T  E[GA (T)]



P[max
i

Gi T GA (T) ]

11



Some Observations

• This is harder than supervised learning.  In our 
setting we do not know the rewards of  actions not 
taken.

• This is not the traditional K-armed bandit setting.  In 
the traditional bandit setting there is no context (or 
experts).

• In the simpler K-armed bandit setting, there is no 
context.  We just compete with best arm in hindsight.

• The traditional setting is akin to showing everyone the 
same advertisement, article, etc.

12



Previous Results

Algorithm Regret High Prob? Context?

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes

ε-greedy, epoch-

geedy [LZ ’07]

Õ((K ln(N) 1/3)T2/3) Yes Yes

Exp3.P[ACFS ’02]

UCB [Auer ’00]

Õ(KT)1/2 Yes No



 KT  lower bound [ACFS ’02]

13



Our Result

Algorithm Regret High Prob? Context?

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes

ε-greedy, epoch-

geedy [LZ ’07]

Õ((K ln(N) 1/3)T2/3) Yes Yes

Exp3.P[ACFS ’02]

UCB [Auer ’00]

Õ(KT)1/2 Yes No

Exp4.P [BLLRS ’10] Õ(K ln(N/δ)T)1/2 Yes Yes



 KT  lower bound [ACFS ’02]



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff  Functions.

• Slates.

15



First Some Failed Approaches

• Bad idea 1: Maintain a set of  plausible hypotheses and 

randomize uniformly over their predicted actions.

• Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 

one which defects each round.  This incurs regret of  ~T/2.

• Bad idea 2: Maintain a set of  plausible hypotheses and 

randomize uniformly among the hypothesis.

• Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and 

only 1 hypothesis always predicts good arm, with probability > ½ it 

is never picked and algorithm incurs regret of  T.

16



First Some Failed Approaches

• Bad idea 1: Maintain a set of  plausible hypotheses and 

randomize uniformly over their predicted actions.

• Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 

one which defects each round.  This incurs regret of  ~T/2.

• Bad idea 2: Maintain a set of  plausible hypotheses and 

randomize uniformly among the hypothesis.

• Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and 

only 1 hypothesis always predicts good arm, with probability > ½ it 

is never picked and algorithm incurs regret of  T.

17



First Some Failed Approaches

• Bad idea 1: Maintain a set of  plausible hypotheses and 

randomize uniformly over their predicted actions.

• Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 

one which defects each round.  This incurs regret of  ~T/2.

• Bad idea 2: Maintain a set of  plausible hypotheses and 

randomize uniformly among the hypothesis.

• Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and 

only 1 hypothesis always predicts good arm, with probability > ½ it 

is never picked and algorithm incurs regret of  T.

18



First Some Failed Approaches

• Bad idea 1: Maintain a set of  plausible hypotheses and 

randomize uniformly over their predicted actions.

• Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 

one which defects each round.  This incurs regret of  ~T/2.

• Bad idea 2: Maintain a set of  plausible hypotheses and 

randomize uniformly among the hypothesis.

• Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and 

only 1 hypothesis always predicts good arm, with probability > ½ it 

is never picked and algorithm incurs regret of  T.

19



epsilon-greedy

• Rough idea of  ε-greedy (or ε-first): act randomly for 
ε rounds, then go with best (arm or expert).

• Even if  we know the number of  rounds in advance, 
epsilon-first won’t get us regret O(T)1/2, even in the 
non-contextual setting.

• Rough analysis: even for just 2 arms, we suffer 
regret: ε+(T-ε)/(ε1/2).

• ε= T2/3 is optimal.

• gives regret T2/3

20



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff  Functions.

• Slates.

21



Ideas Behind Exp4.P

• exponential weights

• keep a weight on each expert that drops exponentially in the 
expert’s (estimated) performance

• upper confidence bounds

• use an upper confidence bound on each expert’s estimated 
reward

• ensuring exploration

• make sure each action is taken with some minimum probability

• importance weighting

• give rare events more importance to keep estimates unbiased

22



23

(slide from Beygelzimer & 

Langford ICML 2010 

tutorial)



(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire ’10]

24



Why Should This Work?

25



Why Should This Work?



~ ˆ y i(t)
i

T

 ln(N /) /KT ˆ v i(t)
i

T





~ ˆ G i  ln(N /) ˆ i

≥ Gi w.p. ≥ 1-δ

using a martingale 

inequality
26



Proof  Outline



ˆ G i  ln(N /) ˆ i Gi w.p. 1-so we have

27



Proof  Outline



ˆ G i  ln(N /) ˆ i Gi w.p. 1-so we have

letting



ˆ U max
i

ˆ G i  ln(N /) ˆ i 

by looking at 



ln(WT 1 /W1)

we can show



GExp4.P  (12 K ln N /T ) ˆ U  ln(N /)

2 KT ln N  KT ln(N /)

28



Proof  Outline



ˆ G i  ln(N /) ˆ i Gi w.p. 1-so we have

and



GExp4.P  (12 K ln N /T ) ˆ U  ln(N /)

2 KT ln N  KT ln(N /)

29



Proof  Outline



ˆ G i  ln(N /) ˆ i Gi w.p. 1-so we have

and



GExp4.P  (12 K ln N /T ) ˆ U  ln(N /)

2 KT ln N  KT ln(N /)

implies



GExp4.PGmax O KT ln(N /)  w.p. 1

Exp4P beats epslion-greedy in practice [BLLRS ’10] and performs negligibly 

worse (on average) than Exp4.

30



One Problem…

• This algorithm requires keeping explicit weights on 

the policies.

• Okay for polynomially many policies.

• Okay for some special cases.

• Not efficient in general.

• Want an efficient algorithm that would (for example) 

work with an ERM Oracle

• epoch-greedy [Langford and Zhang ’07] has this 

property.

31



Results

Algorithm Regret H.P.? Context? Efficient?

Exp4 [ACFS ’02] Õ(T)1/2 No Yes No

ε-greedy, epoch-

geedy [LZ ’07]

Õ(T2/3) Yes Yes Yes

Exp3.P[ACFS ’02]

UCB [Auer ’00]

Õ(T)1/2 Yes No Yes

Exp4.P [BLLRS ’10] Õ(T)1/2 Yes Yes No

32



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff  Functions.

• Slates.

33



Infinitely Many Policies

• What if  we have an infinite number of  policies?

• Our bound of  Õ(K ln(N)T)1/2 becomes vacuous.

• If  we assume our policy class has a finite VC 

dimension d, then we can tackle this problem.

• Need i.i.d. assumption. We will also assume k=2 to 

illustrate the argument.

34



VC Dimension

• The VC dimension of  a hypothesis class captures the 

class’s expressive power.

• It is the cardinality of  the largest set (in our case, of  

contexts) the class can shatter.

• Shatter means to label in all possible configurations.

35



VE, an Algorithm for VC Sets

The VE algorithm [Beygelzimer, Langford, Li, R,
Schapire ’10] :

• Act uniformly at random for τrounds.

• This partitions our policies Π into  equivalence classes 
according to their labelings of  the first τexamples.

• Pick one representative from each equivalence class to 
make Π’.

• Run Exp4.P on Π’.

36



Outline of  Analysis of  VE

• Sauer’s lemma bounds the number of  equivalence classes 
to (eτ/d)d. 

• Hence, using Exp4.P bounds, VE’s regret to Π’ is ≈τ+ O (Td 
ln(τ))

• We can show that the regret of  Π’ to Π is ≈ (T/τ)(dlnT)
• by looking at the probability of  disagreeing on future data 

given agreement for τ steps. 

• τ≈ (Td ln 1/δ)1/2 achieves the optimal trade-off.

• Gives Õ(Td)1/2 regret.

• Still inefficient!

37



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff Functions.

• Slates.

38



When Do Efficient Algorithms Exist?

• One example is the linear payoff  functions setting.

• In this setting, on each round, we observe a d

dimensional context (feature vector) for each arm.

• Equivalent to the contextual bandit setting.

• We assume there exists an unknown vector, whose 

dot product with each arm feature gives the expected 

regret of  that arm.

• Similar to a realizability assumption.

39



Linear Payoffs

• LinRel [Auer ’02] gives a polynomial time algorithm with Õ(Td)1/2

regret.

• LinRel tries to estimate the reward of  the current round by looking at 
past rounds.

• LinRel decomposes the feature vector of  the current round into a linear 
combination of  feature vectors seen on previous rounds.

• Looks at previous rewards to compute coefficients.

• Uses these estimates to compute reward estimates.

• Matches the Ω(Td)1/2 lower bound [Chu, Li, R, Schapire ’10] up to log 
factors.

• LinUCB (a similar algorithm to LinRel) outperforms epsilon-greedy on 
Yahoo! Homepage data. [Li, Chu, Langford, Schapire ’10].

40



Outline

• Formally define the setting.

• Show ideas that fail.

• Give a high probability optimal algorithm.

• Dealing with VC sets.

• Linear Payoff  Functions.

• Slates.

41



Slates

42



Slates

• Oftentimes, we have to choose multiple actions 

(without replacement).

• Different models:

• All slots equal.

• Positional factors.

• Interaction via “properties.”

43



Slates

• For T time steps, K actions, s slots, N experts 

choosing slates, we can get the following regret 

bounds [Kale, R, Schapire ’10]:

• O((sKTlnN)1/2) for unordered slates

• O(s(KTlnN)1/2) for ordered slates

• Beats a straightforward reduction to Exp4.

• Uses a variant of  multiplicative weights.

• Not efficient.

44



Summary

• Described Exp4P, the first optimal high probability 
algorithm for the contextual bandit problem.

• Showed how to compete with a VC-Set.

• Discussed an efficient linear-payoff  algorithm.

• Introduced the slates problem.

45



Open Problems

• Main Open Problem: Find an efficient optimal 

algorithm for the contextual bandits problem!

• i.e. make the Exp4P algorithm efficient with an 

ERM (Empirical Risk Minimization) oracle.

• Instead of  updating weights explicitly for each policy, 

feed rewards for actions into an oracle, which can 

return a good policy. 

• This oracle could be a standard efficient learning 

algorithm.

46



Open Problems

• Find good classes of  policies for contextual bandit 

problems.  Linear policies seem to do well…

• Get rid of  the realizability assumption in LinRel or 

LinUCB for linear payoffs.

• Deal with interaction in slates!

• More experimental evaluation.

47


