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Outline

¢ The setting and some background

¢ Show 1deas that fail

¢ Give a high probability optimal algorithm
¢ Dealing with VC sets

¢ An efficient algorithm
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Contextual Bandits

Auer-CesaBianchi-Freund-Schapire '02]
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The Setting

¢ T rounds, K possible actions, N policies © in T (context = actions)

6 fort=1toT
world commits to rewards r(t)=r,(t),r,(t),...,rx(t) (adversarial or 11d)
world provides context x,
learner’s policies recommend m,(x,), Ty(Xy), .., Tn(X)
learner chooses action j,
learner receives reward rjt(t)

¢ want to compete with following the best policy in hindsight

23



T
¢ reward of algorithm A: GA (T) = E v (t )

t=1

T
¢ expected reward of policy i: Gl.(T) = Eni(xf) ' I’(t)

t=1

¢ algorithm A’s regret:  mMax Gi (T) -G A (T)
]

24



¢ algorithm A’s regret:  111dX G ; (T) -G A (T)

¢ bound on expected regret: 1MdX Gi (T) — E[GA (T)]<e

¢ high probability bound: P [maX GZ(T) -G A (T) > 8] <0

l

25



€ Harder than supervised learning:

In the bandit setting we do not know the rewards of
actions not taken.

€ Many applications
Ad auctions, medicine, finance, ...

@ Exploration/Exploitation
Can exploit expert/arm you’ve learned to be good.
Can explore expert/arm you’re not sure about.

26



Some Barriers

Q(KT)"? (non-contextual) and ~ Q(TK In N)"? (contextual) are
known lower bounds [Auer et al. ’02] on regret, even 1n the
stochastic case.

Any algorithm achieving regret O(KT polylog N)'2 is said
to be optimal.

€ -greedy algorithms that first explore (act randomly) and then
exploit (follow the best policy) cannot be optimal. Any optimal
algorithm must be adaptive.

27



Two Types of Approaches

UCB
[Auer '02]

-
|
v
|

-
T

Algorithm: at every time step

1) pull arm with highest UCB

2) update confidence bound of the
arm pulled.

-——

EXP3 Exponential Weights

[Littlestone-Warmuth ’94]
[Auer et al. '02]

Algorithm: at every time step

1) sample from distribution defined
by weights (mixed w/ uniform)

2) update weights “exponentially” 2



UCB vs EXP3

A Comparison

UCB EXP3 & Friends

[Auer ’02] [Auer-CesaBianchi-Freund-Schapire ’02]
& Pros & Pros
Optimal for the stochastic

Optimal for both the adversarial

setting. and stochastic settings.
Succeeds with high probability. Can be made to work in the
contextual setting
& Cons
¢ Does not work in the & Cons

adversarial setting. # Does not succeed with high

¢ Is not optimal in the contextual probability 1n the contextual
setting. setting (only in expectation).

29



Expd [ACFS’02]  O(KT In(N))"/2

g -greedy, epoch- O((K In(N) 1/3)T2/3) Yes Yes
geedy [LZ ’07]
Exp3.P[ACFS ’02] O(KT)!/2 Yes No

UCB [Auer '00]

Q(\/KT) lower bound [ACFS '02]
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Expd [ACFS’02]  O(KT In(N))"/2

g -greedy, epoch- O((K In(N) 1/3)T2/3) Yes Yes
geedy [LZ ’07]
Exp3.P[ACFS ’02] O(KT)!/2 Yes No

UCB [Auer ’OO]

lower bound [ACFS ’02]
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EXP4P

|Beygelzimer-Langford-Li-R-Schapire ’11]

Main Theorem [Beygelzimer-Langford-Li-R-Schapire '11]: For
any O >0, with probability at least 1- & , EXP4P has regret at most
O(KT In (N/3))"? in the adversarial contextual bandit setting.

EXP4P combines the advantages of Exponential Weights and UCB.
optimal for both the stochastic and adversarial settings
works for the contextual case (and also the non-contextual case)
a high probability result

32



Outline

¢ The setting and some background

¢ Show ideas that fail

¢ Give a high probability optimal algorithm
¢ Dealing with VC sets

¢ An efficient algorithm

é Slates
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Some Failed Approaches

¢ Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.
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Some Failed Approaches

¢ Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

Adversary has two actions, one always paying off 1 and the other O.
Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.
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Some Failed Approaches

¢ Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

Adversary has two actions, one always paying off 1 and the other O.
Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

¢ Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.
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Some Failed Approaches

¢ Bad idea 1: Maintain a set of plausible hypotheses and
randomize uniformly over their predicted actions.

Adversary has two actions, one always paying off 1 and the other O.

Hypothesis generally agree on correct action, except for a different
one which defects each round. This incurs regret of ~T/2.

¢ Bad idea 2: Maintain a set of plausible hypotheses and
randomize uniformly among the hypothesis.

Adversary has two actions, one always paying off 1 and the other O.

If all but one of > 2T hypothesis always predict wrong arm, and

only 1 hypothesis always predicts good arm, with probability > %2 it
1s never picked and algorithm incurs regret of T.
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epsilon-greedy

Rough 1dea of € -greedy (or € -first): act randomly for &
rounds, then go with best (arm or expert).

Even 1f we know the number of rounds 1n advance, & -first
won't get us regret O(T)!/?, even in the non-contextual setting.

Rough analysis: even for just 2 arms, we suffer regret of
€ +H(T-g)/(€1?).

€ =~ T?/3 is optimal tradeoff.

gives regret ~ T?/3

38
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¢ The setting and some background

¢ Show 1deas that fail

¢ Give a high probability optimal algorithm
¢ Dealing with VC sets

¢ An efficient algorithm

é Slates
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Ideas Behind Exp4.P

(all appeared in previous algorithms)

exponential weights

keep a weight on each expert that drops exponentially in the
expert’s (estimated) performance

upper confidence bounds

use an upper confidence bound on each expert’s estimated
reward

ensuring exploration
make sure each action 1s taken with some minimum probability

importance weighting
give rare events more importance to keep estimates unbiased

40



Exponential Weight Algorithm for Exploration and
Exploitation with Experts

(EXP4) [Auer et al. '95] (slide from Beygelzimer &
Langford ICML 2010
Initialization: Vrr € I : wi(7m) =1 tutorial)

Foreacht =1,2,...:

1. Observe x; and let fora=1,..., K

)E,r L[ (xe) = a] wi(7)

pt(a) - (1 - Kpmin Z Wt('"') + Pmin;
where pmin = '}gl.

2. Draw a; from p:, and observe reward r:(a:).

3. Update for each 7 € I1

woy(m) = we () exp (pm;n ;‘t((‘:i))) if m(x:) = a;
t4+ =
w; () otherwise

41



Exponential Weight Algorithm for Exploration and
Exploitation with Experts
(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire "10]

Initialization: YV € I : we(m) =1
Foreacht =1,2,...:
1. Observe x; and let fora=1,..., K

p(a) = (1 — Kppip) 22 -Lm0t) = 2l wel)

In |l
where pmin = KTI.

2. Draw a; from p:, and observe reward r:(a;). 2 A
¢ from pr (@) 5.0 )
3. Update for each 7 € I J J

— wolm) exo | Pmin o) — 2 re(at) 1 InN/é&
) = ) p< 2 (1[ %) t]Pt(at) p:(m(x)) KT ))

42



The estimated reward of an expert is @G; = E 7i ().

T t=1
1
We also define 6; = VKT + v; (t
7RT 2
Lemma Pr [32’ > Gi + VIn(N/8)é } <9

Proof uses a new Freedman-style martingale inequality.

43



U = max (Ci + ;- \/111(.\',"(5)).

[KIn N
GExp4.P > (1 — 2 \’ T

—VKTInN —In(N/é).

U —2y/KTIn(N/5)

Lemma

Proof tracks the weights of experts, similar to Exp4.

Lemmas 1 and 2 imply :  Gexpap 2 Guax — 64/ KT In(N/4).

44



EXP4P

|Beygelzimer-Langford-Li-R-Schapire ’11]

Main Theorem [Beygelzimer-Langford-Li-R-Schapire '11]: For
any O >0, with probability at least 1- & , EXP4P has regret at most
O(KT In (N/3))"? in the adversarial contextual bandit setting.

key insights (on top of UCB/ EXP)

1) exponential weights and upper t=1
confidence bounds “stack”

2) generalized Bernstein’s t=2
inequality for martingales




Algorithm Regret High Prob? Context? Efficient?

Exp4 O(T1/2) No Yes No
[ACFS "02]
epoch-geedy  O(T2/3) Yes Yes Yes
[LZ°07]
Exp3.P/UCB O(T!?) Yes No Yes
[ACFS "02][A *00]
Exp4.P O(TV?2) Yes Yes No

[BLLRS ’10]
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EXP4P Applied to Yahoo!

' Make Y! your homepage

Web Images Video Local Apps More

YAHOO < I | Search

Monday, February 27, 2012 gi:_;nl-grt - :1‘: :Ic:w email
YAHOO! SITES  %* TRENDING NOW
(=] Autos 01 Lucy Lawless 06 Jonah Hill
@ Dating 02 Amanda Seyfried 07 Oscars
Finance (Dow §) f 03 Kim Dotcom 08 Gay marriage
(o] Flickr ; ' : 04 Jessica Chastain 09 Stock market
m —— f & : 05 Oscar winners 10 Smartphones
© 2012 Academy Awards: Go to Video os B>

g Horoscopes

m Jobs

Mail
Messenger
Movies

My Yahoo!
(=) News
omg!

| Real Estate
@ Screen
Shine

Angelina Jolie mocked for flashing thigh

The actress finds herself the butt of an Oscar . Her reaction to joke
winner's joke after striking a revealing pose i@ Dynamic red carpet duos

Sprint

onstage. Watch » « Cooper sports a 'stache NOVV,
truly Unlimited
.b d X = ) 5 data for your
— '“" - iPhone®
LR e G Students shot at Home remed»es How to beat the Oscar best and
after thigh stunt high school that really work ‘claw’ game worst looks
1-50f30 < 1>
& iPhone
» " . Who pays to raise campaign money? Restrictions apply.
" b\ You, as a taxpayer, split the cost with the Obama
C’) ; campaign when the president travels to fundraisers. Truly Unlimited Data - Ad Feedback
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Experiments on Yahoo! Data

€ We chose a policy class for which we could efficiently
keep track of the weights.

Created 5 clusters, with users (at each time step)
getting features based on their distances to clusters.

Policies mapped clusters to article (action) choices.

Ran on personalized news article recommendations
for Yahoo! front page.

€ We used a learning bucket on which we ran the
algorithms and a deployment bucket on which we ran

the greedy (best) learned policy.

48



Experimental Results

Reported estimated (normalized) click-through rates on
front page news. Over 41 M user visits. 253 total articles. 21
candidate articles per visit.

| EXP4P___EXP4

Learning 1.0525 1.0988 1.3829
eCTR
Deployment 1.6512 1.5309 1.4290

eCTR
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Experimental Results

Reported estimated (normalized) click-through rates on
front page news. Over 41 M user visits. 253 total articles. 21
candidate articles per visit.

| EXP4P___EXP4

Learning 1.0525 1.0988 1.3829
eCTR

Deployment 1.6512 1.5309 1.4290
eCTR

Why does this work 1n practice?
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¢ The setting and some background

¢ Show 1deas that fail

¢ Give a high probability optimal algorithm
¢ Dealing with VC sets

¢ An efficient algorithm
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Infinitely Many Policies

¢ What 1f we have an infinite number of policies?
¢ Our bound of O(K In(N)T)!’2 becomes vacuous.

¢ If we assume our policy class has a finite VC dimension
d, then we can tackle this problem.

¢ Need 1.1.d. assumption. We will also assume k=2 to
illustrate the argument.

52



VC Dimension

¢ The VC dimension of a hypothesis class captures the
class’s expressive power.

¢ It 1s the cardinality of the largest set (in our case, of
contexts) the class can shatter.

Shatter means to label in all possible configurations.

53



VE, an Algorithm for VC Sets

The VE algorithm:
¢ Act uniformly at random for T rounds.

¢ This partitions our policies [T into equivalence classes according
to their labelings of the first 7 examples.

)
°

¢ Pick one representative from each equivalence class to make TI

¢ Run Exp4.Pon IT".

54



Outline of Analysis of VE

¢ Sauer’s lemma bounds the number of equivalence classes to
(e T /d)d.

Hence, using Exp4.P bounds, VE’s regret to 11" is
~T+ O (TdIn(7))

¢ We can show that the regret of 11 to IT is = (T/ 7 )(d InT)

by looking at the probability of disagreeing on future
data given agreement for T steps.

¢ 7= (TdIn 1/ &)Y2 achieves the optimal trade-off.
¢ Gives O(Td)!/2 regret.

¢ Still inefficient!
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Hope for an Efficient Algorithm?

[Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang '11]

For EXP4P, the dependence on N 1n the regret 1s logarithmic.

this suggests

We could compete with a large, even super-polynomial number
of policies! (e.g. N=K'%0 becomes 10 log"? K in the regret)

however

All known contextual bandit algorithms explicitly “keep track”
of the N policies. Even worse, just reading in the N would take
too long for large N.
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Idea: Use Supervised Learning

¢ “Competing” with a large (even exponentially large) set of
policies i1s commonplace in supervised learning.

Targets: e.g. linear thresholds, CNF, decision trees (in practice only)
Methods: e.g. boosting, SVM, neural networks, gradient descent

¢ The recommendations of the policies don’t need to be explicitly
read 1in when the policy class has structure!

A good policy
in IT

Supervised
Learning
Oracle

idea originates with
[Langford-Zhang ’07]

58
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Idea: Use Supervised Learning

¢ “Competing” with a large (even exponentially large) set of
policies i1s commonplace in supervised learning.

Targets: e.g. linear thresholds, CNF, decision trees (in practice only)
Methods: e.g. boosting, SVM, neural networks, gradient descent

¢ The recommendations of the policies don’t need to be explicitly
read 1in when the policy class has structure!

A good policy
in IT

Warning;
NP-Hard in
General

idea originates with
[Langford-Zhang ’07]
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Back to Contextual Bandits

context: Xy X5 X3
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Randomized-UCB

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any 0 >0, w.p. at least 1- 0 , given access to a supervised learning oracle,
Randomized-UCB has regret at most O((KT In (NT/3))"2+K In(NK/d)) in the

stochastic contextual bandit setting and runs in time poly(K,T, In N).
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Randomized-UCB

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any 0 >0, w.p. at least 1- 0 , given access to a supervised learning oracle,
Randomized-UCB has regret at most O((KT In (NT/3))"2+K In(NK/d)) in the

stochastic contextual bandit setting and runs in time poly(K,T, In N).

if arms are chosen among only good policies s.t. all have variance < approx 2K, we win
can prove this exists via a minimax theorem

1

this condition can be softened to occasionally allow choosing of bad policies
via “randomized” upper confidence bounds

1

creates a problem of how to choose arms as to satisfy the constraints
expressed as convex optimization problem

1

solvable by ellipsoid algorithm
can implement a separation oracle with the supervised learning oracle
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Randomized-UCB

Main Theorem [Dudik-Hs ¥ 7c 770 omnatziakis-Langford-R-Zhang ’11]:
For any 0 >0, w.p. at’ 2 supervised learning oracle,
Randomized-UCP B))V2+K In(NK/Q)) in the

stochastic ¢ ne poly(K, T, In N).
if arms are chc NOt pl‘aCtlcal > < approx 2K, we win

to implement!
(yet)

creates a >fy the constraints
Jroblem

this conditi ~of bad policies

solvable by cuipsoia algorithm
can implement a separation oracle with the supervised learning oracle
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"‘ Bandit Slate Problems

35
2y

| [Kale-R-Schapire ’11]
Ipod |

Huge Selection of iPodAccessories.
AllWholesale Price &Free Shipping!
iPodGadgets.Miniinthebox.com

Apple iPod Touch: $22.28

Get a new Apple iPod at 92% off. Problem: Instead of selecting one

Limit 1 per customer!

SaveSave.com arm, we need to select s > 1, arms

(possibly ranked). The motivation

1s web ads where a search engine

Low Prices On iPods

Save on All Colors and Styles of

Shuffle, Nano, Mini & Video iPods! | shows multiple ads at once.
www.NexTag.com/iPods
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Slates Setting

¢ On round t algorithm selects a sate S, of s arms
Unordered or Ordered
No context or Contextual

¢ Algorithm sees r(t) for all j in S.

r.(1)

jes /

¢ Algorithm gets reward E

¢ Obvious solution 1s to reduce to the regular bandit problem,
but we can do much better.
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Algorithm Idea
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Algorithm Idea

OO | | @, o ©

L @] o [

X

multiplicative update

pi(t+1) = pi(t) exp(—n¥i(t))/Z (1)
OO® 72



Algonthm Idea

OO | | @, o O

X

/

relative entropy projection

RE(p || q) = >_; ps In(3}).
Also “Component Hedge,”

independently by Koolen et al. ’10.
OO® 73
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Slate Results

Unordered Slates  Ordered, with
Positional Factors

No Policies O(sKT)/2* O(s(KT)!72)

N Policies O(sKT In N)!/2 O(s(KT In N)!/2)

*Independently obtained by Uchiya et al. ’10, using different methods.
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Discussion

The contextual bandit setting captures many interesting real-world
problems.

We presented the first optimal, high-probability, contextual
algorithm.

We showed how one could possibly make it efficient.
Not fully there yet...

We discussed slates — a more real-world setting.
How to make those efficient?
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