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The Setting 

S  T rounds, K possible actions, N policies π in Π (context à actions) 

S  for t=1 to T 
S  world commits to rewards r(t)=r1(t),r2(t),…,rK(t) (adversarial or iid) 

S  world provides context xt 

S  learner’s policies recommend π1(xt), π2(xt), …, πN(xt) 

S  learner chooses action jt  

S  learner receives reward rjt
(t) 

S  want to compete with following the best policy in hindsight 
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Regret 

S  reward of  algorithm A: 

S  expected reward of  policy i: 

S  algorithm A’s regret: 

€ 

GA T( ) ˙ = rjt t( )
t=1

T

∑

€ 

Gi T( ) ˙ = π i xt( ) ⋅ r t( )
t=1

T

∑

€ 

max
i
Gi T( ) −GA (T)
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Regret 

S  algorithm A’s regret: 

S  bound on expected regret: 

S  high probability bound: 

€ 

max
i
Gi T( ) −GA (T)

max
i
Gi T( )−E[GA (T )]< ε

€ 

P[max
i

Gi T( ) −GA (T) > ε] ≤ δ
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u Harder than supervised learning: 
u In the bandit setting we do not know the rewards of  

actions not taken. 

u Many applications 

u Ad auctions, medicine, finance, … 

u Exploration/Exploitation 
u Can exploit expert/arm you’ve learned to be good. 

u Can explore expert/arm you’re not sure about. 
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Some Barriers 

Ω(kT)1/2 (non-contextual) and ~ Ω(TK ln N)1/2  (contextual) are 
known lower bounds [Auer et al. ’02] on regret, even in the 
stochastic case.   

Any algorithm achieving regret Õ(KT polylog N)1/2 is said 
to be optimal. 

ε-greedy algorithms that first explore (act randomly) and then 
exploit (follow the best policy) cannot be optimal.  Any optimal 
algorithm must be adaptive. 
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Two Types of  Approaches 

UCB  
[Auer ’02] 

EXP3 Exponential Weights 
[Littlestone-Warmuth ’94] 

[Auer et al. ’02] 
1 

0.5 

0 t=1 

t=2 

t=3 

… 

Algorithm: at every time step 
1)  pull arm with highest UCB 
2)  update confidence bound of  the 

arm pulled. 

Algorithm: at every time step 
1)  sample from distribution defined 

by weights (mixed w/ uniform) 
2)  update weights “exponentially” 
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UCB vs EXP3 
A Comparison 

UCB 
[Auer ’02] 

u Pros 
u  Optimal for the stochastic 

setting.  
u  Succeeds with high probability. 

u Cons 
u  Does not work in the 

adversarial setting. 
u  Is not optimal in the contextual 

setting. 

EXP3 & Friends 
[Auer-CesaBianchi-Freund-Schapire ’02] 

u Pros 
u  Optimal for both the adversarial 

and stochastic settings. 
u  Can be made to work in the 

contextual setting 

u Cons 
u  Does not succeed with high 

probability in the contextual 
setting (only in expectation). 
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Algorithm Regret High Prob? Context? 

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes 

ε-greedy, epoch-
geedy [LZ ’07] 

Õ((K ln(N) 1/3)T2/3) Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Õ(KT)1/2  Yes No 

€ 

Ω KT( ) lower bound [ACFS ’02] 
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Algorithm Regret High Prob? Context? 

Exp4 [ACFS ’02] Õ(KT ln(N))1/2 No Yes 

ε-greedy, epoch-
geedy [LZ ’07] 

Õ((K ln(N) 1/3)T2/3) Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Õ(KT)1/2  Yes No 

Exp4.P [BLLRS ’10] Õ(K ln(N/δ)T)1/2  Yes Yes 

€ 

Ω KT( ) lower bound [ACFS ’02] 



EXP4P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

EXP4P combines the advantages of  Exponential Weights and UCB. 
optimal for both the stochastic and adversarial settings 

works for the contextual case (and also the non-contextual case) 
a high probability result 

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]:  For 
any δ>0, with probability at least 1-δ, EXP4P has regret at most 

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting. 

32 



Outline 

S  The setting and some background 

S  Show ideas that fail 

S  Give a high probability optimal algorithm 

S  Dealing with VC sets 

S  An efficient algorithm 

S  Slates 

33 



34 

S  Bad idea 1: Maintain a set of  plausible hypotheses and 
randomize uniformly over their predicted actions. 
S  Adversary has two actions, one always paying off  1 and the other 0. 

Hypothesis generally agree on correct action, except for a different 
one which defects each round.  This incurs regret of  ~T/2. 

S  Bad idea 2: Maintain a set of  plausible hypotheses and 
randomize uniformly among the hypothesis. 
S  Adversary has two actions, one always paying off  1 and the other 0. 

If  all but one of  > 2T hypothesis always predict wrong arm, and 
only 1 hypothesis always predicts good arm, with probability > ½ it 
is never picked and algorithm incurs regret of  T. 

Some Failed Approaches 
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epsilon-greedy 

S  Rough idea of  ε-greedy (or ε-first): act randomly for ε 
rounds, then go with best (arm or expert). 

S  Even if  we know the number of  rounds in advance, ε-first 
won’t get us regret O(T)1/2, even in the non-contextual setting. 

S  Rough analysis: even for just 2 arms, we suffer regret of                
ε+(T-ε)/(ε1/2). 
S  ε≈ T2/3  is optimal tradeoff. 
S  gives regret ≈ T2/3 
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Ideas Behind Exp4.P 
(all appeared in previous algorithms) 

S  exponential weights 
S  keep a weight on each expert that drops exponentially in the 

expert’s (estimated) performance 

S  upper confidence bounds 
S  use an upper confidence bound on each expert’s estimated 

reward 

S  ensuring exploration 
S  make sure each action is taken with some minimum probability 

S  importance weighting 
S  give rare events more importance to keep estimates unbiased 
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(slide from Beygelzimer & 
Langford ICML 2010 
tutorial) 



(Exp4.P) [Beygelzimer, Langford, Li, R, Schapire ’10] 
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Lemma 1 
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Lemma 2 



EXP4P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]:  For 
any δ>0, with probability at least 1-δ, EXP4P has regret at most 

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting. 

key insights (on top of  UCB/ EXP) 
1)  exponential weights and upper 

confidence bounds “stack” 
2)  generalized Bernstein’s 

inequality for martingales 

t=1 

t=2 

t=3 
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Algorithm Regret High Prob? Context? Efficient? 

Exp4  
[ACFS ’02] 

Õ(T1/2) No Yes No 

epoch-geedy 
[LZ ’07] 

Õ(T2/3) Yes Yes Yes 

Exp3.P/UCB 
[ACFS ’02][A ’00] 

Õ(T1/2)  Yes No Yes 

Exp4.P  
[BLLRS ’10] 

Õ(T1/2)  Yes Yes  No 

Efficiency 
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EXP4P Applied to Yahoo! 
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u We chose a policy class for which we could efficiently 
keep track of  the weights.  

u Created 5 clusters, with users (at each time step) 
getting features based on their distances to clusters.  

u Policies mapped clusters to article (action) choices.  

u Ran on personalized news article recommendations 
for Yahoo! front page.  

u We used a learning bucket on which we ran the 
algorithms and a deployment bucket on which we ran 
the greedy (best) learned policy.  

Experiments on Yahoo! Data 
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Reported estimated (normalized) click-through rates on 
front page news. Over 41M user visits.  253 total articles. 21 
candidate articles per visit. 

EXP4P EXP4 ε-greedy 

Learning 
eCTR 

1.0525 1.0988 1.3829 

Deployment 
eCTR 

1.6512 1.5309 1.4290 

Experimental Results 
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Why does this work in practice? 



Outline 

S  The setting and some background 

S  Show ideas that fail 

S  Give a high probability optimal algorithm 

S  Dealing with VC sets 

S  An efficient algorithm 

S  Slates 

51 



Infinitely Many Policies 

S  What if  we have an infinite number of  policies? 

S  Our bound of  Õ(K ln(N)T)1/2 becomes vacuous. 

S  If  we assume our policy class has a finite VC dimension 
d, then we can tackle this problem. 

S  Need i.i.d. assumption. We will also assume k=2 to 
illustrate the argument. 
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VC Dimension 

S  The VC dimension of  a hypothesis class captures the 
class’s expressive power. 

S  It is the cardinality of  the largest set (in our case, of  
contexts) the class can shatter. 

S  Shatter means to label in all possible configurations. 
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VE, an Algorithm for VC Sets 

The VE algorithm: 

S  Act uniformly at random for τ rounds. 

S  This partitions our policies Π into equivalence classes according 
to their labelings of  the first τ examples. 

S  Pick one representative from each equivalence class to make Π’. 

S  Run Exp4.P on Π’. 

54 



55 

S  Sauer’s lemma bounds the number of  equivalence classes to 
(eτ/d)d.  

S  Hence, using Exp4.P bounds, VE’s regret to Π’ is  

       ≈τ+ O (Td ln(τ)) 

S  We can show that the regret of  Π’ to Π is ≈ (T/τ)(d lnT) 

S  by looking at the probability of  disagreeing on future 
data given agreement for τ steps.  

S  τ≈ (Td ln 1/δ)1/2 achieves the optimal trade-off. 

S  Gives Õ(Td)1/2 regret. 

S  Still inefficient! 

Outline of  Analysis of  VE 



Outline 

S  The setting and some background 

S  Show ideas that fail 

S  Give a high probability optimal algorithm 

S  Dealing with VC sets 

S  An efficient algorithm 

S  Slates 

56 



Hope for an Efficient Algorithm? 
[Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11] 

For EXP4P, the dependence on N in the regret is logarithmic. 
 

this suggests 
 

We could compete with a large, even super-polynomial number 
of  policies! (e.g. N=K100  becomes 10 log1/2 K in the regret) 

 
however 

 
All known contextual bandit algorithms explicitly “keep track” 
of  the N policies.  Even worse, just reading in the N would take 

too long for large N. 
57 



Idea: Use Supervised Learning 

S  “Competing” with a large (even exponentially large) set of  
policies is commonplace in supervised learning. 
S  Targets: e.g. linear thresholds, CNF, decision trees (in practice only) 

S  Methods: e.g. boosting, SVM, neural networks, gradient descent 

S  The recommendations of  the policies don’t need to be explicitly 
read in when the policy class has structure! 

x1 
x2 

x3 x4 
x5 

x6 

… 

Supervised 
Learning 

Oracle 
Policy class Π 

A good policy 
in Π 

idea originates with 
[Langford-Zhang ’07] 
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Randomized-UCB 

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a supervised learning oracle, 
Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/δ))  in the 

stochastic contextual bandit setting and runs in time poly(K,T, ln N). 
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Randomized-UCB 

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a supervised learning oracle, 
Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/δ))  in the 

stochastic contextual bandit setting and runs in time poly(K,T, ln N). 

if  arms are chosen among only good policies s.t. all have variance < approx 2K, we win 
can prove this exists via a minimax theorem 

this condition can be softened to occasionally allow choosing of  bad policies 
via “randomized” upper confidence bounds 

creates a problem of  how to choose arms as to satisfy the constraints 
expressed as convex optimization problem 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 
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Not practical  
to implement! 

(yet) 
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Bandit Slate Problems 
[Kale-R-Schapire ’11] 

Problem: Instead of  selecting one 
arm, we need to select s ≥ 1, arms 
(possibly ranked).  The motivation 
is web ads where a search engine 
shows multiple ads at once. 
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Slates Setting 

S  On round t algorithm selects a sate St of  s arms 
S  Unordered or Ordered 

S  No context or Contextual 

S  Algorithm sees rj(t) for all j in S. 

S  Algorithm gets reward  

S  Obvious solution is to reduce to the regular bandit problem, 
but we can do much better. 

68 

rj (t)j∈S∑
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Algorithm Idea 
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Algorithm Idea 
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Algorithm Idea 
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Algorithm Idea 

multiplicative update 
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Algorithm Idea 

relative entropy projection 

Also “Component Hedge,”  
independently by Koolen et al. ’10. 
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Algorithm Idea 
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Unordered Slates Ordered, with 
Positional Factors 

No Policies Õ(sKT)1/2 * Õ(s(KT)1/2) 

N Policies Õ(sKT ln N)1/2 Õ(s(KT ln N)1/2) 

Slate Results 

*Independently obtained by Uchiya et al. ’10, using different methods. 



Discussion 

S  The contextual bandit setting captures many interesting real-world 
problems. 

S  We presented the first optimal, high-probability, contextual 
algorithm. 

S  We showed how one could possibly make it efficient. 
S  Not fully there yet… 

S  We discussed slates – a more real-world setting. 
S  How to make those efficient? 
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