
LEARNING LARGE-ALPHABET

AND ANALOG CIRCUITS WITH

VALUE INJECTION QUERIES

Dana Angluin1

James Aspnes1

Jiang Chen2

Lev Reyzin1

1 Department of Computer Science, Yale University
2 Center for Computational Learning Systems, Columbia University

1

THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden

Circuit.

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:

? ? ? ? ?

output =

A B C D E

1 0





01

A

CD

B

E

Hidden From the Learner

1

01

1

11

2

THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are
behaviorally equivalent if for
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*,
find a circuit C behaviorally
equivalent to C* by making
value-injection queries.

AND OR

AND

G1

I1

G2

I2V

AND OR

AND

G1

I1

G2

I2V

[ACCW ’06]
3

MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene

regulatory

network model

Fully controllable. All gates are

observable.

Existing circuit

learning models

Only inputs can be

manipulated.

Only the output is

observable.

[AACW ’06] model Fully controllable. Only the output is

observable.IN BETWEEN
4

[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time

(NC1)

Constant Unbounded AND/OR/NOT Poly-time

(AC0)
5

LOOKING AT LARGE ALPHABET

CIRCUITS

Gene regulatory networks have more states than

just expressed and disrupted.

A larger alphabet than {0,1} is needed to more

fully represent many other types of networks.

 Looking at what happens for large alphabet size

is a natural, interesting theoretical question.

6

LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4

7

WHAT HAPPENS FOR LARGE-ALPHABET

CIRCUITS? (OUR RESULTS)

 There is evidence that learning log depth, constant

fan-in large-alphabet circuits may be

computationally intractable

Transitively reduced and bounded shortcut

width circuits can be learned in time polynomial

in the number of wires and the alphabet size.

We can approximately learn bounded shortcut-

width analog circuits that satisfy a Lipshitz

condition.

We also consider learning with counterexamples 8

HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of

telling whether the graph G on n vertices

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a

clique tester

test test test

a a a

?

(k,2) edges

(k) vertices
9

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
10

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
11

a b f

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
12

c d f

HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the

parameterized complexity class W[1]

 There is no known algorithm for the clique problem

that runs in time f(k)nc (and we believe one doesn’t

exist)

 Theorem An algorithm for learning circuits

polynomial in the number of wires and

alphabet size would imply fixed parameter

tractability for all problems in W[1]
13

TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
14

A CIRCUIT’S UNDERLYING GRAPH





01

A

CD

B

E

We only consider circuits whose simple, connected,

directed graphs are acyclic.

15

TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying

directed graph has no shortcuts. If (u,v) is an edge

and there is a path of length ≥ 2 from u to v, then

(u,v) is a shortcut edge

16

A

B

DISTINGUISHING TABLES

 For each wire w, we keep a distinguishing table. A 1 entry in

Tw(σ,τ) means alphabet values σ and τ are distinguishable.

For each 1 entry we keep a corresponding distinguishing

path and a “processed bit.”

In Out

a a

b a

c b

Gate functions

Out

a

Distinguishing Tables

A

B

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -

17

DISTINGUISHING PATHS

18

DISTINGUISHING PATHS

19

DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively

reduced circuits, no wires

along a distinguishing path

are side wires.

20

DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively

reduced circuits, no wires

along a distinguishing path

are side wires.

21

THE DISTINGUISHING PATHS

ALGORITHM (OUTLINE)

For the output wire wn, we initialize Twn
with

all values initialized to 1, marked unprocessed.

The rest of the tables are initialized to all 0’s.

While there are unprocessed 1 entries, pick one

and run Find Inputs and Extend Paths.

Finally, Reconstruct the Circuit.

22

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Now we want to use this

distinguishing path to Find

more Inputs and Extend

the Paths to find new

distinguishing paths. 23

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

24

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

25

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(p) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

26

RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to

reconstruct the graph of the circuit.

27

RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to

reconstruct the graph of the circuit.

Theorem The complete distinguishing

tables and G are enough to construct a

circuit behaviorally equivalent to the

target circuit in polynomial time and

O(n2k+1s2k+2) queries.
28

BOUNDED SHORTCUT WIDTH

 Bounded shortcut width is a generalization of

transitive reduction.

 The shortcut width of a wire wi is the number of

wires wj such that wj is both an ancestor of wi

and an input of a descendent of wi.

 Transitively reduced circuits have shortcut width 0.

2

1

1

0 0

0
The bounded shortcut width

of a circuit is the maximum

shortcut width of any

output-connected wire in the

circuit. 29

DISTINGUISHING PATHS WITH

SHORTCUTS

 We generalize the definition of a distinguishing path to

a distinguishing path with shortcuts.

 These are made of path wires, side wires, and cut

wires.

 We also generalize the notion of distinguishing tables

to include cut wires.

output

30

LEARNING CIRCUITS OF BOUNDED

SHORTCUT WIDTH

 When all 1 entries in the generalized

distinguishing tables are processed, the tables

and graph G we can create a set of sufficient

experiments for CircuitBuilder of [AACW ’06].

 Theorem The Shortcuts Algorithm learns

the class of circuits having n wires,

alphabet size s, fan-in bound k, and

shortcut width bounded by b, using nsO(k+b)

value injection queries and time polynomial

in the number of queries. 31

LEARNING ANALOG CIRCUITS

 An analog circuit is a circuit for which Σ = [0,1].

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every

experiment e, then C and C’ are ε-equivalent.

 We can discretize analog circuits that satisfy a

Lipshitz condition and use our large-alphabet

learning algorithms on them.

 Theorem There exists a polynomial time

algorithm that learns up to ε-equivalence

any analog circuit of n wires, depth log(n),

constant fan-in, Lipshitz gate functions, and

shortcut width bounded by a constant.

32

LEARNING WITH COUNTEREXAMPLES

 We also consider the framework where we have

both value injection queries and counterexamples.

 In a counterexample query, the algorithm proposes

a hypothesis C and receives as an answer either

that C is exactly equivalent to the target circuit or

an experiment e such that C(e) ≠ C*(e)

 Theorem Circuits whose gates are polynomial

time learnable with counterexamples are

learnable in polynomial time with

experiments and counterexamples.

33

SUMMARY AND DISCUSSION

We give algorithms for learning large

alphabet and analog circuits and matching

lower bounds.

 The learnability of large alphabet circuits

seems to depend on their shortcut width –

this is quite different from the small alphabet

case.

 It would be interesting to try to extend this

framework to Bayesian networks (or

probabilistic circuits) and other classes.
34

