LEARNING LARGE-ALPHABET AND ANALOG CIRCUITS WITH VALUE INJECTION QUERIES

Dana Angluin¹ James Aspnes¹ Jiang Chen² Lev Reyzin¹

¹ Department of Computer Science, Yale University ² Center for Computational Learning Systems, Columbia University

THE VALUE INJECTION QUERY MODEL

- Introduced by [AACW '06]
- Experiments on a hidden Circuit.
 - a gate output may be fixed
 - a gate may be left free
- Query
 - given an experiment, we can observe its output
- Example:

THE LEARNING PROBLEM

• Behavioral equivalence: Two circuits C and C' are behaviorally equivalent if for any experiment s, C(s)=C'(s).

• **The Problem:** Given qeuery access to a hidden circuit C^{*}, find a circuit C behaviorally equivalent to C^{*} by making value-injection queries.

MOTIVATION FOR THE MODEL

To model gene regulatory networks as boolean networks to represent gene expressions and disruptions

Previous gene regulatory network model	Fully controllable.	All gates are observable.
Existing circuit learning models	Only inputs can be manipulated.	Only the output is observable.
[AACW '06] model	Eully controllable	Only the output is observable.

[AACW '06] RESULTS FOR BOOLEAN CIRCUITS

Depth	Fan-in	Gates	Learnability
Unbounded	Unbounded	AND/OR	$2^{\Omega(N)}$ queries
Unbounded	2	AND/OR	NP-hard
Constant	Unbounded	AND/OR/02	NP-hard
Log	Constant	Arbitrary	Poly-time (NC1)
Constant	Unbounded	AND/OR/NOT	Poly-time (AC0)

LOOKING AT LARGE ALPHABET CIRCUITS

- Gene regulatory networks have more states than just expressed and disrupted.
- A larger alphabet than {0,1} is needed to more fully represent many other types of networks.
- Looking at what happens for large alphabet size is a natural, interesting theoretical question.

LARGE-ALPHABET CIRCUITS

Gates in Boolean Circuits

Input 1	Input 2	Output
1	1	O ₁
1	0	O_2
0	1	O_3
0	0	O_4

Gates in Large-Alphabet circuits

Input 1	Input 2	Output
А	А	0 ₁
А	В	O_2
А	С	O_3
В	А	O_4
В	В	O_5
В	С	O_6
С	А	O_7
C	В	O_8
С	С	O_9

WHAT HAPPENS FOR LARGE-ALPHABET CIRCUITS? (OUR RESULTS)

- There is evidence that learning log depth, constant fan-in large-alphabet circuits may be computationally intractable
- Transitively reduced and bounded shortcut width circuits can be learned in time polynomial in the number of wires and the alphabet size.
- We can approximately learn bounded shortcutwidth analog circuits that satisfy a Lipshitz condition.
- We also consider learning with counterexamples

HARDNESS OF LEARNING LARGE ALPHABET CIRCUITS

- Consider the problem on input (G,k) of telling whether the graph G on n vertices has a clique of size k
- We give a reduction that turns a largealphabet circuit learning algorithm into a clique tester

REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING

REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING

REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING

HARDNESS OF LEARNING CIRCUITS OF UNRESTRICTED TOPOLOGY

- The clique problem is complete for the parameterized complexity class W[1]
 - There is no known algorithm for the clique problem that runs in time f(k)n^c (and we believe one doesn't exist)
- <u>Theorem</u> An algorithm for learning circuits polynomial in the number of wires and alphabet size would imply fixed parameter tractability for all problems in W[1]

TO COMPARE WITH THE BOOLEAN CASE

Boolean Circuits [AACW '06]:

Depth	Fan-in	Gates	Learnability
Log	Constant	Arbitrary	Poly-time

Large Alphabet Circuits:

Depth	Fan-in	Gates	Learnability
Log	Constant	Arbitrary	W[1] Hard

This motivates looking at classes of largealphabet circuits with restricted topology

A CIRCUIT'S UNDERLYING GRAPH

We only consider circuits whose simple, connected, directed graphs are acyclic.

TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying directed graph has no shortcuts. If (u,v) is an edge and there is a path of length ≥ 2 from u to v, then (u,v) is a **shortcut edge**

DISTINGUISHING TABLES

For each wire w, we keep a distinguishing table. A 1 entry in T_w(σ,τ) means alphabet values σ and τ are distinguishable. For each 1 entry we keep a corresponding distinguishing path and a "processed bit."

Distinguishing Tables

Notice that for transitively reduced circuits, no wires along a distinguishing path are side wires.

Notice that for transitively reduced circuits, no wires along a distinguishing path are side wires. THE DISTINGUISHING PATHS ALGORITHM (OUTLINE)

- For the output wire w_n , we initialize T_{w_n} with all values initialized to 1, marked unprocessed. The rest of the tables are initialized to all 0's.
- While there are unprocessed 1 entries, pick one and run **Find Inputs** and **Extend Paths**.
- o Finally, Reconstruct the Circuit.

Now we want to use this distinguishing path to **Find** more **Inputs** and **Extend** the **Paths** to find new distinguishing paths.

RECONSTRUCTING TRANSITIVELY REDUCED CIRCUITS

• We keep a separate directed graph G to reconstruct the graph of the circuit.

RECONSTRUCTING TRANSITIVELY REDUCED CIRCUITS

• We keep a separate directed graph G to reconstruct the graph of the circuit.

 <u>Theorem</u> The complete distinguishing tables and G are enough to construct a circuit behaviorally equivalent to the target circuit in polynomial time and O(n^{2k+1}s^{2k+2}) queries.

BOUNDED SHORTCUT WIDTH

- Bounded shortcut width is a generalization of transitive reduction.
- The shortcut width of a wire w_i is the number of wires w_j such that w_j is both an ancestor of w_i and an input of a descendent of w_i .
 - Transitively reduced circuits have shortcut width 0.

The bounded shortcut width of a circuit is the maximum shortcut width of any output-connected wire in the circuit.

DISTINGUISHING PATHS WITH SHORTCUTS

• We generalize the definition of a distinguishing path to a **distinguishing path with shortcuts**.

• These are made of **path wires**, **side wires**, and **cut wires**.

• We also generalize the notion of distinguishing tables to include cut wires.

LEARNING CIRCUITS OF BOUNDED SHORTCUT WIDTH

- When all 1 entries in the generalized distinguishing tables are processed, the tables and graph G we can create a set of sufficient experiments for **CircuitBuilder** of [AACW '06].
- <u>Theorem</u> The Shortcuts Algorithm learns the class of circuits having n wires, alphabet size s, fan-in bound k, and shortcut width bounded by b, using ns^{O(k+b)} value injection queries and time polynomial in the number of queries.

LEARNING ANALOG CIRCUITS

- An analog circuit is a circuit for which $\Sigma = [0,1]$.
- ε-equivalence: If d(C(e), C'(e)) ≤ ε for every experiment e, then C and C' are ε-equivalent.
- We can discretize analog circuits that satisfy a Lipshitz condition and use our large-alphabet learning algorithms on them.
- <u>Theorem</u> There exists a polynomial time algorithm that learns up to ε-equivalence any analog circuit of n wires, depth log(n), constant fan-in, Lipshitz gate functions, and shortcut width bounded by a constant.

LEARNING WITH COUNTEREXAMPLES

- We also consider the framework where we have both value injection queries and counterexamples.
- In a counterexample query, the algorithm proposes a hypothesis C and receives as an answer either that C is exactly equivalent to the target circuit or an experiment e such that $C(e) \neq C^*(e)$
- <u>Theorem</u> Circuits whose gates are polynomial time learnable with counterexamples are learnable in polynomial time with experiments and counterexamples.

SUMMARY AND DISCUSSION

- We give algorithms for learning large alphabet and analog circuits and matching lower bounds.
- The learnability of large alphabet circuits seems to depend on their shortcut width – this is quite different from the small alphabet case.
- It would be interesting to try to extend this framework to Bayesian networks (or probabilistic circuits) and other classes.