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THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden 

Circuit. 

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:
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THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are 
behaviorally equivalent if for 
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*, 
find a circuit C behaviorally 
equivalent to C* by making 
value-injection queries.
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[ACCW ’06]
3



MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene 

regulatory 

network model

Fully controllable. All gates are 

observable.

Existing circuit 

learning models

Only inputs can be 

manipulated.

Only the output is 

observable.

[AACW ’06] model Fully controllable. Only the output is 

observable.IN BETWEEN
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[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time 

(NC1)

Constant Unbounded AND/OR/NOT Poly-time 

(AC0)
5



LOOKING AT LARGE ALPHABET

CIRCUITS

Gene regulatory networks have more states than 

just expressed and disrupted.

A larger alphabet than {0,1} is needed to more 

fully represent many other types of networks.

 Looking at what happens for large alphabet size 

is a natural, interesting theoretical question.
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LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean 

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4
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WHAT HAPPENS FOR LARGE-ALPHABET

CIRCUITS? (OUR RESULTS)

 There is evidence that learning log depth, constant 

fan-in large-alphabet circuits may be 

computationally intractable

Transitively reduced and bounded shortcut 

width circuits can be learned in time polynomial 

in the number of wires and the alphabet size.

We can approximately learn bounded shortcut-

width analog circuits that satisfy a Lipshitz

condition.

We also consider learning with counterexamples 8



HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of 

telling whether the graph G on n vertices 

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a 

clique tester

test test test

a a a

?

(k,2) edges

(k) vertices
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
10



REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
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HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the 

parameterized complexity class W[1]

 There is no known algorithm for the clique problem 

that runs in time f(k)nc (and we believe one doesn’t 

exist)

 Theorem An algorithm for learning circuits 

polynomial in the number of wires and 

alphabet size would imply fixed parameter 

tractability for all problems in W[1]
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TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
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A CIRCUIT’S UNDERLYING GRAPH
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We only consider circuits whose simple, connected, 

directed graphs are acyclic.

15



TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying 

directed graph has no shortcuts.  If (u,v) is an edge 

and there is a path of length ≥ 2 from u to v, then 

(u,v) is a shortcut edge
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A

B

DISTINGUISHING TABLES

 For each wire w, we keep a distinguishing table.  A 1 entry in 

Tw(σ,τ) means alphabet values σ and τ are distinguishable. 

For each 1 entry we keep a corresponding distinguishing 

path and a “processed bit.”

In Out

a a

b a

c b

Gate functions

Out

a

Distinguishing Tables

A

B

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -
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DISTINGUISHING PATHS
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DISTINGUISHING PATHS
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DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively 

reduced circuits, no wires 

along a distinguishing path 

are side wires.
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DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively 

reduced circuits, no wires 

along a distinguishing path 

are side wires.
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THE DISTINGUISHING PATHS

ALGORITHM (OUTLINE)

For the output wire wn, we initialize Twn
with 

all values initialized to 1, marked unprocessed.  

The rest of the tables are initialized to all 0’s.

While there are unprocessed 1 entries, pick one 

and run Find Inputs and Extend Paths.

Finally, Reconstruct the Circuit.
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Now we want to use this 

distinguishing path to Find

more Inputs and Extend

the Paths to find new 

distinguishing paths. 23



FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(p) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -
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RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to 

reconstruct the graph of the circuit.
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RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to 

reconstruct the graph of the circuit.

Theorem The complete distinguishing 

tables and G are enough to construct a 

circuit behaviorally equivalent to the 

target circuit in polynomial time and 

O(n2k+1s2k+2) queries.
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BOUNDED SHORTCUT WIDTH

 Bounded shortcut width is a generalization of 

transitive reduction.

 The shortcut width of a wire wi is the number of 

wires wj such that wj is both an ancestor of wi

and an input of a descendent of wi.

 Transitively reduced circuits have shortcut width 0.

2

1

1

0 0

0
The bounded shortcut width 

of a circuit is the maximum 

shortcut width of any 

output-connected wire in the 

circuit. 29



DISTINGUISHING PATHS WITH

SHORTCUTS

 We generalize the definition of a distinguishing path to 

a distinguishing path with shortcuts.  

 These are made of path wires, side wires, and cut 

wires.

 We also generalize the notion of distinguishing tables 

to include cut wires.

output
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LEARNING CIRCUITS OF BOUNDED

SHORTCUT WIDTH

 When all 1 entries in the generalized 

distinguishing tables are processed, the tables 

and graph G we can create a set of sufficient 

experiments for CircuitBuilder of [AACW ’06].

 Theorem The Shortcuts Algorithm learns 

the class of circuits having n wires, 

alphabet size s, fan-in bound k, and 

shortcut width bounded by b, using nsO(k+b)

value injection queries and time polynomial 

in the number of queries. 31



LEARNING ANALOG CIRCUITS

 An analog circuit is a circuit for which Σ = [0,1].

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every 

experiment e, then C and C’ are ε-equivalent.

 We can discretize analog circuits that satisfy a 

Lipshitz condition and use our large-alphabet 

learning algorithms on them.

 Theorem There exists a polynomial time 

algorithm that learns up to ε-equivalence 

any analog circuit of n wires, depth log(n), 

constant fan-in, Lipshitz gate functions, and 

shortcut width bounded by a constant.
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LEARNING WITH COUNTEREXAMPLES

 We also consider the framework where we have 

both value injection queries and counterexamples.

 In a counterexample query, the algorithm proposes 

a hypothesis C and receives as an answer either 

that C is exactly equivalent to the target circuit or 

an experiment e such that C(e) ≠ C*(e)

 Theorem Circuits whose gates are polynomial 

time learnable with counterexamples are 

learnable in polynomial time with 

experiments and counterexamples.
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SUMMARY AND DISCUSSION

We give algorithms for learning large 

alphabet and analog circuits and matching 

lower bounds.

 The learnability of large alphabet circuits 

seems to depend on their shortcut width –

this is quite different from the small alphabet 

case.

 It would be interesting to try to extend this 

framework to Bayesian networks (or 

probabilistic circuits) and other classes.
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