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THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden 

Circuit. 

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:
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THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are 
behaviorally equivalent if for 
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*, 
find a circuit C behaviorally 
equivalent to C* by making 
value-injection queries.
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MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene 

regulatory 

network model

Fully controllable. All gates are 

observable.

Existing circuit 

learning models

Only inputs can be 

manipulated.

Only the output is 

observable.

[AACW ’06] model Fully controllable. Only the output is 

observable.IN BETWEEN
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[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time 

(NC1)

Constant Unbounded AND/OR/NOT Poly-time 

(AC0)
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LOOKING AT LARGE ALPHABET

CIRCUITS

Gene regulatory networks have more states than 

just expressed and disrupted.

A larger alphabet than {0,1} is needed to more 

fully represent many other types of networks.

 Looking at what happens for large alphabet size 

is a natural, interesting theoretical question.
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LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean 

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4
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WHAT HAPPENS FOR LARGE-ALPHABET

CIRCUITS? (OUR RESULTS)

 There is evidence that learning log depth, constant 

fan-in large-alphabet circuits may be 

computationally intractable

Transitively reduced and bounded shortcut 

width circuits can be learned in time polynomial 

in the number of wires and the alphabet size.

We can approximately learn bounded shortcut-

width analog circuits that satisfy a Lipshitz

condition.

We also consider learning with counterexamples 8



HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of 

telling whether the graph G on n vertices 

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a 

clique tester

test test test

a a a

?

(k,2) edges

(k) vertices
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
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(k,2) edges

(k) vertices
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test
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(k,2) edges
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
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HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the 

parameterized complexity class W[1]

 There is no known algorithm for the clique problem 

that runs in time f(k)nc (and we believe one doesn’t 

exist)

 Theorem An algorithm for learning circuits 

polynomial in the number of wires and 

alphabet size would imply fixed parameter 

tractability for all problems in W[1]
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TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
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A CIRCUIT’S UNDERLYING GRAPH





01

A

CD

B

E

We only consider circuits whose simple, connected, 

directed graphs are acyclic.
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TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying 

directed graph has no shortcuts.  If (u,v) is an edge 

and there is a path of length ≥ 2 from u to v, then 

(u,v) is a shortcut edge
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A

B

DISTINGUISHING TABLES

 For each wire w, we keep a distinguishing table.  A 1 entry in 

Tw(σ,τ) means alphabet values σ and τ are distinguishable. 

For each 1 entry we keep a corresponding distinguishing 

path and a “processed bit.”

In Out

a a

b a

c b

Gate functions

Out

a

Distinguishing Tables

A

B

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -
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DISTINGUISHING PATHS
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DISTINGUISHING PATHS

19



DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively 

reduced circuits, no wires 

along a distinguishing path 

are side wires.
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DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively 

reduced circuits, no wires 

along a distinguishing path 

are side wires.
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THE DISTINGUISHING PATHS

ALGORITHM (OUTLINE)

For the output wire wn, we initialize Twn
with 

all values initialized to 1, marked unprocessed.  

The rest of the tables are initialized to all 0’s.

While there are unprocessed 1 entries, pick one 

and run Find Inputs and Extend Paths.

Finally, Reconstruct the Circuit.
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Now we want to use this 

distinguishing path to Find

more Inputs and Extend

the Paths to find new 

distinguishing paths. 23



FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -
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FIND INPUTS AND EXTEND PATHS

a b c

a - 1(p) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -
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RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to 

reconstruct the graph of the circuit.
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RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to 

reconstruct the graph of the circuit.

Theorem The complete distinguishing 

tables and G are enough to construct a 

circuit behaviorally equivalent to the 

target circuit in polynomial time and 

O(n2k+1s2k+2) queries.
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BOUNDED SHORTCUT WIDTH

 Bounded shortcut width is a generalization of 

transitive reduction.

 The shortcut width of a wire wi is the number of 

wires wj such that wj is both an ancestor of wi

and an input of a descendent of wi.

 Transitively reduced circuits have shortcut width 0.

2

1

1

0 0

0
The bounded shortcut width 

of a circuit is the maximum 

shortcut width of any 

output-connected wire in the 

circuit. 29



DISTINGUISHING PATHS WITH

SHORTCUTS

 We generalize the definition of a distinguishing path to 

a distinguishing path with shortcuts.  

 These are made of path wires, side wires, and cut 

wires.

 We also generalize the notion of distinguishing tables 

to include cut wires.

output
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LEARNING CIRCUITS OF BOUNDED

SHORTCUT WIDTH

 When all 1 entries in the generalized 

distinguishing tables are processed, the tables 

and graph G we can create a set of sufficient 

experiments for CircuitBuilder of [AACW ’06].

 Theorem The Shortcuts Algorithm learns 

the class of circuits having n wires, 

alphabet size s, fan-in bound k, and 

shortcut width bounded by b, using nsO(k+b)

value injection queries and time polynomial 

in the number of queries. 31



LEARNING ANALOG CIRCUITS

 An analog circuit is a circuit for which Σ = [0,1].

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every 

experiment e, then C and C’ are ε-equivalent.

 We can discretize analog circuits that satisfy a 

Lipshitz condition and use our large-alphabet 

learning algorithms on them.

 Theorem There exists a polynomial time 

algorithm that learns up to ε-equivalence 

any analog circuit of n wires, depth log(n), 

constant fan-in, Lipshitz gate functions, and 

shortcut width bounded by a constant.
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LEARNING WITH COUNTEREXAMPLES

 We also consider the framework where we have 

both value injection queries and counterexamples.

 In a counterexample query, the algorithm proposes 

a hypothesis C and receives as an answer either 

that C is exactly equivalent to the target circuit or 

an experiment e such that C(e) ≠ C*(e)

 Theorem Circuits whose gates are polynomial 

time learnable with counterexamples are 

learnable in polynomial time with 

experiments and counterexamples.

33



SUMMARY AND DISCUSSION

We give algorithms for learning large 

alphabet and analog circuits and matching 

lower bounds.

 The learnability of large alphabet circuits 

seems to depend on their shortcut width –

this is quite different from the small alphabet 

case.

 It would be interesting to try to extend this 

framework to Bayesian networks (or 

probabilistic circuits) and other classes.
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