LEARNING LARGE-ALPHABET
AND ANALOG CIRCUITS WITH
VALUE INJECTION QUERIES

Dana Angluin!
James Aspnes!
Jiang Chen?
Lev Reyzin!

1 Department of Computer Science, Yale University
2 Center for Computational Learning Systems, Columbia University

THE VALUE INJECTION QUERY MODEL

Introduced by [AACW ’06]

Experiments on a hidden
Circuit.

Hidden From the Learner

a gate output may be fixed
a gate may be left free

Query
glven an experiment, we
can observe 1ts output

Example:

THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are
behaviorally equivalent if for
any experiment s, C(s)=C'(s).

The Problem: Given qeuery
access to a hidden circuit C7,
find a circuit C behaviorally
equivalent to C* by making
value-injection queries.

AND

AND OR

Gl G2

AND

AND OR

Gl G2

Vv 1,

[ACCW "06]

MOTIVATION FOR THE MODEL

To model gene regulatory networks as boolean networks
to represent gene expressions and disruptions

Previous gene Fully controllable. All gates are
regulatory observable.
network model

Existing circuit Only inputs can be Only the output is
learning models manipulated. observable.

ST IN BETWEEN

[AACW '06] RESULTS FOR
BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability
Unbounded |2 AND/OR NP-hard
Constant Unbounded | AND/OR/®, | NP-hard

Log Constant Arbitrary Poly-time

(NC1)

LOOKING AT LARGE ALPHABET
CIRCUITS

Gene regulatory networks have more states than
just expressed and disrupted.

A larger alphabet than {0,1} is needed to more
fully represent many other types of networks.

Looking at what happens for large alphabet size
1s a natural, interesting theoretical question.

LARGE-ALPHABET CIRCUITS

Gates 1n Boolean Gates 1n Large-
Circuits Alphabet circuits
A A 0,

A B O,

A C O,

B A O,

B | B | o
1 1 0, B C Oy

1 0 O, C A 0,

0 1 O, C B Og

0 0 O, C C Oy

WHAT HAPPENS FOR LARGE-ALPHABET
CIRCUITS? (OUR RESULTS)

There 1s evidence that learning log depth, constant
fan-in large-alphabet circuits may be
computationally intractable

Transitively reduced and bounded shortcut
width circuits can be learned in time polynomial
in the number of wires and the alphabet size.

We can approximately learn bounded shortcut-
width analog circuits that satisfy a Lipshitz
condition.

We also consider learning with counterexamples

HARDNESS OF LEARNING LARGE
ALPHABET CIRCUITS

o Consider the problem on input (G,k) of
telling whether the graph G on n vertices
has a clique of size k

o We give a reduction that turns a large-
alphabet circuit learning algorithm into a
clique tester

/ / test |-
——— — —
(k,2) edges
»
' - (k) vertices °

?

REDUCING THE CLIQUE PROBLEM TO
CIRCUIT LEARNING

/—
L_4 _4
(k,2) edges

- (k) vertices °

REDUCING THE CLIQUE PROBLEM TO
CIRCUIT LEARNING

REDUCING THE CLIQUE PROBLEM TO
CIRCUIT LEARNING

HARDNESS OF LEARNING CIRCUITS
OF UNRESTRICTED TOPOLOGY

o The clique problem is complete for the
parameterized complexity class W|[1]

» There 1s no known algorithm for the clique problem
that runs in time f(k)n° (and we believe one doesn’t
exist)

o Theorem An algorithm for learning circuits
polynomial in the number of wires and
alphabet size would imply fixed parameter
tractability for all problems in W[1] e

To COMPA

Boolean Circuits [AACW °06]:

RE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time
Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary WI[1] Hard

This motivates looking at classes of large-
alphabet circuits with restricted topology

A CIRCUIT’S UNDERLYING GRAPH

We only consider circuits whose simple, connected,
directed graphs are acyclic.

-
D c L

TRANSITIVELY REDUCED CIRCUITS

A circuit 1s transitively reduced if its underlying
directed graph has no shortcuts. If (u,v) is an edge
and there 1s a path of length > 2 from u to v, then
(u,v) 1s a shortcut edge

DISTINGUISHING TABLES

o For each wire w, we keep a distinguishing table. A 1 entry in
T, (0,t) means alphabet values ¢ and t are distinguishable.
For each 1 entry we keep a corresponding distinguishing
path and a “processed bit.”

Gate functions Distinguishing Tables
In Out =l e
A a - 1
a a A b _ _ 1
b a
B C b
a b c
B
a - 0
b - - 1

DISTINGUISHING PATHS

DISTINGUISHING PATHS

DISTINGUISHING PATHS

b C
1(w) | 1(u)
1(u)

Notice that for transitively
reduced circuits, no wires
along a distinguishing path
are side wires.

DISTINGUISHING PATHS

b C
1(u) | 1(w)
1(u)

Notice that for transitively
reduced circuits, no wires
along a distinguishing path
are side wires.

THE DISTINGUISHING PATHS
ALGORITHM (OUTLINE)

For the output wire w,,, we initialize T, with
all values initialized to 1, marked unprocessed.
The rest of the tables are initialized to all O’s.

While there are unprocessed 1 entries, pick one
and run Find Inputs and Extend Paths.

Finally, Reconstruct the Circuit.

FIND INPUTS AND EXTEND PATHS

1(u) | 1(w)

1(u)

Now we want to use this
distinguishing path to Find
more Inputs and Extend
the Paths to find new

distinguishing paths. @

FIND INPUTS AND EXTEND PATHS

1(u) | 1(w)

1(u)

FIND INPUTS AND EXTEND PATHS

1(u)

1(p)

1(u)

1(u)

FIND INPUTS AND EXTEND PATHS

1(u)

1(u)

RECONSTRUCTING TRANSITIVELY
REDUCED CIRCUITS

We keep a separate directed graph G to
reconstruct the graph of the circuit.

RECONSTRUCTING TRANSITIVELY
REDUCED CIRCUITS

o We keep a separate directed graph G to
reconstruct the graph of the circuit.

o Theorem The complete distinguishing
tables and G are enough to construct a
circuit behaviorally equivalent to the
target circuit in polynomial time and

O (n2kt1g2k+2) queries.

BOUNDED SHORTCUT WIDTH

Bounded shortcut width 1s a generalization of
transitive reduction.

The shortcut width of a wire w; 1s the number of
wires w; such that w; 1s both an ancestor of w;
and an input of a descendent of w..

Transitively reduced circuits have shortcut width O.

O The bounded shortcut width
@ of a circuit is the maximum
o shortcut width of any
output-connected wire in the
‘9 circuit.

DISTINGUISHING PATHS WITH
SHORTCUTS

We generalize the definition of a distinguishing path to
a distinguishing path with shortcuts.

These are made of path wires, side wires, and cut
wires.

We also generalize the notion of distinguishing tables
to include cut wires.

LEARNING CIRCUITS OF BOUNDED
SHORTCUT WIDTH

o When all 1 entries in the generalized
distinguishing tables are processed, the tables
and graph G we can create a set of sufficient
experiments for CircuitBuilder of [AACW ’06].

o Theorem The Shortcuts Algorithm learns
the class of circuits having n wires,
alphabet size s, fan-in bound k, and
shortcut width bounded by b, using ns0&+b)
value injection queries and time polynomial
in the number of queries.

LEARNING ANALOG CIRCUITS

o An analog circuit 1s a circuit for which X = [0,1].

o e-equivalence: If d(C(e),C’(e)) < e for every
experiment e, then C and C are eg-equivalent.
o We can discretize analog circuits that satisfy a

Lipshitz condition and use our large-alphabet
learning algorithms on them.

o Theorem There exists a polynomial time
algorithm that learns up to e-equivalence
any analog circuit of n wires, depth log(n),
constant fan-in, Lipshitz gate functions, and
shortcut width bounded by a constant.

LEARNING WITH COUNTEREXAMPLES

o We also consider the framework where we have
both value injection queries and counterexamples.

o In a counterexample query, the algorithm proposes
a hypothesis C and receives as an answer either
that C 1s exactly equivalent to the target circuit or
an experiment e such that C(e) # C’(e)

o Theorem Circuits whose gates are polynomial
time learnable with counterexamples are
learnable in polynomial time with
experiments and counterexamples.

SUMMARY AND DISCUSSION

We give algorithms for learning large
alphabet and analog circuits and matching
lower bounds.

The learnability of large alphabet circuits
seems to depend on their shortcut width —
this 1s quite different from the small alphabet
case.

It would be 1nteresting to try to extend this
framework to Bayesian networks (or
probabilistic circuits) and other classes.

