
LEARNING LARGE-ALPHABET

AND ANALOG CIRCUITS WITH

VALUE INJECTION QUERIES

Dana Angluin1

James Aspnes1

Jiang Chen2

Lev Reyzin1

1 Department of Computer Science, Yale University
2 Center for Computational Learning Systems, Columbia University

1

THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden

Circuit.

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:

? ? ? ? ?

output =

A B C D E

1 0

01

A

CD

B

E

Hidden From the Learner

1

01

1

11

2

THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are
behaviorally equivalent if for
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*,
find a circuit C behaviorally
equivalent to C* by making
value-injection queries.

AND OR

AND

G1

I1

G2

I2V

AND OR

AND

G1

I1

G2

I2V

[ACCW ’06]
3

MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene

regulatory

network model

Fully controllable. All gates are

observable.

Existing circuit

learning models

Only inputs can be

manipulated.

Only the output is

observable.

[AACW ’06] model Fully controllable. Only the output is

observable.IN BETWEEN
4

[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time

(NC1)

Constant Unbounded AND/OR/NOT Poly-time

(AC0)
5

LOOKING AT LARGE ALPHABET

CIRCUITS

Gene regulatory networks have more states than

just expressed and disrupted.

A larger alphabet than {0,1} is needed to more

fully represent many other types of networks.

 Looking at what happens for large alphabet size

is a natural, interesting theoretical question.

6

LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4

7

WHAT HAPPENS FOR LARGE-ALPHABET

CIRCUITS? (OUR RESULTS)

 There is evidence that learning log depth, constant

fan-in large-alphabet circuits may be

computationally intractable

Transitively reduced and bounded shortcut

width circuits can be learned in time polynomial

in the number of wires and the alphabet size.

We can approximately learn bounded shortcut-

width analog circuits that satisfy a Lipshitz

condition.

We also consider learning with counterexamples 8

HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of

telling whether the graph G on n vertices

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a

clique tester

test test test

a a a

?

(k,2) edges

(k) vertices
9

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
10

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
11

a b f

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
12

c d f

HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the

parameterized complexity class W[1]

 There is no known algorithm for the clique problem

that runs in time f(k)nc (and we believe one doesn’t

exist)

 Theorem An algorithm for learning circuits

polynomial in the number of wires and

alphabet size would imply fixed parameter

tractability for all problems in W[1]
13

TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
14

A CIRCUIT’S UNDERLYING GRAPH

01

A

CD

B

E

We only consider circuits whose simple, connected,

directed graphs are acyclic.

15

TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying

directed graph has no shortcuts. If (u,v) is an edge

and there is a path of length ≥ 2 from u to v, then

(u,v) is a shortcut edge

16

A

B

DISTINGUISHING TABLES

 For each wire w, we keep a distinguishing table. A 1 entry in

Tw(σ,τ) means alphabet values σ and τ are distinguishable.

For each 1 entry we keep a corresponding distinguishing

path and a “processed bit.”

In Out

a a

b a

c b

Gate functions

Out

a

Distinguishing Tables

A

B

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -

17

DISTINGUISHING PATHS

18

DISTINGUISHING PATHS

19

DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively

reduced circuits, no wires

along a distinguishing path

are side wires.

20

DISTINGUISHING PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively

reduced circuits, no wires

along a distinguishing path

are side wires.

21

THE DISTINGUISHING PATHS

ALGORITHM (OUTLINE)

For the output wire wn, we initialize Twn
with

all values initialized to 1, marked unprocessed.

The rest of the tables are initialized to all 0’s.

While there are unprocessed 1 entries, pick one

and run Find Inputs and Extend Paths.

Finally, Reconstruct the Circuit.

22

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Now we want to use this

distinguishing path to Find

more Inputs and Extend

the Paths to find new

distinguishing paths. 23

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

24

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

25

FIND INPUTS AND EXTEND PATHS

a b c

a - 1(p) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

26

RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to

reconstruct the graph of the circuit.

27

RECONSTRUCTING TRANSITIVELY

REDUCED CIRCUITS

We keep a separate directed graph G to

reconstruct the graph of the circuit.

Theorem The complete distinguishing

tables and G are enough to construct a

circuit behaviorally equivalent to the

target circuit in polynomial time and

O(n2k+1s2k+2) queries.
28

BOUNDED SHORTCUT WIDTH

 Bounded shortcut width is a generalization of

transitive reduction.

 The shortcut width of a wire wi is the number of

wires wj such that wj is both an ancestor of wi

and an input of a descendent of wi.

 Transitively reduced circuits have shortcut width 0.

2

1

1

0 0

0
The bounded shortcut width

of a circuit is the maximum

shortcut width of any

output-connected wire in the

circuit. 29

DISTINGUISHING PATHS WITH

SHORTCUTS

 We generalize the definition of a distinguishing path to

a distinguishing path with shortcuts.

 These are made of path wires, side wires, and cut

wires.

 We also generalize the notion of distinguishing tables

to include cut wires.

output

30

LEARNING CIRCUITS OF BOUNDED

SHORTCUT WIDTH

 When all 1 entries in the generalized

distinguishing tables are processed, the tables

and graph G we can create a set of sufficient

experiments for CircuitBuilder of [AACW ’06].

 Theorem The Shortcuts Algorithm learns

the class of circuits having n wires,

alphabet size s, fan-in bound k, and

shortcut width bounded by b, using nsO(k+b)

value injection queries and time polynomial

in the number of queries. 31

LEARNING ANALOG CIRCUITS

 An analog circuit is a circuit for which Σ = [0,1].

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every

experiment e, then C and C’ are ε-equivalent.

 We can discretize analog circuits that satisfy a

Lipshitz condition and use our large-alphabet

learning algorithms on them.

 Theorem There exists a polynomial time

algorithm that learns up to ε-equivalence

any analog circuit of n wires, depth log(n),

constant fan-in, Lipshitz gate functions, and

shortcut width bounded by a constant.

32

LEARNING WITH COUNTEREXAMPLES

 We also consider the framework where we have

both value injection queries and counterexamples.

 In a counterexample query, the algorithm proposes

a hypothesis C and receives as an answer either

that C is exactly equivalent to the target circuit or

an experiment e such that C(e) ≠ C*(e)

 Theorem Circuits whose gates are polynomial

time learnable with counterexamples are

learnable in polynomial time with

experiments and counterexamples.

33

SUMMARY AND DISCUSSION

We give algorithms for learning large

alphabet and analog circuits and matching

lower bounds.

 The learnability of large alphabet circuits

seems to depend on their shortcut width –

this is quite different from the small alphabet

case.

 It would be interesting to try to extend this

framework to Bayesian networks (or

probabilistic circuits) and other classes.
34

