
Weights and Measures:
Prediction in the Era of

Big Data

Lev Reyzin
UIC, Math Department

1

2
In a world of Big Data…

¡ Google/Yahoo! approaching 1B daily visitors.
What ads to show them?

¡ 3B yearly doctor’s visits in the US (records digitized).

How to treat them? (w/o performing too many tests.)

¡ CERN currently storing > 100 petabytes of data.
Which of the events contain an interesting signal?

¡ The NSA collects…. everything.
Who is a terrorist?

3
In a world of Big Data…

¡ Google/Yahoo! approaching 1B daily visitors.
What ads to show?

¡ 3B yearly doctor’s visits in the US (records digitized).

How to treat them? (w/o performing too many tests.)

¡ CERN currently storing > 100 petabytes of data.
Which of the events contain an interesting signal?

¡ The NSA collects…. everything.
Who is a terrorist?

4 Some Opportunities and Challenges

Can handle rich / interesting classes of functions.

Should be really fast (linear time, faster?)

Want to leverage all the data.

It may not fit on one machine.

Can finally predict accurately.

Must predict quickly! (Or otherwise limited.)

5
Weights and Measures

¡ Weighing – keep track of “performance”
without needing to remember the history.

¡ Measuring – given the weights, how to
properly “measure” them to determine the
correct outcome?

6

Optimal and Efficient
Contextual Bandits

“the world is a bandit problem”

with
Alina Beygelzimer, Miro Dudik, Daniel Hsu,
Satyen Kale, Nikos Karampatziakis, John

Langford, Lihong Li, Rob Schapire, Tong Zhang

7 What is the Bandit Setting?

¡ The name bandit refers to slot machines in a
casino.

¡ You choose actions (e.g. which machine to play),
one after another. These actions come with
rewards.

¡ Goal is to minimize your regret – informally, how
well you did compared to how well you could
have done.
¡ Bound expected regret or bound regret w.h.p.

8

9

1

2

3

…

k N experts/function
think of N >> K

context:

10

…

Contextual Bandits [Auer et al. ’02]

1

2

3

…

k

5

1

K

1

4

3

context: x1

11

…

N experts/function
think of N >> K

Contextual Bandits [Auer et al. ’02]

1

2

3

…

k

1
yes

context: x1

5

1

K

1

4

3

12

…

1

N experts/function
think of N >> K

Contextual Bandits [Auer et al. ’02]

1

2

3

…

k

yes

context: x1 x2 x3 x4 … xT

yes

13

…

2

N experts/function
think of N >> K

2

K

2

1

3

1

Contextual Bandits [Auer et al. ’02]

3

1

2

3

…

k

yes

context: x1 x2 x3 x4 … xT

yes

no

no

yes

14

…

…

.55T

N experts/function
think of N >> K

Contextual Bandits [Auer et al. ’02]

1

2

3

…

k

context: x1 x2 x3 x4 … xT

regret = 0.05T

15

…

…

.12T

.4T

.25T

0.6T

0T

0.37T

.55T

N experts/function
think of N >> K

Contextual Bandits [Auer et al. ’02]

1

2

3

…

k

context: x1 x2 x3 x4 … xT

the contexts & rewards can come
from a distribution (stochastic) or be
adversarial

The experts can be present
(contextual) or not.

16

…

…

Contextual Bandits [Auer et al. ’02]

u harder than supervised (usual) learning:
In the bandit setting, we do not know the
rewards of actions not taken.

u many applications:
Medicine, ad auctions, finance, …

u exploration/exploitation dilemma:
exploit policies you’ve learned to be good?
explore policies you’re not sure about?

17

Some Barriers 18

u  Ω(TK ln N)1/2 is a known lower bound on regret
[Auer et al. ’02] even in the stochastic setting.

u  Algorithms achieving Õ(KT polylog N)1/2 regret
are said to be optimal.

u  greedily first exploring (acting randomly) then
exploiting (following best policy) cannot be
optimal. Optimal algorithms must be adaptive.

Two Types of
Approaches Upper Confidence Bounds

[Auer ’02]
EXP3 Exponential Weights

[Auer et al ’02] 1

0.5

0
t=1

t=2

t=3

…

 At every time step:
1) choose action with highest UCB
2) update confidence bound of

the arm pulled.

 At every time step:
1) sample from distribution defined

by weights (mixed w/ uniform)
2) “exponential” weight updates

19

Two Types of
Approaches

20 UCB vs EXP3: A Comparison

UCB
[Auer ’02]

u Pros

Optimal in stochastic
setting.

Succeeds w.h.p.

u Cons

Fails in adversarial
setting.

Not optimal in the
contextual setting.

EXP3 & Friends
[Auer et al. ’02]

u Pros

Optimal for adversarial
and stochastic settings.

Adaptable to the
contextual setting

u Cons

Succeeds only in
expectation.

21

Algorithm Optimal? High Prob? Context?

Exp4 [ACFS ’02] Yes No Yes

epoch-geedy
[LZ ’07]

No Yes Yes

Exp3.P[ACFS ’02]
UCB [Auer ’00]

Yes Yes No

22

Algorithm Optimal? High Prob? Context?

Exp4 [ACFS ’02] Yes No Yes

epoch-geedy
[LZ ’07]

No Yes Yes

Exp3.P[ACFS ’02]
UCB [Auer ’00]

Yes Yes No

Exp4.P [BLLRS ’11] Yes Yes Yes

23 EXP4.P
[Beygelzimer-Langford-Li-R-Schapire ’11]

Combines advantages of Exponential Weights and UCB.
•  Optimal for both the stochastic and adversarial settings
•  Works for contextual case (also non-contextual case)
•  A high probability result

Main Theorem [BLLRS ’11]: For anyδ>0, w.p. at least 1-δ,
EXP4P has regret at most O(KT ln (N/δ))1/2 in adversarial

contextual bandit setting.

24 Ideas Behind Exp4.P
(all appeared in previous algorithms)

¡ exponential weights
keep a weight on each expert that drops exponentially in
the expert’s (estimated) performance

¡ upper confidence bounds
adds an upper confidence bound on each expert’s
estimated reward

¡ ensuring exploration
make sure each action is taken with some minimum
probability

¡ importance sampling
give rare events more importance to keep estimates
unbiased

25

key insights
(on top of UCB/ EXP)

1) exponential weights
and confidence
bounds “stack”

2) generalized
Bernstein’s inequality
for martingales

t=1

t=2

t=3

Key Insights

26

Algorithm Optimal? High
Prob?

Context? Efficient?

Exp4
[ACFS ’02]

Yes No Yes No

epoch-geedy
[LZ ’07]

No Yes Yes Yes

Exp3.P [ACFS ’02]
UCB [A ’00]

Yes Yes No Yes

Exp4.P
[BLLRS ’10]

Yes Yes Yes No

Efficiency

27 EXP4P Applied to Yahoo!

28

u We chose a policy class for which we could efficiently
keep track of the weights.
u Created 5 clusters, using user features.
u Policies mapped clusters to article choices.
u Ran on personalized news article

recommendations for Yahoo! front page.

u We used a learning bucket on which we ran the
algorithms and a deployment bucket on which we
ran the greedy (best) learned policy.

Experiments on Yahoo! Data Evaluation

29

Reported estimated (normalized) click-through rates
on front page news. Over 41M user visits. 253 total
articles. 21 candidate articles per visit.

EXP4P EXP4 ε-greedy
Learning

eCTR
1.0525 1.0988 1.3829

Deployment
eCTR

1.6512 1.5309 1.4290

Experimental Results

Why does this work in practice?
[McMahan ’11]

Experiments

Idea: Use Supervised Learning 30 A General Efficient Algorithm?
[DHKKLRZ ’11]

EXP4.P’s regret grows only logarithmically with N.

this suggests

We could compete with a huge set of policies!
(e.g. N=K100 becomes 10 log1/2 K in the regret)

however

Exp4.P explicitly “keeps track” of all policies. Reading in
all recommendations, for large N, would take too long.

u  “Competing” with an exponentially large set of policies is
commonplace in supervised learning.

u  Recommendations of the policies/functions don’t need to
be explicitly read when the policy class has structure!

Policy class Π

A good
policy p in Π

x1
x2

x3 x4
x5 x6

…

31

Supervised
Learning
Oracle

Reduce to Supervised Learning!
(Idea from [Langford-Zhang ’07])

Idea: Use Supervised Learning

Policy class Π

A good
policy p in Π

x1
x2

x3 x4
x5 x6

…

32

Supervised
Learning
Oracle

Reduce to Supervised Learning!
(Idea from [Langford-Zhang ’07])

Warning: NP-
Hard in
General

u  “Competing” with an exponentially large set of policies is
commonplace in supervised learning.

u  Recommendations of the policies/functions don’t need to
be explicitly read when the policy class has structure!

1 2 4 … T 3

5

1

k

1

4

3

Back to Contextual Bandits

no

yes

33

1

2

3

…

k

…

context: x1 x2 x3

N experts/functions

1 2 4 … T 3

N experts/functions

context: x1 x2 x3

$0.50

$0.70

made-up
data

Back to Contextual Bandits 34

1

2

3

…

k

…

Supervised
Learning
Oracle

1 2 4 … T 3

N experts/functions

context: x1 x2 x3

$0.50

$0.70

made-up
data

Back to Contextual Bandits 35

1

2

3

…

k

…

Supervised
Learning
Oracle

Randomized-UCB Thm: [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any δ>0, w.p. at least 1-δ, given access to a learning

oracle, R-UCB has regret O((KT ln (NT/δ))1/2 in the stochastic
contextual bandit setting and runs in time poly(K,T, ln N).

36

Randomized-UCB Thm: [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any δ>0, w.p. at least 1-δ, given access to a learning

oracle, R-UCB has regret O((KT ln (NT/δ))1/2 in the stochastic
contextual bandit setting and runs in time poly(K,T, ln N).

37

if arms chosen among only “good” policies w/ variance < 2K, we win
can prove this exists via a minimax theorem

this can be softened to occasionally allow choosing of bad policies
via “randomized” upper confidence bounds

creates a problem of how to choose arms as to satisfy the constraints
expressed as convex optimization problem

solvable by ellipsoid algorithm
can implement a separation oracle with the supervised learning oracle

Randomized-UCB Thm: [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any δ>0, w.p. at least 1-δ, given access to a learning

oracle, R-UCB has regret O((KT ln (NT/δ))1/2 in the stochastic
contextual bandit setting and runs in time poly(K,T, ln N).

38

if arms chosen among only “good” policies w/ variance < 2K, we win
can prove this exists via a minimax theorem

this can be softened to occasionally allow choosing of bad policies
via “randomized” upper confidence bounds

creates a problem of how to choose arms as to satisfy the constraints
expressed as convex optimization problem

solvable by ellipsoid algorithm
can implement a separation oracle with the supervised learning oracle

Big theoretical
breakthrough!

But not practical.

(and needs stochastic assumption)

39

A research goal of mine: make it work in adversarial model.

new on arXiv (2/14): Taming the Monster: A Fast and

Simple Algorithm for Contextual Bandits

[Agarwal-et al. ’14]

40 Applying to Public Health

Consortium for
Modeling and

Analysis of
Treatments

and
Interventions
c-mati.org

Distributed Learning
“the unreasonable effectiveness of data”

41

with
Jeff Cooper

42

data cannot fit on one
machine

(each machine gets data
from same distribution)

Setting

43 Goal

efficiently train a predictor

44 Distributing AdaBoost

u What is boosting?
u AdaBoost [Freund-Schapire ’97] combines “weak”

predictors into a strong predictor.
u Weak predictors are easy to design à lets us make

strong predictors by “magic”!

u Why distribute boosting?
u Probably the best “off the shelf” algorithm.
u Lends itself to being “distributed” but no adequate

solution had been found.
u  Is a weigh + measure approach!

45

weak classifiers = vertical or horizontal half-planes

AdaBoost in Pictures (Slides from Schapire)

46 AdaBoost in Pictures (Slides from Schapire)

47 AdaBoost in Pictures (Slides from Schapire)

48 AdaBoost in Pictures (Slides from Schapire)

49 AdaBoost in Pictures (Slides from Schapire)

50 Past Work on Distributed Ensembles

u Bagging [Breiman ’96], iVoting [Breiman ’99], etc.
u  Upside: easy to distribute for large data [Basilico et al. ’11]

u  Downside: not true “boosting” algorithms and do not reach the
error rates of AdaBoost

u Boosting in Distributed PAC Model [Balcan et al. ’12]
u  A harder model where communication complexity was studied.

u Filterboost [Bradley-Schapire ’01], etc.

u “The Distributed Boosting Alg.” [Lazarevic-Obradovic ’01]
u  Upside: Best-yet practical distributed boosting algorithm

u  Downside: unable to reach AdaBoost error rates, uses a lot of
communication.

51 The Distributed Boosting Algorithm
[Lazarevic-Obradovic ’01]

u  Data is split among K machines. The machines “boost” in
parallel.

u  On each round of boosting:
1.  Each machine sends its weak learner to all other machines.

2.  Each machine computes and sends the local error rate of
the “majority learner” to all other machines.

3.  All machines update their local weights based on this info.

u  At the end, every machine has full predictor.

52 DistBoost vs AdaBoost

DistBoost vs AdaBoost (if all data fit on one machine)

e
rr

o
r r

a
te

53 The Distributed Boosting Algorithm
[Lazarevic-Obradovic ’01]

u Drawbacks:
1.  Uses lots of communication.
2.  Unable to recover full accuracy of boosting.

 Why? Each site overspecializes to its own data.

u Two different fixes [Cooper-R ’14]:
1.  PreWeak: Smartly restrict weak learner selection.
2.  AdaSampling: Each machine selects its most
 informative data to send to a central processor.

54 Adaptive Sampling
[Cooper-R ’14]

u Main Idea: each machine uses AdaBoost to figure out
which examples are “most informative”
u Not always “hardest examples” – these could be noise.

u  Touches on margins theory

u These examples are sent to main processor, which boosts
just on them.

u Rationale based on a game-theoretic view of boosting.

55 Empirical Results

56 A Big-Data Example
(Over 1M clicks/non-clicks)

57

Feature-Efficient
Prediction

with

Yi Huang, Brian Powers

58
Feature-Efficient Prediction

Examples

¡ Medical testing
Want to predict what patients are sick with, but
tests might be expensive or dangerous.

¡ Displaying internet results
Want to give users the best results you can, but if
you don’t give results within 300 milliseconds, users
will leave.

59 Model

¡ Goal is to do supervised learning, using a limited
number of features in test-time.
¡ Given a budget on total cost: on each example, the

learner must look at no more features than allowed by
the budget.

¡ Each feature has an associated cost.

¡ Budget only limited in test data, not training.

¡ Predictors that do this are feature-efficient.

60 Lots of work on this problem

¡ Sequential analysis: when to stop sequential clinical trials.
[Wald ’47] and [Chernoff ’72]

¡ PAC learning with incomplete features.
[Ben-David-Dichterman ’93] and [Greiner et al. ’02]

¡ Robust prediction with missing features.
[Globerson-Roweis ’06]

¡ Learning linear functions by few features
[Cesa-Bianchi et al. ’10]

¡  Incorporating feature costs in CART impurity [Xu et al. ’12]

¡ MDPs for feature selection [He et al. ’13]

61 A “Weigh + Measure” Idea
[R ’11]

¡ An ensemble is usually a weighted vote of many
simple rules.

¡ The simple rules are usually feature-efficient.

¡ Take a vote of only a few of the rules.

62 AdaBoostRS [R ’11]

Training: train AdaBoost (or any ensemble).

Prediction:
1.  Sample the weak learners depending on their

voting weights and feature costs.
2.  Take a importance-weighted vote of the

sampled weak learners.

Intuition:
If ensemble has strong preference, sampling will
converge fast. If ensemble is split, who cares?
(Thm resembles margin bound [Schapire et al. ’98])

63 Experiments with AdaBoostRS

On ocr17 dataset. x-axis is number of samples taken.

64 Room for Improvement

Can we improve by moving the optimization into
training?

Turns out: yes, by a lot! [Huang-Powers-R ’14]

¡ Naïve idea: train AdaBoost until budget runs out

¡ Improvement: choose weak learners more wisely

65

66

67

With budgets, we need to consider two effects:
u  high edges make individual terms smaller
u  low costs allow for more terms in the product

How to choose weak learner ht?

68 Two Optimizations
[Huang-Powers-R ’14]

First idea: assume all future rounds will behave like
current. Leads to optimization

1)

Second idea: smoothed version of first.

2)

69 Experiments with costs ~ U(0,2)

70

Discussion

71 Summary

¡ Gave first optimal and (theoretically) efficient
algorithm for contextual bandits by reducing to
supervised learning.

¡ Gave a distributed ensemble algorithm with
empirical performance matching boosting.

¡ Showed how to make any ensemble algorithm
“feature efficient”.

72 Observations

¡ Progress occurred in stages – eg. contextual
algorithm was first made optimal but inefficient, then
theoretically efficient, then practical (by others).

¡ All these problems originate from practical concerns.

¡ Each of these areas heavily used theory, but
included practical elements, verified on large data.
E.g. distributed boosting’s taking care of noisy
examples.

73 Open Problems

¡ A practical, optimal contextual bandit algorithm
that works in adversarial setting.

¡ Distributed and feature-efficient contextual bandits.
(Reduction to supervised learning doesn’t preserve
these properties.)

¡ Better models for trading off error / prediction time.

¡ Many others…

74
The End

Thank you! Any Questions?

