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In a world of Big Data… 

¡ Google/Yahoo! approaching 1B daily visitors. 
What ads to show them? 

¡ 3B yearly doctor’s visits in the US (records digitized). 

How to treat them? (w/o performing too many tests.) 

¡ CERN currently storing > 100 petabytes of data. 
Which of the events contain an interesting signal? 

¡ The NSA collects…. everything. 
Who is a terrorist? 
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4 Some Opportunities and Challenges 

Can handle rich / interesting classes of functions. 

Should be really fast (linear time, faster?) 

Want to leverage all the data.  

It may not fit on one machine. 

Can finally predict accurately. 

Must predict quickly! (Or otherwise limited.) 



5 
Weights and Measures 

¡ Weighing – keep track of “performance” 
without needing to remember the history. 

¡ Measuring – given the weights, how to 
properly “measure” them to determine the 
correct outcome? 
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Optimal and Efficient 
Contextual Bandits 

 

“the world is a bandit problem” 

with  
Alina Beygelzimer, Miro Dudik, Daniel Hsu, 
Satyen Kale, Nikos Karampatziakis, John 

Langford, Lihong Li, Rob Schapire, Tong Zhang 



7 What is the Bandit Setting? 

¡ The name bandit refers to slot machines in a 
casino. 

¡ You choose actions (e.g. which machine to play), 
one after another. These actions come with 
rewards. 

¡ Goal is to minimize your regret – informally, how 
well you did compared to how well you could 
have done. 
¡ Bound expected regret or bound regret  w.h.p. 
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the contexts & rewards can come 
from a distribution (stochastic) or be 
adversarial 
 
The experts can be present 
(contextual) or not. 
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u harder than supervised (usual) learning: 
In the bandit setting, we do not know the 
rewards of actions not taken. 
 

u many applications: 
Medicine, ad auctions, finance, … 
 

u exploration/exploitation dilemma: 
exploit policies you’ve learned to be good? 
explore policies you’re not sure about? 
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Some Barriers 18 

u  Ω(TK ln N)1/2 is a known lower bound on regret 
[Auer et al. ’02] even in the stochastic setting.   

u  Algorithms achieving Õ(KT polylog N)1/2 regret 
are said to be optimal. 

u  greedily first exploring (acting randomly) then 
exploiting (following best policy) cannot be 
optimal.  Optimal algorithms must be adaptive. 



Two Types of 
Approaches Upper Confidence Bounds 

[Auer ’02] 
EXP3 Exponential Weights 

[Auer et al ’02] 1 

0.5 
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  At every time step: 
1) choose action with highest UCB 
2) update confidence bound of 

the arm pulled. 

  At every time step: 
1) sample from distribution defined 

by weights (mixed w/ uniform) 
2) “exponential” weight updates 
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Two Types of 
Approaches 

20 UCB vs EXP3: A Comparison 

UCB 
[Auer ’02] 

u Pros 

Optimal in stochastic 
setting.  

Succeeds w.h.p. 

u Cons 

Fails in adversarial 
setting. 

Not optimal in the 
contextual setting. 

EXP3 & Friends 
[Auer et al. ’02] 

u Pros 

Optimal for adversarial 
and stochastic settings. 

Adaptable to the 
contextual setting 

u Cons 

Succeeds only in 
expectation. 
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Algorithm Optimal? High Prob? Context? 

Exp4 [ACFS ’02] Yes No Yes 

epoch-geedy  
[LZ ’07] 

No Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Yes Yes No 
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Algorithm Optimal? High Prob? Context? 

Exp4 [ACFS ’02] Yes No Yes 

epoch-geedy  
[LZ ’07] 

No Yes Yes 

Exp3.P[ACFS ’02] 
UCB [Auer ’00] 

Yes Yes No 

Exp4.P [BLLRS ’11] Yes Yes Yes 



23 EXP4.P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

Combines advantages of Exponential Weights and UCB. 
•  Optimal for both the stochastic and adversarial settings 
•  Works for contextual case (also non-contextual case) 
•  A high probability result 

Main Theorem [BLLRS ’11]:  For anyδ>0, w.p. at least 1-δ, 
EXP4P has regret at most O(KT ln (N/δ))1/2 in adversarial 

contextual bandit setting. 



24 Ideas Behind Exp4.P 
(all appeared in previous algorithms) 

¡ exponential weights 
keep a weight on each expert that drops exponentially in 
the expert’s (estimated) performance 

¡ upper confidence bounds 
adds an upper confidence bound on each expert’s 
estimated reward 

¡ ensuring exploration 
make sure each action is taken with some minimum 
probability 

¡ importance sampling 
give rare events more importance to keep estimates 
unbiased 
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key insights  
(on top of UCB/ EXP) 

1) exponential weights 
and confidence 
bounds “stack” 

2) generalized 
Bernstein’s inequality 
for martingales 

t=1 

t=2 

t=3 

Key Insights 
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Algorithm Optimal? High 
Prob? 

Context? Efficient? 

Exp4  
[ACFS ’02] 

Yes No Yes No 

epoch-geedy  
[LZ ’07] 

No Yes Yes Yes 

Exp3.P [ACFS ’02] 
UCB [A ’00] 

Yes Yes No Yes 

Exp4.P  
[BLLRS ’10] 

Yes Yes Yes  No 

Efficiency 



27 EXP4P Applied to Yahoo! 
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u We chose a policy class for which we could efficiently 
keep track of the weights.  
u Created 5 clusters, using user features.  
u Policies mapped clusters to article choices.  
u Ran on personalized news article 

recommendations for Yahoo! front page.  

u We used a learning bucket on which we ran the 
algorithms and a deployment bucket on which we 
ran the greedy (best) learned policy.  

Experiments on Yahoo! Data Evaluation 
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Reported estimated (normalized) click-through rates 
on front page news. Over 41M user visits.  253 total 
articles. 21 candidate articles per visit. 

EXP4P EXP4 ε-greedy 
Learning 

eCTR 
1.0525 1.0988 1.3829 

Deployment 
eCTR 

1.6512 1.5309 1.4290 

Experimental Results 

Why does this work in practice? 
[McMahan ’11] 

Experiments 



Idea: Use Supervised Learning 30 A General Efficient Algorithm? 
[DHKKLRZ ’11] 

EXP4.P’s regret grows only logarithmically with N. 
 

this suggests 
 

We could compete with a huge set of policies!  
(e.g. N=K100  becomes 10 log1/2 K in the regret) 

 
however 

 
Exp4.P explicitly “keeps track” of all policies. Reading in 
all recommendations, for large N, would take too long. 



u  “Competing” with an exponentially large set of policies is 
commonplace in supervised learning. 

u  Recommendations of the policies/functions don’t need to 
be explicitly read when the policy class has structure! 

Policy class Π 

A good 
policy p in Π 

x1 
x2 

x3 x4 
x5 x6 

… 

31 

Supervised 
Learning 
Oracle 

Reduce to Supervised Learning! 
(Idea from [Langford-Zhang ’07]) 



Idea: Use Supervised Learning 

Policy class Π 
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policy p in Π 
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x2 
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Supervised 
Learning 
Oracle 

Reduce to Supervised Learning! 
(Idea from [Langford-Zhang ’07]) 

Warning: NP-
Hard in 
General 

u  “Competing” with an exponentially large set of policies is 
commonplace in supervised learning. 

u  Recommendations of the policies/functions don’t need to 
be explicitly read when the policy class has structure! 
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Randomized-UCB Thm: [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a learning 

oracle, R-UCB has regret O((KT ln (NT/δ))1/2  in the stochastic 
contextual bandit setting and runs in time poly(K,T, ln N). 

36 
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if arms chosen among only “good” policies w/ variance < 2K, we win 
can prove this exists via a minimax theorem 

this can be softened to occasionally allow choosing of bad policies 
via “randomized” upper confidence bounds 

creates a problem of how to choose arms as to satisfy the constraints 
expressed as convex optimization problem 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 
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if arms chosen among only “good” policies w/ variance < 2K, we win 
can prove this exists via a minimax theorem 

this can be softened to occasionally allow choosing of bad policies 
via “randomized” upper confidence bounds 

creates a problem of how to choose arms as to satisfy the constraints 
expressed as convex optimization problem 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 

Big theoretical 
breakthrough! 

 
But not practical. 

(and needs stochastic assumption) 
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A research goal of mine: make it work in adversarial model. 

new on arXiv (2/14): Taming the Monster: A Fast and 

Simple Algorithm for Contextual Bandits  

[Agarwal-et al. ’14] 



40 Applying to Public Health 

Consortium for 
Modeling and 

Analysis of 
Treatments 

and 
Interventions 
c-mati.org 



Distributed Learning 
“the unreasonable effectiveness of data” 

41 

with  
Jeff Cooper 
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data cannot fit on one 
machine 

(each machine gets data 
from same distribution) 

Setting 



43 Goal 

efficiently train a predictor 



44 Distributing AdaBoost 

u What is boosting? 
u AdaBoost [Freund-Schapire ’97] combines “weak” 

predictors into a strong predictor. 
u Weak predictors are easy to design à lets us make 

strong predictors by “magic”! 

u Why distribute boosting? 
u Probably the best “off the shelf” algorithm. 
u Lends itself to being “distributed” but no adequate 

solution had been found. 
u  Is a weigh + measure approach!  
 



45 

weak classifiers = vertical or horizontal half-planes 

AdaBoost in Pictures (Slides from Schapire) 
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50 Past Work on Distributed Ensembles 

u Bagging [Breiman ’96], iVoting [Breiman ’99], etc. 
u  Upside: easy to distribute for large data [Basilico et al. ’11] 

u  Downside: not true “boosting” algorithms and do not reach the 
error rates of AdaBoost 

u Boosting in Distributed PAC Model [Balcan et al. ’12] 
u  A harder model where communication complexity was studied. 

u Filterboost [Bradley-Schapire ’01], etc. 

u “The Distributed Boosting Alg.” [Lazarevic-Obradovic ’01] 
u  Upside: Best-yet practical distributed boosting algorithm 

u  Downside: unable to reach AdaBoost error rates, uses a lot of 
communication. 



51 The Distributed Boosting Algorithm 
[Lazarevic-Obradovic ’01] 

u  Data is split among K machines. The machines “boost” in 
parallel. 

u  On each round of boosting: 
1.  Each machine sends its weak learner to all other machines. 

2.  Each machine computes and sends the local error rate of 
the “majority learner” to all other machines. 

3.  All machines update their local weights based on this info. 

u  At the end, every machine has full predictor. 



52 DistBoost vs AdaBoost 

DistBoost vs AdaBoost (if all data fit on one machine) 

e
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o
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53 The Distributed Boosting Algorithm 
[Lazarevic-Obradovic ’01] 

u Drawbacks: 
1.  Uses lots of communication. 
2.  Unable to recover full accuracy of boosting.   

 Why? Each site overspecializes to its own data. 

u Two different fixes [Cooper-R ’14]: 
1.   PreWeak: Smartly restrict weak learner selection. 
2.   AdaSampling: Each machine selects its most  
      informative data to send to a central processor. 



54 Adaptive Sampling 
[Cooper-R ’14] 

u Main Idea: each machine uses AdaBoost to figure out 
which examples are “most informative” 
u Not always “hardest examples” – these could be noise. 

u  Touches on margins theory 

u These examples are sent to main processor, which boosts 
just on them. 

u Rationale based on a game-theoretic view of boosting. 



55 Empirical Results 



56 A Big-Data Example 
(Over 1M clicks/non-clicks) 
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Feature-Efficient 
Prediction 

 
with  

Yi Huang, Brian Powers 



58 
Feature-Efficient Prediction 

Examples 

¡ Medical testing 
Want to predict what patients are sick with, but 
tests might be expensive or dangerous. 

¡ Displaying internet results 
Want to give users the best results you can, but if 
you don’t give results within 300 milliseconds, users 
will leave. 



59 Model 

¡ Goal is to do supervised learning, using a limited 
number of features in test-time.  
¡ Given a budget on total cost: on each example, the 

learner must look at no more features than allowed by 
the budget.  

¡ Each feature has an associated cost. 

¡ Budget only limited in test data, not training. 

¡ Predictors that do this are feature-efficient. 



60 Lots of work on this problem 

¡ Sequential analysis: when to stop sequential clinical trials. 
[Wald ’47] and [Chernoff ’72]  

¡ PAC learning with incomplete features.                           
[Ben-David-Dichterman ’93] and [Greiner et al. ’02]  

¡ Robust prediction with missing features.                
[Globerson-Roweis ’06]  

¡ Learning linear functions by few features                      
[Cesa-Bianchi et al. ’10]  

¡  Incorporating feature costs in CART impurity [Xu et al. ’12] 

¡ MDPs for feature selection [He et al. ’13] 



61 A “Weigh + Measure” Idea  
[R ’11] 

¡ An ensemble is usually a weighted vote of many 
simple rules. 

¡ The simple rules are usually feature-efficient. 

¡ Take a vote of only a few of the rules. 



62 AdaBoostRS [R ’11] 

Training: train AdaBoost (or any ensemble).  

Prediction: 
1.  Sample the weak learners depending on their 

voting weights and feature costs. 
2.  Take a importance-weighted vote of the 

sampled weak learners. 

Intuition: 
If ensemble has strong preference, sampling will 
converge fast.  If ensemble is split, who cares?   
(Thm resembles margin bound [Schapire et al. ’98]) 

 



63 Experiments with AdaBoostRS 

On ocr17 dataset. x-axis is number of samples taken. 



64 Room for Improvement 

Can we improve by moving the optimization into 
training? 

Turns out: yes, by a lot! [Huang-Powers-R ’14] 

¡ Naïve idea: train AdaBoost until budget runs out 

¡ Improvement: choose weak learners more wisely 
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With budgets, we need to consider two effects: 
u  high edges make individual terms smaller 
u  low costs allow for more terms in the product 

How to choose weak learner ht? 



68 Two Optimizations 
[Huang-Powers-R ’14] 

First idea: assume all future rounds will behave like 
current. Leads to optimization  

 

1) 

 

Second idea: smoothed version of first. 

 

2) 



69 Experiments with costs ~ U(0,2) 
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Discussion 
 



71 Summary 

¡ Gave first optimal and (theoretically) efficient 
algorithm for contextual bandits by reducing to 
supervised learning. 

¡ Gave a distributed ensemble algorithm with 
empirical performance matching boosting. 

¡ Showed how to make any ensemble algorithm 
“feature efficient”. 



72 Observations 

¡ Progress occurred in stages – eg. contextual 
algorithm was first made optimal but inefficient, then 
theoretically efficient, then practical (by others). 

¡ All these problems originate from practical concerns. 

¡ Each of these areas heavily used theory, but 
included practical elements, verified on large data.  
E.g. distributed boosting’s taking care of noisy 
examples. 

 



73 Open Problems 

¡ A practical, optimal contextual bandit algorithm 
that works in adversarial setting. 

¡ Distributed and feature-efficient contextual bandits. 
(Reduction to supervised learning doesn’t preserve 
these properties.) 

¡ Better models for trading off error / prediction time. 

¡ Many others… 



74 
The End 

Thank you!  Any Questions? 

 


