The Complexity of Statistical Algorithms

Lev Reyzin
Georgia Institute of Technology
A Brief Introduction to Learning

some context and an introduction to my field
Learning Half-Planes
Learning Half-Planes
Learning Half-Planes
Learning Half-Planes
Learning Half-Planes
Let X be a domain (\mathbb{R}^2).

Let D be a probability distribution over X.

Let $c: X \rightarrow \{-1,1\}$ be a target “concept” (half-plane) and C be the set of possible targets c (all possible half-planes).

Class C is learnable if $\forall c \in C, D, \epsilon > 0, \delta > 0$, a learner can receive a set S of m “labeled examples” from D: $\{(x_1, c(x_1)), \ldots, (x_m, c(x_m))\}$ (colored points) and produce a hypothesis $h_S: X \rightarrow \{-1,1\}$ such that:

$$\Pr_{S \sim D}[\Pr_{x \sim D}[h_S(x) \neq c(x)] > \epsilon] < \delta.$$

(ideally want m to be “small”)
PAC learning has a rich history, interesting results, nice theory, open problems, many applications, etc.

- 2011 A. M. Turing Award to Valiant

In trying to understand which PAC algorithms can handle noise, “statistical queries (SQ)” were invented [Kearns ’93].
- Algorithms that access their data via SQs are noise-tolerant.
- It turns out that most learning algorithms fall into this category.

Unfortunately, it is also known that SQ algorithms have serious limitations.
- Notably, SQ algorithms cannot learn parities, among other classes of functions [Blum et al ‘93].
PAC Learning Parities

- **[Def.]** For \(x \in \{0,1\}^n \) and \(c \in \{0,1\}^n \), let \(\chi_c(x) \) take the value 1 if \(c \cdot x \) is odd and -1 otherwise.
 - If \(c \) has 1’s only in \(r \) positions, we call \(c \) an \(r \)-parity.

- For an unknown target \(c \), the learner sees labeled examples \((x,\chi_c(x))\) from some distribution, e.g.
 \((00110101,1), (10011010,1), (00101111,-1), \ldots\)

- Learner needs to determine \(c \) (or more generally predict labels of future examples).

- Learning parities turns out to be hard for SQ algorithms even over the uniform distribution on \(\{0,1\}^n \).
Therefore, we can prove lower bounds on statistical query learning by showing certain classes encode parities.

- Example from my work: even random decision trees, automata, and DNF are not learnable with SQ.

 [Angluin-Eisenstat-Kontorovich-Reyzin ’10]

There has been little progress on noisy parity:

- For the general case: brute-force takes $O(2^n)$ time.

 Best progress: $O(2^{n/\log n})$ time. [Blum-Kalai-Wasserman ’00]

- For r-parities: brute-force takes $O(n^r)$ time.

 Best progress: $\sim O(n^{r/2})$. [Grigorescu-Reyzin-Vempala ’11]
In learning, the goal is to find a function of with low error on a distribution.

Most learning algorithms are Statistical Query algorithms.
- **Good news**: SQ algorithms are noise-tolerant.
- **Bad news**: SQ algorithms have serious limitations.

The SQ framework has elucidated many issues in learning.

Our [Feldman-Grigorescu-Reyzin-Vempala ’12] goal is to do the same thing for *optimization* (a generalization of learning)
- Our results explain experimentally observed phenomena.
- Our results generalize the SQ theory.
Optimization

the subject of this talk
Motivating Example

problem: moment maximization

Let D be a distribution over points in $[-1,1]^n$ and let $r \in \mathbb{Z}^+$. The goal is to find a unit vector u^* that approximately maximizes the expected r'th moment of the projection to u of a random point x chosen from D.

i.e. find

$$u^* \approx \arg\max_{u \in \mathbb{R}^n : \|u\|=1} E \left[(u \cdot x)^r \right].$$
Let D be a distribution over points in $[-1,1]^n$ and let $r \in \mathbb{Z}^+$. The goal is to find a unit vector u^* that

approximately maximizes the expected r'th moment of the projection to u of a random point x chosen from D.

i.e. find

$$ u^* \approx \arg \max_{u \in \mathbb{R}^n : \|u\|=1} E \left[(u \cdot x)^r \right]. $$
Possible Approaches for Large r

- **Idea 1 (Gradient descent):** Start with some unit vector u. Estimate the gradient (via samples), and move in that direction. Repeat until local maximum is found.
 - Many local maxima. Can we avoid this by taking new samples with each estimate?

- **Idea 2 [Kannan] (Markov chains):** Consider a Markov chain that attempts to sample u with density proportional to $e^{E[(x\cdot u)^r]}$. Implement via Metropolis filter. At each step we only need to estimate $E[(x\cdot u)^r]$.
 - Does this Markov chain mix rapidly?
Idea 1 (Gradient descent): Start with some unit vector \(u \). Estimate the gradient (via samples), and move in that direction. Repeat until local maximum is found.
- Many local maxima. Can we avoid this by taking new samples with each estimate? Our work shows that NO!

Idea 2 [Kannan] (Markov chains): Consider a Markov chain that attempts to sample \(u \) with density proportional to \(e^{E[(x\cdot u)^r]} \). Implement via Metropolis filter. At each step we only need to estimate \(E[(x\cdot u)^r] \).
- Does this Markov chain mix rapidly? Our work shows that NO!
Possible Approaches for Large r

- **Idea 1 (Gradient descent):** Start with some unit vector u. Estimate the gradient (via samples), and move in that direction. Repeat until local maximum is found.
 - Many local maxima. Can we avoid this by taking new samples with each estimate? *Our work shows that NO!*

- **Idea 2 [Kannan] (Markov chains):** Consider a Markov chain that attempts to sample u with density proportional to $e^{E[(x\cdot u)^r]}$. Implement via Metropolis filter. At each step we only need to estimate $E[(x\cdot u)^r]$.
 - Does this Markov chain mix rapidly? *Our work shows that NO!*

(Disclaimer: moment maximization is NP-hard for $r > 3$ [Brubaker ’09])
Both approaches fall under a class of statistical algorithms.

In this talk, we will show that for many optimization problems over distributions, statistical algorithms unconditionally have complexity exponential in their input parameters.

Our lower bounds use only a single parameter of the optimization problem we call statistical dimension.
- Inspired by the statistical query model in learning theory.

We shall use our results to give new lower bounds for distribution MAX-XOR-SAT, k-clique, and moment maximization.
Optimization problems over distributions. Let \(\mathcal{D} \) be the set of input distributions over a domain \(X \) and \(\mathcal{F} \) be a set of functions \(X \to \mathbb{R} \) over which we want to optimize. An optimization problem \(\mathcal{P}(\mathcal{F}, \mathcal{D}, \epsilon) \) over an input distribution \(D \in \mathcal{D} \) has a solution function \(f^* \in \mathcal{F} \) such that
\[
f^* = \arg\max_{f \in \mathcal{F}} E_{x \sim D}[f(x)].
\]

For a function \(g \in \mathcal{F} \), distribution \(D \), and \(\epsilon > 0 \), we say that \(g \) is \(\epsilon \)-optimal for \(D \) if
\[
E_{x \sim D}[g(x)] \geq E_{x \sim D}[f^*(x)] - \epsilon.
\]
The objective is to \(\epsilon \)-optimize over \(\mathcal{F} \) w.r.t. \(D \), i.e. to find an \(\epsilon \)-optimal \(g \in \mathcal{F} \).
Statistical Algorithms and Statistical Dimension

the definitions
We say an algorithm is **statistical** if it has no direct access to the target distribution D, but instead makes calls to an oracle STAT_D, which takes as inputs a **query function** $h \in H : X \rightarrow [-1,1]$ and a **tolerance parameter** $\tau > 0$. $\text{STAT}_D(h, \tau)$ returns a value

$$\nu \in [\mathbb{E}_{x \sim D} [h(x)] - \tau, \mathbb{E}_{x \sim D} [h(x)] + \tau].$$
We say an algorithm is **statistical** if it has no direct access to the target distribution D, but instead makes calls to an oracle STAT_D, which takes as inputs a **query function** $h \in H : X \rightarrow [-1,1]$ and a **tolerance parameter** $\tau > 0$. $\text{STAT}_D(h,\tau)$ returns a value

$$\nu \in [E_{x \sim D}[h(x)] - \tau, E_{x \sim D}[h(x)] + \tau].$$

We say an algorithm is “**realistic**” if it interacts with the distribution via an oracle SAMPLE_D, which takes as inputs a **query function** $h \in H : X \rightarrow [-1,1]$ and a **sample size** $t > 0$. $\text{SAMPLE}_D(h,t)$ draws $x_1 \ldots x_t$ i.i.d. from D and returns

$$\frac{1}{t} \sum_{i=0}^{t} h(x_i).$$
We say an algorithm is **statistical** if it has no direct access to the target distribution D, but instead makes calls to an oracle STAT_D, which takes as inputs a **query function** $h \in H: X \rightarrow [-1,1]$ and a **tolerance parameter** $\tau > 0$. $\text{STAT}_D(h,\tau)$ returns a value

$$\nu \in [\mathbb{E}_{x \sim D}[h(x)] - \tau, \mathbb{E}_{x \sim D}[h(x)] + \tau].$$

We say an algorithm is “**realistic**” if it interacts with the distribution via an oracle SAMPLE_D, which takes as inputs a **query function** $h \in H: X \rightarrow [-1,1]$ and a **sample size** $t > 0$. $\text{SAMPLE}_D(h,t)$ draws $x_1 \ldots x_t$ i.i.d. from D and returns

$$\frac{1}{t} \sum_{i=0}^{t} h(x_i).$$
What optimization algorithms can be implemented via statistical estimates?

- local search
- k-means
- simulated annealing
- EM
- MCMC
- gradient descent
- ...

(almost anything practical that you can think of has a statistical variant)
For **optimization** we just introduced a definition for **statistical** algorithms. It is inspired by the concept of **statistical query** algorithms [Kearns 1993] from **learning** theory.

In **learning**, examples come from some distribution and are labeled by an unknown concept. Therefore, there can exist hard distributions. In **optimization**, for any fixed input distribution, there is a fixed answer. Hence, we can’t have a “hard distribution.”

In **learning**, for many classes, the uniform distribution a hard distribution. In **optimization**, the uniform distribution is usually trivial (consider moment maximization).

In **learning**, it is sometimes reasonable to wish to learn the target **exactly**. In **optimization**, usually we’re interested in approximating the optimum (in our case additive).
Learning a class with statistical queries is hard if there is a distribution, under which the class contains many (nearly) pairwise uncorrelated functions [Blum et al. ‘94].

For optimization, we will want something similar, but for distributions instead of labeling functions.

- We will want there to be many possible “uncorrelated” input distributions, such that eliminating one distribution as the real input will not help in eliminating others.
For two functions $g, f: X \rightarrow \mathbb{R}$ and a distribution D with probability density function $D(x)$, define their inner product with respect to D to be

$$<f, g>_D := \mathbb{E}_{x \sim D}[f(x)g(x)].$$

The norm of f over D is

$$\|f\|_D := \langle f, f \rangle_D^{1/2}.$$

We will often omit D when it is clear from context.
For $\varepsilon, \gamma, \beta > 0$, domain X, class of functions \mathcal{F}, and a class of distributions \mathcal{D} over X, let m be the maximum s.t. there exists a reference distribution D over X s.t. for every $f \in \mathcal{F}$ there exists a set of m distributions $D_f = \{D_1 \ldots D_m\} \in \mathcal{D}$ satisfying:

1. f is not ε-optimal for any D_i for $i \in \{1 \ldots m\}$
2. $D_i/D - 1, D_j/D - 1 \leq \begin{cases} \beta \text{ for } i = j \in [m], \\ \gamma \text{ for } i \neq j \in [m] \end{cases}$

We define the statistical dimension of ε-optimizing over F, denoted $SD(\mathcal{F}, \mathcal{D}, \varepsilon, \gamma, \beta)$, to be m.
Lower bound for problems with high statistical dimension.

a theorem and proof
Main Theorem

Theorem: If for a class of functions \mathcal{F}, class of distributions \mathcal{D}, and $\varepsilon, \gamma, \beta > 0$, $\text{SD}(\mathcal{F}, \mathcal{D}, \varepsilon, \gamma, \beta) = m$, then at least $m(\tau - \gamma)/\beta$ calls of tolerance τ to the STAT oracle are required to ε-optimize over \mathcal{F} and \mathcal{D}.
Theorem: If for a class of functions \(\mathcal{F} \), class of distributions \(\mathcal{D} \), and \(\varepsilon, \gamma, \beta > 0 \), \(\text{SD}(\mathcal{F}, \mathcal{D}, \varepsilon, \gamma, \beta) = m \), then at least \(m(\tau - \gamma)/\beta \) calls of tolerance \(\tau \) to the STAT oracle are required to \(\varepsilon \)-optimize over \(\mathcal{F} \) and \(\mathcal{D} \).

proof strategy (inspired by argument of Szörényi [2009])

- Let \(\mathcal{A} \) be an algorithm that \(\varepsilon \)-optimizes over \(\mathcal{F} \) and \(\mathcal{D} \).
- We see what happens if we run \(\mathcal{A} \) and always answer \(E_D[h(x)] \).
 - Let \(f \) be the output of \(\mathcal{A} \).
 - Let \(D_1 \ldots D_m \) be the \(m \) distributions on which \(f \) is not \(\varepsilon \)-optimal.
- \(\mathcal{A} \) needs to ask enough queries as to “eliminate” \(m \) \(D_i \)'s.
- This will turn out to be a lot of queries!
Proof, Continued

- Let \(h_1 \ldots h_q \) be the \(q \) queries (of tolerance \(\tau \)) asked by \(\mathcal{A} \) in the simulation.

- For every \(k \leq q \) let \(A_k \) be the set of distributions \(D_i \) such that
 \[|E_{D_i}[h_k(x)] - E_{D_i}[h_k(x)]| > \tau. \]

- We will prove:

 1. \(\sum_{k \leq q} |A_k| \geq m \)

 2. for every \(k \), \(|A_k| \leq \beta/\left(\tau^2 - \gamma\right) \)

- These together immediately imply the theorem.
Proof, Continued

- Let $h_1 \ldots h_q$ be the q queries (of tolerance τ) asked by \mathcal{A} in the simulation.

- For every $k \leq q$ let A_k be the set of distributions D_i such that $|E_D[h_k(x)] - E_{D_i}[h_k(x)]| > \tau$.

- We will prove:

 1. $\sum_{k \leq q} |A_k| \geq m$

 2. for every k, $|A_k| \leq \beta/(\tau^2 - \gamma)$

- These together immediately imply the theorem.
need to prove: for every \(k \), \(|A_k| \leq \frac{\beta}{(\tau^2 - \gamma)} \)

note that: \[
\mathbb{E}_{D_i}[h_k(x)] - \mathbb{E}_D[h_k(x)] = \mathbb{E}_D \left[\frac{D_i}{D} h_k(x) \right] - \mathbb{E}_D[h_k(x)] = \langle h_k, \frac{D_i}{D} - 1 \rangle
\]

and define \[
\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1
\]
need to prove: for every k, $|A_k| \leq \beta / (\tau^2 - \gamma)$

note that: $\mathbf{E}[h_k(x)] - \mathbf{E}[h_k(x)] = \mathbf{E} \left[\frac{D_i}{D} h_k(x) \right] - \mathbf{E}[h_k(x)] = \left< h_k, \frac{D_i}{D} - 1 \right>$

and define $\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1$

by Cauchy-Schwartz we have

$$\left< h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \langle h_k, \hat{D}_i \rangle \right>^2 \leq \| h_k \|^2 \cdot \left\| \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \langle h_k, \hat{D}_i \rangle \right\|^2$$

$$\leq 1 \cdot \left(\sum_{i \in A_k} \| \hat{D}_i \|^2 + \sum_{i \neq j \in A_k} \langle \hat{D}_i, \hat{D}_j \rangle \right)$$

$$\leq \beta |A_k| + \gamma (|A_k|^2 - |A_k|)$$
Proof, Continued

need to prove: for every k, $|A_k| \leq \beta/(\tau^2 - \gamma)$

note that: $\mathbf{E}_{D_i}[h_k(x)] - \mathbf{E}_D[h_k(x)] = \mathbf{E}_D \left[\frac{D_i}{D} h_k(x) \right] - \mathbf{E}_D[h_k(x)] = \left\langle h_k, \frac{D_i}{D} - 1 \right\rangle$

and define $\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1$

$$\left\langle h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign}\langle h_k, \hat{D}_i \rangle \right\rangle^2 \leq \beta |A_k| + \gamma |A_k|^2$$
Proof, Continued

need to prove: for every \(k \), \(|A_k| \leq \beta / (\tau^2 - \gamma)\)

note that:
\[
\mathbb{E}_D[h_k(x)] - \mathbb{E}_D[h'_k(x)] = \mathbb{E}_D \left[\frac{D_i}{D} h_k(x) \right] - \mathbb{E}_D[h_k(x)] = \left\langle h_k, \frac{D_i}{D} - 1 \right\rangle
\]

and define
\[
\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1
\]

\[
\left\langle h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign}\langle h_k, \hat{D}_i \rangle \right\rangle^2 \leq \beta |A_k| + \gamma |A_k|^2
\]

\[
\left\langle h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign}\langle h_k, \hat{D}_i \rangle \right\rangle^2 = \left(\sum_{i \in A_k} \langle h_k, \hat{D}_i \rangle \cdot \text{sign}\langle h_k, \hat{D}_i \rangle \right)^2 \geq \tau^2 |A_k|^2
\]
Proof, Continued

need to prove: for every k, $|A_k| \leq \beta / (\tau^2 - \gamma)$

note that: $\mathbb{E}_{D_i}[h_k(x)] - \mathbb{E}_{D}[h_k(x)] = \mathbb{E}_{D} \left[\frac{D_i}{D} h_k(x) \right] - \mathbb{E}_{D}[h_k(x)] = \left< h_k, \frac{D_i}{D} - 1 \right>$

and define $\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1$

$$\left< h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \left< h_k, \hat{D}_i \right> \right>^2 \leq \beta |A_k| + \gamma |A_k|^2$$

$$\left< h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \left< h_k, \hat{D}_i \right> \right>^2 \geq \tau^2 |A_k|^2$$
need to prove: for every k, $|A_k| \leq \beta/(\tau^2 - \gamma)$

note that: $\mathbb{E}_{D_i}[h_k(x)] - \mathbb{E}_D[h_k(x)] = \mathbb{E}_D \left[\frac{D_i}{D} h_k(x) \right] - \mathbb{E}_D[h_k(x)] = \langle h_k, \frac{D_i}{D} - 1 \rangle$

and define $\hat{D}_i(x) = \frac{D_i(x)}{D(x)} - 1$

\[
\left(h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \langle h_k, \hat{D}_i \rangle \right)^2 \leq \beta |A_k| + \gamma |A_k|^2
\]

\[
\left(h_k, \sum_{i \in A_k} \hat{D}_i \cdot \text{sign} \langle h_k, \hat{D}_i \rangle \right)^2 \geq \tau^2 |A_k|^2
\]

$\beta |A_k| + \gamma |A_k|^2 \geq \tau^2 |A_k|^2$
Theorem: If for a class of functions \mathcal{F}, class of distributions \mathcal{D}, and $\varepsilon, \gamma, \beta > 0$, $\text{SD}(\mathcal{F}, \mathcal{D}, \varepsilon, \gamma, \beta) = m$, then at least $m(\tau - \gamma)/\beta$ calls of tolerance τ to the STAT oracle are required to ε-optimize over \mathcal{F} and \mathcal{D}.

two notes
1. This also gives a lower bound for a “realistic” sampling algorithm.
2. Strictly generalizes the statistical query bounds in learning (not at all obvious).
 In fact, this gives a stronger lower bound for learning (by a factor of 2).
Applications

to MAX-XOR-SAT, k-clique, and moment maximization
For $x \in \{0,1\}^n$ and $c \in \{0,1\}^n$, let $\chi_c(x)$ take the value 1 if $c \cdot x$ is odd and -1 otherwise.

Let D_c be the uniform distribution over x such that $c \cdot x = 1 \pmod{2}$.

Two useful known facts about parities

Proposition 1: $E_{x \sim D_c}[\chi_{c'}(x)] = 0$ if $c' \neq c$.

Proposition 2: $E_{x \sim U}[\chi_c(x)\chi_{c'}(x)] = 0$ if $c \neq c'$.
Problem: Let D be a distribution over XOR clauses $c \in \{0,1\}^n$ ($c_i=1$ means variable i appears in c). The problem is to find an assignment $x \in \{0,1\}^n$ that maximizes the expected number of satisfied clauses.

- Clause c is **satisfied** by assignment x if $\chi_c(x)=1$.
- Similar to the parity problem in learning, but the distribution is over clauses (e.g. parity functions).

<table>
<thead>
<tr>
<th>Clause</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_1 \oplus c_3 \oplus c_4$</td>
<td>$1/2$</td>
</tr>
<tr>
<td>$c_1 \oplus c_2$</td>
<td>$1/8$</td>
</tr>
<tr>
<td>c_4</td>
<td>$1/4$</td>
</tr>
<tr>
<td>$c_1 \oplus c_2 \oplus c_4$</td>
<td>$1/16$</td>
</tr>
<tr>
<td>$c_2 \oplus c_4$</td>
<td>$1/16$</td>
</tr>
</tbody>
</table>

The assignment $x_1 = 1; x_2 = 0; x_3 = 1; x_4 = 1$ has probability $15/16$ of satisfying a clause.
Problem: Let D be a distribution over XOR clauses $c \in \{0,1\}^n$ ($c_i=1$ means variable i appears in c). The problem is to find an assignment $x \in \{0,1\}^n$ that maximizes the expected number of satisfied clauses.

- Clause c is **satisfied** by assignment x if $\chi_c(x)=1$.
- Similar to the parity problem in learning, but the distribution is over clauses (e.g. parity functions).

Result: Any statistical algorithm for MAX-XOR-SAT requires $2^{n/3}$ queries of tolerance $2^{-n/3}$ to find an assignment that approximates, to within an additive factor of $\frac{1}{2}$, the maximum probability of satisfying a clause drawn from an unknown distribution.

- Holds even when there exists an assignment that satisfies all clauses (with non-zero probability mass according to D).
proof sketch

- For **MAX-XOR-SAT** $SD(\mathcal{F}, \mathcal{D}, \frac{1}{2}, 0, 1) = 2^n - 1$.
 - The target functions \mathcal{F} are all 2^n possible assignments.
 - The reference distribution $\mathcal{D} = U$.
 - For all $2^n - 1$ choices for x, the corresponding distributions \mathcal{D}_i will be uniform over the clauses c s.t. $c \cdot x = 1$.
 - Proposition 1 implies that any incorrect assignment satisfies only $\frac{1}{2}$ of the clauses (setting $\varepsilon = \frac{1}{2}$).
 - Proposition 2 can be used to show that we can set $\gamma = 0, \beta = 1$.

The lower bound then follows from the main theorem.
Result: Any statistical algorithm for MAX-XOR-SAT requires $2^{n/3}$ queries of tolerance $2^{-n/3}$ to find an assignment that approximates, to within an additive factor of $\frac{1}{2}$, the maximum probability of satisfying a clause drawn from an unknown distribution.

- Holds even when there exists an assignment that satisfies all clauses (with non-zero probability mass according to D).

Helps explain the experimental evidence about the performance of algorithms like WalkSat [Selman et al. ’95].
Problem: Let D be a distribution over $X = \{0, 1\}^{C(n, 2)}$, corresponding to graphs G on n vertices. Let $I_S(G) = 1$ if S induces a clique on G and $I_S(G) = 0$ otherwise. The problem is to find a subset $S \subseteq V$ that maximizes $E_{G \sim D}[I_S(G)]$.

Note: $C(n, k)$ is “n choose k”
Problem: Let D be a distribution over $X = \{0, 1\}^{C(n, 2)}$, corresponding to graphs G on n vertices. Let $I_S(G) = 1$ if S induces a clique on G and $I_S(G) = 0$ otherwise. The problem is to find a subset $S \subseteq V$ that maximizes $E_{G \sim D}[I_S(G)].$

Result: Any statistical algorithm requires $C(n, k)^{1/3}$ queries of tolerance $C(n, k)^{-1/3}$ to approximate k-clique, to within an additive factor of $2^{-C(k, 2)}$.

- Achieving even a constant factor approximation is hard!
proof idea

- We show that for k-Clique, \(\text{SD}(F, D, 2^{-C(k,2)}, 0, 1) = C(n, k) \).

- For any subset of edges \(T \in V \times V \) and graph \(G \) define \(\text{parity}_T(G, k) = 1 \) if \(|E(G) \cap T| \) has same parity as \(C(k, 2) \) and 0 otherwise.

- \(D_1 \ldots D_{C(n, k)} \) (for each subset of k vertices w/ T a clique on that subset) are uniform over all graphs with \(\text{parity}_T(G, k) = 1 \).
Restricting to correct parity on given subset increases probability of a clique from $2^{-C(k,2)}$ to $2^{1-C(k,2)}$, so the “correct parity” corresponds to the “correct clique”.

Cliques and Parity
Problem: Let D be a distribution over $\{-1,1\}^n$ and $r \in \mathbb{Z}^+$. The goal is to find a vector u^* that **maximizes the expected r’th moment** of the projection to u of a random point x from D. i.e.

$$u^* = \arg \max_{u \in \mathbb{R} : \|u\| = 1} \mathbb{E}_{x \sim D} [(u \cdot x)^r].$$

Result: For r odd, any statistical algorithm for moment maximization requires $C(n,r)^{1/3}$ queries of tolerance $C(n,r)^{-1/3}$ to approximate the rth moment **to within** $\sim (r/e)^{r/2}$.
proof idea

- Idea is to show that for the moment maximization problem,
 \(\text{SD}(F, D, r!/(2(r+1)^{r/2}), 0, 1) = C(n,r) \)

- **Lemma**: Let \(r \in \mathbb{Z}^+ \) be odd and \(c \in \{0,1\}^n \). Let \(D_c \) be the distribution uniform over \(x \in \{-1,1\}^n \) for which \(\chi_c(x) = -1 \). The for all \(u \in \mathcal{R} \)
 \[
 \mathbb{E}_{x \sim D_c} [(x \cdot u)^r] = r! \prod_{i : c_i = 1} u_i.
 \]

- By the AM/GM inequality, the moment under \(D_c \) is maximized at the vector uniform on the parity coordinates.
What happens if we fix and reuse a sample?
- Our lower bounds break down...
- But intuition and experience indicate that “statistical” algorithms still fail. How do we capture/formalize this?

Other interesting problems?
- Perhaps our techniques can be used to prove lower bounds for planted clique.

Can we design inherently non-statistical algorithms?
- Gaussian elimination.
- What else?
Thank You!

Questions?