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In a world of Big Data… 

¡ Google/Yahoo! approaching 1B daily visitors. 
What ads to show them? 

¡ 3B yearly doctor’s visits in the US (records digitized). 

How to treat them? (w/o performing too many tests.) 

¡ CERN currently storing > 100 petabytes of data. 
Which of the events contain an interesting signal? 

¡ The NSA collects…. everything. 
Who is a terrorist? 
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4 Some Opportunities and Challenges 

Can handle rich / interesting classes of functions. 

Should be really fast (linear time, faster?) 

Have petabytes of data 

Can label only some of it. 

Can finally predict accurately. 

Must predict quickly! (Or otherwise limited.) 



5 
Weights and Measures 

¡ weighing – keep track of “performance” 
without needing to remember the history. 

¡ measuring – given the weights, how to 
properly “measure” them to determine the 
correct outcome? 
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Optimal and Efficient 
Contextual Bandits 

 

“the world is a bandit problem” 

with  
Beygelzimer, Dudik, Hsu, Kale, Karampatziakis, 

Langford, Li, Schapire, Zhang 



7 What is the Bandit Setting? 

¡ The name bandit refers to slot machines in a 
casino. 

¡ You choose actions (e.g. which machine to play), 
one after another. These actions come with 
rewards. 

¡ Goal is to minimize your regret – informally, how 
well you did compared to how well you could 
have done. 
¡ Bound expected regret or bound regret  w.h.p. 
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the contexts & rewards can come 
from a distribution (stochastic) or be 
adversarial 
 
The experts can be present 
(contextual) or not. 
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Contextual Bandits [Auer et al. ’02] 



u harder than supervised (usual) learning: 
In the bandit setting, we do not know the 
rewards of actions not taken. 
 

u many applications: 
Medicine, ad auctions, finance, … 
 

u exploration/exploitation dilemma: 
exploit policies you’ve learned to be good? 
explore policies you’re not sure about? 

17 



Some Barriers 18 

u  Ω(TK ln N)1/2 is a known lower bound on regret 
[Auer et al. ’02] even in the stochastic setting.   

u  Algorithms achieving Õ(KT polylog N)1/2 regret 
are said to be optimal. 

u  greedily first exploring (acting randomly) then 
exploiting (following best policy) cannot be 
optimal.  Optimal algorithms must be adaptive. 



Two Types of 
Approaches Upper Confidence Bounds 

[Auer ’02] 
EXP3 Exponential Weights 

[Auer et al ’02] 1 

0.5 

0 
t=1 
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… 

  At every time step: 
1) choose action with highest UCB 
2) update confidence bound of 

the arm pulled. 

  At every time step: 
1) sample from distribution defined 

by weights (mixed w/ uniform) 
2) “exponential” weight updates 
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Two Types of 
Approaches 

20 UCB vs EXP3: A Comparison 

UCB 
[Auer ’02] 

u Pros 

Optimal in stochastic 
setting.  

Succeeds w.h.p. 

u Cons 

Fails in adversarial 
setting. 

Not optimal in the 
contextual setting. 

EXP3 & Friends 
[Auer et al. ’02] 

u Pros 

Optimal for adversarial 
and stochastic settings. 

Adaptable to the 
contextual setting 

u Cons 

Succeeds only in 
expectation. 
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Algorithm Optimal? High Prob? Context? 

Exp4  
[ACFS ’02] 

Yes No Yes 

epoch-geedy  
[LZ ’07] 

No Yes Yes 

Exp3.P [ACFS ’02] 
UCB [Auer ’00] 

Yes Yes No 
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23 EXP4.P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

Combines advantages of Exponential Weights and UCB. 
•  Optimal for both the stochastic and adversarial settings 
•  Works for contextual case (also non-contextual case) 
•  A high probability result 

Main Theorem [BLLRS ’11]:  For anyδ>0, w.p. at least 1-δ, 
EXP4P has regret at most O(KT ln (N/δ))1/2 in adversarial 

contextual bandit setting. 



24 Ideas Behind Exp4.P 
(all appeared in previous algorithms) 

¡ exponential weights 
keep a weight on each expert that drops exponentially in 
the expert’s (estimated) performance 

¡ upper confidence bounds 
adds an upper confidence bound on each expert’s 
estimated reward 

¡ ensuring exploration 
make sure each action is taken with some minimum 
probability 

¡ importance sampling 
give rare events more importance to keep estimates 
unbiased 
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key insights  
(on top of UCB/ EXP) 

1) exponential weights 
and confidence 
bounds “stack” 

2) generalized 
Bernstein’s inequality 
for martingales 

t=1 

t=2 

t=3 

Key Insights 
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Algorithm Optimal? High 
Prob? 

Context? Efficient? 

Exp4  
[ACFS ’02] 

Yes No Yes No 

epoch-geedy  
[LZ ’07] 

No Yes Yes Yes 

Exp3.P [ACFS ’02] 
UCB [A ’00] 

Yes Yes No Yes 

Exp4.P  
[BLLRS ’10] 

Yes Yes Yes  No 

Efficiency 



27 EXP4P Applied to Yahoo! 
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u We chose a policy class for which we could efficiently 
keep track of the weights.  
u Created 5 clusters, using user features.  
u Policies mapped clusters to article choices.  
u Ran on personalized news article 

recommendations for Yahoo! front page.  

u We used a learning bucket on which we ran the 
algorithms and a deployment bucket on which we 
ran the greedy (best) learned policy.  

Experiments on Yahoo! Data Evaluation 
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Reported estimated (normalized) click-through rates 
on front page news. Over 41M user visits.  253 total 
articles. 21 candidate articles per visit. 

EXP4P EXP4 ε-greedy 
Learning 

eCTR 
1.0525 1.0988 1.3829 

Deployment 
eCTR 

1.6512 1.5309 1.4290 

Experimental Results 

Why does this work in practice? 
[McMahan ’11] 

Experiments 



Idea: Use Supervised Learning 30 A General Efficient Algorithm? 
[DHKKLRZ ’11] 

EXP4.P’s regret grows only logarithmically with N. 
 

this suggests 
 

We could compete with a huge set of policies!  
(e.g. N=K100  becomes 10 log1/2 K in the regret) 

 
however 

 
Exp4.P explicitly “keeps track” of all policies. Reading in 
all recommendations, for large N, would take too long. 



u  “Competing” with an exponentially large set of policies is 
commonplace in supervised learning. 

u  Recommendations of the policies/functions don’t need to 
be explicitly read when the policy class has structure! 

Policy class Π 

A good 
policy p in Π 

x1 
x2 

x3 x4 
x5 x6 

… 

31 

Supervised 
Learning 
Oracle 

Reduce to Supervised Learning! 
(Idea from [Langford-Zhang ’07]) 



Idea: Use Supervised Learning 

Policy class Π 

A good 
policy p in Π 

x1 
x2 

x3 x4 
x5 x6 

… 
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Supervised 
Learning 
Oracle 

Reduce to Supervised Learning! 
(Idea from [Langford-Zhang ’07]) 

Warning: NP-
Hard in 
General 

u  “Competing” with an exponentially large set of policies is 
commonplace in supervised learning. 

u  Recommendations of the policies/functions don’t need to 
be explicitly read when the policy class has structure! 
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Randomized-UCB Thm: [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a learning 

oracle, R-UCB has regret O((KT ln (NT/δ))1/2  in the stochastic 
contextual bandit setting and runs in time poly(K,T, ln N). 

36 
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if arms chosen among only “good” policies w/ variance < 2K, we win 
can prove this exists via a minimax theorem 

this can be softened to occasionally allow choosing of bad policies 
via “randomized” upper confidence bounds 

creates a problem of how to choose arms as to satisfy the constraints 
expressed as convex optimization problem 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 
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if arms chosen among only “good” policies w/ variance < 2K, we win 
can prove this exists via a minimax theorem 

this can be softened to occasionally allow choosing of bad policies 
via “randomized” upper confidence bounds 

creates a problem of how to choose arms as to satisfy the constraints 
expressed as convex optimization problem 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 

Big theoretical 
breakthrough! 

 
But not practical. 

(and needs stochastic assumption) 
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A research goal of mine: make this work in adversarial model. 

Taming the Monster: A Fast and Simple Algorithm for 

Contextual Bandits  

[Agarwal-et al. ’14] 



40 Applying to Public Health 

Consortium for 
Modeling and 

Analysis of 
Treatments 

and 
Interventions 
c-mati.org 
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Feature-Efficient 
Prediction 

 
with  

Huang and Powers 
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Feature-Efficient Prediction 

Examples 

¡ Medical testing 
Want to predict what patients are sick with, but 
tests might be expensive or dangerous. 

¡ Displaying internet results 
Want to give users the best results you can, but if 
you don’t give results within 300 milliseconds, users 
will leave. 



43 Model 

¡ Goal is to do supervised learning, using a limited 
number of features in test-time.  
¡ Given a budget on total cost: on each example, the 

learner must look at no more features than allowed by 
the budget.  

¡ Each feature has an associated cost. 

¡ Budget only limited in test data, not training. 

¡ Predictors that do this are feature-efficient. 



44 Lots of work on this problem 

¡ Sequential analysis: when to stop sequential clinical trials. 
[Wald ’47] and [Chernoff ’72]  

¡ PAC learning with incomplete features.                           
[Ben-David-Dichterman ’93] and [Greiner et al. ’02]  

¡ Robust prediction with missing features.                
[Globerson-Roweis ’06]  

¡ Learning linear functions by few features                      
[Cesa-Bianchi et al. ’10]  

¡  Incorporating feature costs in CART impurity [Xu et al. ’12] 

¡ MDPs for feature selection [He et al. ’13] 



45 A “Weigh + Measure” Idea  
[R ’11] 

¡ An ensemble is usually a weighted vote of many 
simple rules. 

¡ The simple rules are usually feature-efficient. 

¡ Take a vote of only a few of the rules. 



46 

weak classifiers = vertical or horizontal half-planes 

AdaBoost in Pictures (Slides from Schapire) 
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50 AdaBoost in Pictures (Slides from Schapire) 



51 AdaBoostRS [R ’11] 

Training: train AdaBoost (or any ensemble).  

Prediction: 
1.  Sample the weak learners depending on their 

voting weights and feature costs. 
2.  Take a importance-weighted vote of the 

sampled weak learners. 

Intuition: 
If ensemble has strong preference, sampling will 
converge fast.  If ensemble is split, who cares?   
(Thm resembles margin bound [Schapire et al. ’98]) 

 



52 Experiments with AdaBoostRS 

On ocr17 dataset. x-axis is number of samples taken. 



53 Room for Improvement 

Can we improve by moving the optimization into 
training? 

Turns out: yes, by a lot! [Huang-Powers-R ’14] 

¡ Naïve idea: train AdaBoost until budget runs out 

¡ Improvement: choose weak learners more wisely 
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With budgets, we need to consider two effects: 
u  high edges make individual terms smaller 
u  low costs allow for more terms in the product 

How to choose weak learner ht? 

[Freund-Schapire ’97] 



57 Two Optimizations 
[Huang-Powers-R ’14] 

First idea: assume all future rounds will behave 
like current. Leads to optimization  

 

1) 

 

Second idea: smoothed version of first. 

 

2) 



58 Experiments with costs ~ U(0,2) 
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Active Learning 
 

with  
Liu and Ziebart 



61 

Pool-Based Active Learning 

¡ A pool based active learning algorithm sequentially 
chooses which labels to solicit from a pool of 
examples. [Lewis-Gale ’94] 
¡ Usually constructs estimate of conditional label 

distribution P(y|x) from labeled dataset. 
¡ Uses own estimate to select next datapoint label. 

 

(I’ll focus on logloss, but ideas are more general) 



62 
Uncertainty Sampling 

¡ Many active learning strategies employ 
uncertainty sampling – selecting examples about 
which the algorithm is least certain. 

¡ Other strategies assess how a label: 
¡ is expected to change model [Settles-Craven ’08] 
¡ reduces an upper bound on the generalization error 

in expectation [Mackay ’92] 
¡ represents the input patterns of remaining unlabeled 

data [Settles ’12]  



63 A Problem 

Current active learning algorithms often perform 
poorly in practice [Attenberg-Provost ’11]. 

 

Why? 

¡ In order to be take advantage of active 
learning, a biased label solicitation strategy 
should be used. 

¡ Most current active learning strategies are 
overconfident, given this bias. 

 



64 Typical Active Learner Behavior 



65 Desired Behavior 



66 Some Attempts to Fix This 

¡ Seeding the active learner with a small random 
set [Dligach-Palmer ’11]. 

¡ Restricting the active learner to a small set of 
examples [Schein-Ungar ’07]. 

¡ Etc. 

However, these modifications treat the symptoms 
of optimistic modeling and biased sampling and 
restrict the active learner, undermining its benefit. 



67 Biased Label Solicitation 

Key idea: Active learning always leads to sample 
selection bias exists.  Here, known as covariate shift -- 
P(Y|X) is shared in source and target distributions. 
 

Tackling covariate shift is difficult. A common 
approach is importance re-weighting of source 
samples x according to Ptrg(x)/Psrc(x) and minimizing 
a reweighted version of the loss [Shimodaria ’00]. 

This converges slowly [Cortes-Mansour-Mohri ’10] and the 
variance of estimates is too high to be useful. 

 



68 Logistic Regression Models 



¡ We use the recently developed RBA (robust bias-
aware prediction) framework for tackling 
covariate shift [Liu-Ziebart ’14]. 

¡ RBA solves a game against a constrained 
adversary that chooses an evaluation 
distribution: 

         ~ 
    The set Ξ constrains the adversary 

69 Approach 



70 Robust Prediction Strategy 

¡ The RBA predictor can be obtained by solving the 
dual of a conditional max entropy estimation 
problem. [Liu-Ziebart ’14] 

¡ Can be shown to upper bound the the 
generalization loss, under some assumptions. 
[Grunwald-Dawid ’04] 

¡ Psrc(x) needs to be estimated – we use kernel density 
estimation with Gaussian kernels for Psrc(x). 

¡ The RBA predictor turns out to less certain where the 
labeled data underrepresents the full data 
distribution. 



71 Sampling Strategies 

¡ active robust – select point with largest value 
conditioned entropy 

¡ active random – select point at random 

¡ active density – select point with highest 
density ratio of PD(x)/PL(x) 



72 Standard Logistic Regression Models 



73 Our Results (logloss) [Liu-R-Ziebart ’15] 



74 Our Results (error) [Liu-R-Ziebart ’15] 



75 Predictions 
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Discussion 
 



77 Summary 

¡ Gave first optimal and (theoretically) efficient 
algorithm for contextual bandits by reducing to 
supervised learning. 

 

¡ Showed how to make any ensemble algorithm 
“feature efficient”. 

¡ Gave an a principled active learning algorithm 
with impressive empirical performance. 



78 Observations 

¡ Progress occurred in stages – eg. contextual 
algorithm was first made optimal but inefficient, then 
theoretically efficient, then practical (by others). 

¡ All these problems originate from practical concerns. 

¡ Each of these areas heavily used theory, but 
included practical elements, verified on large data.  
E.g. active learning’s density estimation. 

 



79 Open Problems 

¡ A practical, optimal contextual bandit algorithm 
that works in adversarial setting. 

¡ Better models for trading off error / prediction time. 

¡ Pessimistic active learning applied directly to 
classification error. 

¡ In general: machine learning problems where 
principled new algorithms can tackle important 
application areas! 

 



80 
The End 

Thank you!  Any Questions? 

 


