
+
Learning

Analog Circuits,
Graphical Models,

and
Social Networks

by
Injecting Values

Lev Reyzin
Yahoo! Research

New York

Talk @
IBM Research

Theory Seminar

1/27/2010
AND OR

AND

G1

I1

G2

I2 V

2

4

1

3

5 1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

+

Part I
Analog Circuits

work done with Dana Angluin, James Aspnes, and Jiang Chen

2

+ The Value Injection Query Model

  Introduced by [AACW ’06]

  Experiments on a hidden Circuit.
  a gate output may be fixed

  a gate may be left free

  Query
  given an experiment, we

can observe its output

  Example:

? ? ? ? ?

output =

A B C D E

1 0

∧

v ¬

0 1

A

C D

B

E

Hidden From the Learner

1

0 1

1

1 1

3

+ The Learning Problem

 Behavioral equivalence: Two
circuits C and C’ are
behaviorally equivalent if for
any experiment s, C(s)=C’(s).

 The Problem: Given query
access to a hidden circuit C*,
find a circuit C behaviorally
equivalent to C* by making
value-injection queries.

AND OR

AND

G1

I1

G2

I2 V

AND OR

AND

G1

I1

G2

I2 V

[ACCW ’06]

4

+ Motivation for The Model

  To model gene regulatory networks as Boolean networks

  to represent gene expressions and disruptions

Previous gene
regulatory
network model

Fully controllable. All gates are
observable.

Existing circuit
learning models

Only inputs can be
manipulated.

Only the output is
observable.

Value Injection
Query model
[AACW ’06]

Fully controllable. Only the output is
observable. IN BETWEEN

5

+ [AACW ’06] Results for
Boolean Circuits

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2Ω(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/Θ2 NP-hard

Log Constant Arbitrary Poly-time
(NC1)

Constant Unbounded AND/OR/NOT Poly-time
(AC0)

6

+ Looking at Large Alphabet
Circuits

 Gene regulatory networks have more states
than just expressed and disrupted.

 A larger alphabet than {0,1} is needed to
more fully represent many other types of
networks.

 Looking at what happens for large alphabet
size is a natural, interesting theoretical
question.

 Helps us get at analog circuits.

7

+ Large-Alphabet Circuits

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-
Alphabet circuits

Gates in Boolean
Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4

8

+ What Happens For Large-Alphabet
Circuits? (Our Results)

 There is evidence that learning log depth, constant
fan-in large-alphabet circuits may be
computationally intractable

 Circuits of bounded shortcut width (and
transitively reduced circuits) can be learned in
time polynomial in the number of wires and the
alphabet size.

 We can approximately learn bounded shortcut-
width analog circuits that satisfy a Lipshitz
condition.

9

+ Hardness of Learning Large
Alphabet Circuits

 Consider the problem on input (G,k) of
telling whether the graph G on n vertices
has a clique of size k

 We give a reduction that turns a large-
alphabet circuit learning algorithm into a
clique tester

test test test

a a a

?

(k,2) edges

(k) vertices

10

+ Reducing the Clique Problem to
Circuit Learning

c
e

f
d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices

11

+ Reducing the Clique Problem to
Circuit Learning

c
e

f
d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices

a b f

12

+ Reducing the Clique Problem to
Circuit Learning

c
e

f
d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices

c d f

13

+ Hardness of Learning Circuits of
Unrestricted Topology

  The clique problem is complete for the parameterized
complexity class W[1]

 There is no known algorithm for the clique problem
that runs in time f(k)nc (and we believe one doesn’t
exist)

  Theorem An algorithm for learning circuits polynomial in
the number of wires and alphabet size would imply fixed
parameter tractability for all problems in W[1]

14

+ To Compare with the Boolean Case

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

This motivates looking at classes of large-
alphabet circuits with restricted topology

15

+ A Circuit’s Underlying Graph

∧

∨ ¬

0 1

A

C D

B

E

We only consider circuits whose simple,
connected, directed graphs are acyclic.

16

+ Transitively Reduced Circuits

A circuit is transitively reduced if its underlying
directed graph has no shortcuts. If (u,v) is an edge
and there is a path of length ≥ 2 from u to v, then
(u,v) is a shortcut edge

17

+

A

B

Distinguishing Tables

 For each wire w, we keep a distinguishing table. A 1
entry in Tw(σ,τ) means alphabet values σ and τ are
distinguishable. For each 1 entry we keep a
corresponding distinguishing path and a “processed
bit.”

In Out

a a

b a

c b

Gate functions

Out

a

Distinguishing Tables

A

B

a b c

a - 1 1

b - - 1

c - - -

a b c

a - 0 1

b - - 1

c - - -

18

+ Distinguishing Paths 19

+ Distinguishing Paths 20

+ Distinguishing Paths

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively
reduced circuits, no wires
along a distinguishing path
are side wires.

21

+ Distinguishing Paths

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Notice that for transitively
reduced circuits, no wires
along a distinguishing path
are side wires.

22

+ The Distinguishing Paths
Algorithm (Outline)

 For the output wire wn, we initialize Twn
 with all

values initialized to 1, marked unprocessed. The
rest of the tables are initialized to all 0’s.

 While there are unprocessed 1 entries, pick one
and run Find Inputs and Extend Paths.

 Finally, Reconstruct the Circuit.

23

+ Find Inputs and Extend Paths

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

Now we want to use this
distinguishing path to Find
more Inputs and Extend the
Paths to find new
distinguishing paths.

24

+ Find Inputs and Extend Paths

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

25

+ Find Inputs and Extend Paths

a b c

a - 1(u) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

26

+ Find Inputs and Extend Paths

a b c

a - 1(p) 1(u)

b - - 1(u)

c - - -

a b c

a - 1(u) 0

b - - 1(u)

c - - -

27

+ Reconstructing Transitively
Reduced Circuits

 We keep a separate directed graph G to
reconstruct the graph of the circuit.

28

+ Reconstructing Transitively
Reduced Circuits

 We keep a separate directed graph G to
reconstruct the graph of the circuit.

 Theorem The complete distinguishing
tables and G are enough to construct a
circuit behaviorally equivalent to the target
circuit in polynomial time and O(n2k+1s2k+2)
queries.

29

+ Bounded Shortcut Width

 Bounded shortcut width is a generalization of
transitive reduction.

 The shortcut width of a wire wi is the number of
wires wj such that wj is both an ancestor of wi and an
input of a descendent of wi.
 Transitively reduced circuits have shortcut width 0.

2

1

1

0 0

0
The bounded shortcut width of

a circuit is the maximum
shortcut width of any output-
connected wire in the circuit.

30

+ Distinguishing Paths with Shortcuts

 We generalize the definition of a
distinguishing path to a distinguishing path
with shortcuts.
 These are made of path wires, side wires,

and cut wires.

 We also generalize the notion of
distinguishing tables to include cut wires.

output

31

+ Learning Circuits of Bounded
Shortcut Width

 When all 1 entries in the generalized distinguishing
tables are processed, the tables and graph G we can
create a set of sufficient experiments for
CircuitBuilder of [AACW ’06].

 Theorem The Shortcuts Algorithm learns the class
of circuits having n wires, alphabet size s, fan-in
bound k, and shortcut width bounded by b, using
nsO(k+b) value injection queries and time
polynomial in the number of queries.

32

+ Learning Analog Circuits

 An analog circuit is a circuit for which Σ = [0,1].

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every
experiment e, then C and C’ are ε-equivalent.

 We can discretize analog circuits that satisfy a
Lipshitz condition and use our large-alphabet
learning algorithms on them.

 Theorem There exists a polynomial time
algorithm that learns up to ε-equivalence any
analog circuit of n wires, depth log(n), constant
fan-in, Lipshitz gate functions, and shortcut
width bounded by a constant.

33

+

Part II
Graphical Models

work done with Dana Angluin, James Aspnes, David Eisenstat, and Jiang Chen

34

+

Part II
Graphical Models

aka Bayesian Networks and Probabilistic Circuits

work done with Dana Angluin, James Aspnes, David Eisenstat, and Jiang Chen

35

+ (Acyclic) Probabilistic Circuits

Inpu
t

P(1)

0 .4

1 .8

Input 1 Input 2 P(1)

0 0 .7

0 1 1

1 0 .5

1 1 0

P(1)

.9

P(1)

.9

Input 1 Input 2 P(1)

0 0 .15

0 1 .5

1 0 1

1 1 .3

36

+ (Acyclic) Probabilistic Circuits

Inpu
t

P(1)

0 .4

1 .8

Input 1 Input 2 P(1)

0 0 .7

0 1 1

1 0 .5

1 1 0

P(1)

.9

P(1)

.9

Input 1 Input 2 P(1)

0 0 .15

0 1 .5

1 0 1

1 1 .3

VIQs on Probabilistic Circuits
Exact VIQs

37

+ (Acyclic) Probabilistic Circuits

Inpu
t

P(1)

0 .4

1 .8

Input 1 Input 2 P(1)

0 0 .7

0 1 1

1 0 .5

1 1 0

P(1)

.9

P(1)

.9

Input 1 Input 2 P(1)

0 0 .15

0 1 .5

1 0 1

1 1 .3

VIQs on Probabilistic Circuits
Exact VIQs

free

free .5

0

free

38

+
The Learning Problems

 ε-Approximate Learning
 ε-behavioral equivalence: Circuits C and C’ are
ε-behaviorally equivalent if for any experiment s,
d(C(s)-C’(s))< ε.
 d(C(s)-C’(s)) is a notion of statistical distance

 The problem: Given query access to a hidden
circuit C*, find a circuit C ε-behaviorally equivalent
to C* by making value-injection queries.

 Exact Learning
 behavioral equivalence: Two circuits C and C’ are

behaviorally equivalent if for any experiment s,
C(s)=C’(s).

 The problem: Given query access to a hidden
circuit C*, find a circuit C behaviorally equivalent to
C* by making exact value-injection queries.

39

+
Previous Work

Circuit Fan-in Topology Gates VIQ
Learnability

Boolean 2 arbitrary AND/OR NP-Hard

Boolean unbounded constant
depth

AND/OR/
Θ2

NP-Hard

Boolean constant log depth arbitrary Poly-time

Large ∑ constant log depth arbitrary W(1) Hard in
shortcut width

Large ∑ constant bounded
shortcut
width

arbitrary Poly-time

Analog constant bounded
shortcut
width

arbitrary Poly-time
approximate

40

+
Main Results on Probabilistic

Circuits

 The Test Path Lemma

 Boolean Probabilistic Circuits
 Approximately Learnable

 Larger Alphabet Probabilistic Circuits
 Not Learnable Using Test Paths
 Learnable with Function Injection Queries

41

+
Main Results on Probabilistic

Circuits

 The Test Path Lemma

 Boolean Probabilistic Circuits
 Approximately Learnable

 Larger Alphabet Probabilistic Circuits
 Not Learnable Using Test Paths
 Learnable with Function Injection Queries

If nothing else, I want
to show you how

probabilistic circuits
behave differently

than you might
expect

42

+
The Test Path Lemma

 A test path for a wire w is a value injection experiment in
which the free gates form a directed path in the circuit
graph from w to the output wire. All the other wires in the
circuit are fixed, including the inputs of w.

 The test path lemma: Let C be a deterministic circuit.
If for some value injection experiment e, wire w and

alphabet symbols σ and τ it is the case that
 C(p|w=σ) = C(p|w=τ)

Then for every test path p < e, then also
 C(e|w=σ) = C(e|w=τ).

43

+
Test Path Lemma Illustrated

44

+
Test Path Lemma Illustrated

1

1

45

+
Test Path Lemma Illustrated

0

0

46

+
Test Path Lemma Illustrated

0

0

47

+
Test Path Lemma Illustrated

1

1

48

+
Test Path Lemma Illustrated

0

0

49

+
Test Path Lemma Illustrated

1

1

50

+
Test Path Lemma Illustrated

51

+ Attenuation of Signal in Test Paths

Let G(w1,w2,w3,w4) = ((1-w1)+2w2+2w3+2w4)/7

w1 = 0/1

w5=G(w1,w2,w3,w4)

w2=w1 w3=w1

w1

w4=w1

  If e sets all wires to be free,
then

 d(D1(e|w=0),D1(e|w=1)) = 5/7.
  But for any test path p for w1

 d(D1(p|w=0),D1(p|w=1)) = 1/7.

52

+
Exponential Attenuation

w
5=

G
(w

1,w
2,w

3,w
4)

w
2=

w
1

w
3=

w
1

w
1

w
4=

w
1

53

+
Exponential Attenuation

w
5=

G
(w

1,w
2,w

3,w
4)

w
2=

w
1

w
3=

w
1

w
1

w
4=

w
1

w
5=

G
(w

1,w
2,w

3,w
4)

w
2=

w
1

w
3=

w
1

Id

w
4=

w
1

w
5=

G
(w

1,w
2,w

3,w
4)

w
2=

w
1

w
3=

w
1

Id

w
4=

w
1

54

+
Boolean Probabilistic Circuits

But we still have (attenuated) test paths

There is a nonadaptive learning algorithm that with probability at least
(1 － δ) ε-approximately learns any Boolean probabilistic circuit w/ n
wires, constant fan-in and depth c log n using value injection queries in
time bounded by a polynomial in n, 1/ ε and log(1/ δ).

Some magic
happens

55

+
Boolean Probabilistic Circuits

But we still have (attenuated) test paths

There is a nonadaptive learning algorithm that with probability at least
(1 － δ) ε-approximately learns any Boolean probabilistic circuit w/ n
wires, constant fan-in and depth c log n using value injection queries in
time bounded by a polynomial in n, 1/ ε and log(1/ δ).

Circuit Builder
[AACW ’06]

56

+ Larger Alphabet Probabilistic
Circuits

  Lets consider probabilistic circuits that have gates that operate on
more than two alphabet symbols.

  What happens to the test path lemma in the large alphabet,
probabilistic case?

57

+ Test Paths Fail (Completely)
for |∑|>2

w5=X(w3,w4)

w3=L(w2) w4=R(w2)

w2=T(w1)

w1

T(00)=T(11) = U({00,11})

T(01)=T(10) = U({01,10})

L(00)=L(01)= 00

L(10)=L(11)= 01

R(00)=R(10)= 00

R(01)=R(11)= 01

X(ab,cd)= 0(bd)

w1 = 00 / 01

58

+
Function Injection Queries

  An alphabet transformation is a function f that maps symbols to
distribution over symbols.

  A function injection experiment is a mapping that for each wire
either leaves it free, assigns it an alphabet symbol, or assigns a
transformation f.

  A function injection query (FIQ) takes a function injection
experiment and returns the symbol assigned to the output wire.

59

+
Learning Large Alphabet Circuits

 A 2-partition experiment is a function injection
experiment in which every alphabet
transformation is a 2-partition.

 By using 2-partition experiments, we can “smash”
the large alphabet circuits back to the Boolean
case.
 We get same positive learnability results for

probabilistic large alphabet circuits using FIQs
as we have for probabilistic Boolean circuits
using VIQs.

60

+ Results Table
Circuit Fan-in Topology Gates VIQ

Learnability

Boolean 2 arbitrary AND/OR NP-Hard

Boolean unbounded const depth AND/OR/Θ2 NP-Hard

Boolean constant log depth arbitrary Poly-time

Large ∑ constant log depth arbitrary W(1) Hard in
shortcut width

Large ∑ constant Bounded sc
width

arbitrary Poly-time

Analog constant bounded sc
width

arbitrary Poly-time
approximate

Probabilistic
Boolean

constant log depth arbitrary Poly-time
approximate

Probabilistic
Large ∑

constant log depth arbitrary Poly-time w/
FIQs

Probabilistic
cyclic!

Unbounded arbitrary independent
cascade

Poly-time w/
exact VIQs

61

+

Part III
Social Networks

work done with Dana Angluin and James Aspnes

62

+ Trends Spreading through a Social
Network

63

+ Trends Spreading through a Social
Network

64

+ Trends Spreading through a Social
Network

65

+ Trends Spreading through a Social
Network

66

+ Trends Spreading through a Social
Network

67

+ What the Learner Sees

2

4

1

3

5

68

+ Activations and Suppressions

2

4

1

3

5

69

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 70

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 71

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 72

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 73

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 74

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 75

+

2

4

1

3

5

Activations and Suppressions 76

+

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions 77

+

2

4

1

3

5

Activations and Suppressions 78

+ Exact Value Injection Queries

2

4

1

3

5

0.72

79

+ The Learning Task

 Two social networks S and S’ are behaviorally
equivalent if for any experiment e, S(e) = S’(e)

 Given access to a hidden social network S*, the
learning problem is to find a social network S
behaviorally equivalent to S* using value injection
queries.

80

+ The Percolation Model

Given a network S and a VIQ

  All edges entering or leaving a suppressed node are
automatically “closed.”

  Each remaining edge (u,v) is “open” with probability p(u,v) and
“closed” with probability (1- p(u,v))

  The result of a VIQ is the probability there is a path from a
activated node to the output via open edges in S

81

+
A Lower Bound

. . .

. . .

1
1

1

1 1 1

82

+
A Lower Bound

. . .

. . .

All queries give 1-bit answers

1
1

1

1 1 1

83

+
A Lower Bound

. . .

. . .

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1

1 1 1

84

+
An Algorithm: First Some Definitions

•  The depth of a node is its distance to the root
•  An Up edge is an edge from a node of larger depth to a

node of smaller depth
•  A Level edge is an edge between two nodes of same

depth
•  A Down edge is an edge from a node at smaller depth

to a node at higher depth
•  A leveled graph of a social network is the graph of its

Up edges

85

+ Excitation Paths

 An excitation path for a node n is a VIQ in
which a subset of the free agents form a
simple directed path from n to the output.
All agents not on the path with inputs into
the path are suppressed.

 We also have a shortest excitation path

?

?

node n
output

86

+
The Learning Algorithm

For Networks Without 1 Edges

 First Find-Up-Edges to learn the leveled graph
of S

 For each level, Find-Level-Edges

 For each level, starting from the bottom, Find-
Down-Edges

87

+
Find-Up-Edges

88

+
Find-Up-Edges

89

+
Find-Up-Edges

90

+
Find-Up-Edges

91

+
Find-Up-Edges

92

+
Find-Up-Edges

p(u,v)

93

+
Find-Level-Edges

94

+
Find-Level-Edges

95

+
Find-Level-Edges

96

+
Find-Down-Edges

97

+
Find-Down-Edges

98

+
Find-Down-Edges

99

+
Find-Down-Edges

100

+
Find-Down-Edges

101

+
Find-Down-Edges

102

+
Find-Down-Edges

103

+
Find-Down-Edges

 For each node u at current level
 Sort each node vi in C (complete set) by

distance to the root in G – {u}
 Let v1 … vk be the sorted vis
 Let pi1 … pik be their corresponding shortest

paths to the root in G – {u}
 For i from 1 to k
 Do experiment of firing u, leaving pii free, and

suppressing the rest of the nodes.

104

+ For Example
105

+ With Ones – a Problem
106

+ With Ones – a Problem
107

+ With Ones

 Algorithm gets more complicated

 Level edges and down edges are found in
one subroutine

 In looking for down edges from u, need to
avoid not just u, but also all nodes
reachable from u by 1 edges

108

+ In the End

 We do 1 query per each possible edge, giving
an O(n2) algorithm

 Matches the Ω(n2) lower bound

109

+ Finding Influential Nodes

 Suppose instead of learning the social
network, we wanted to find the smallest
influential set of nodes quickly.

 A set of nodes is influential if, when activated,
activates the output with probability at least p

 NP Hard to Approximate to o(log n), even if
we know the structure of the network
 we show this by a reduction from Set Cover

110

+ An Approximation Algorithm

 Say the optimal solution has m nodes

 Suppose we wanted to fire the output with
probability (p – ε)

 Let I be the set of chosen influential nodes.

 Observation: at any point in the algorithm,
greedily adding one more node w to I makes

111

+ Analyzing Greedy

  Using a greedy algorithm, we let k be the number of rounds
the algorithm is run

112

+
Summary

  Motivated by real-world problems.

  A new and interesting ways to analyze circuit learning!

  Interesting (and surprising) learnability boundaries!

  Many questions open
  Restricting the number of non-free gates in an experiment.

  More realistic models of circuits (ie social networks).

  Exact vs non-exact queries.

  Connections to complexity theory.

113

