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+

Part I 
Analog Circuits 

work done with Dana Angluin, James Aspnes, and Jiang Chen 
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+ The Value Injection Query Model 

  Introduced by [AACW ’06] 

  Experiments on a hidden Circuit.  
  a gate output may be fixed 

  a gate may be left free 

  Query 
  given an experiment, we 

can observe its output 

  Example: 

? ? ? ? ? 

output = 

A B C D E 

1 0 

∧ 

v ¬ 

0 1 

A 

C D 

B 

E 

Hidden From the Learner 

1 

0 1 

1 

1 1 
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+ The Learning Problem 

 Behavioral equivalence: Two 
circuits C and C’ are 
behaviorally equivalent if for 
any experiment s, C(s)=C’(s). 

 The Problem: Given query 
access to a hidden circuit C*, 
find a circuit C behaviorally 
equivalent to C* by making 
value-injection queries. 

AND OR 

AND 

G1 

I1 

G2 

I2 V 

AND OR 

AND 

G1 

I1 

G2 

I2 V 

[ACCW ’06] 
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+ Motivation for The Model 

  To model gene regulatory networks as Boolean networks 

  to represent gene expressions and disruptions 

Previous gene 
regulatory 
network model 

Fully controllable. All gates are 
observable. 

Existing circuit 
learning models 

Only inputs can be 
manipulated. 

Only the output is 
observable. 

Value Injection 
Query model 
[AACW ’06] 

Fully controllable. Only the output is 
observable. IN BETWEEN 
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+ [AACW ’06] Results for 
Boolean Circuits 

Depth Fan-in Gates Learnability 

Unbounded Unbounded AND/OR 2Ω(N) queries 

Unbounded 2 AND/OR NP-hard 

Constant Unbounded AND/OR/Θ2 NP-hard 

Log Constant Arbitrary Poly-time 
(NC1) 

Constant Unbounded AND/OR/NOT Poly-time 
(AC0) 
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+ Looking at Large Alphabet 
Circuits 

 Gene regulatory networks have more states 
than just expressed and disrupted. 

 A larger alphabet than {0,1} is needed to 
more fully represent many other types of 
networks. 

 Looking at what happens for large alphabet 
size is a natural, interesting theoretical 
question. 

 Helps us get at analog circuits. 
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+ Large-Alphabet Circuits 

Input 1 Input 2 Output 

A A O1 

A B O2 

A C O3 

B A O4 

B B O5 

B C O6 

C A O7 

C B O8 

C C O9 

Gates in Large-
Alphabet circuits 

Gates in Boolean 
Circuits 

A
N

D
 

M
A

J 

Input 1 Input 2 Output 

1 1 O1 

1 0 O2 

0 1 O3 

0 0 O4 
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+ What Happens For Large-Alphabet 
Circuits? (Our Results) 

 There is evidence that learning log depth, constant 
fan-in large-alphabet circuits may be 
computationally intractable 

 Circuits of bounded shortcut width (and 
transitively reduced circuits) can be learned in 
time polynomial in the number of wires and the 
alphabet size. 

 We can approximately learn bounded shortcut-
width analog circuits that satisfy a Lipshitz 
condition. 
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+ Hardness of Learning Large  
Alphabet Circuits 

 Consider the problem on input (G,k) of 
telling whether the graph G on n vertices 
has a clique of size k 

 We give a reduction that turns a large-
alphabet circuit learning algorithm into a 
clique tester 

test test test 

a a a 

? 

(k,2) edges 

(k) vertices 
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+ Reducing the Clique Problem to  
Circuit Learning 

c 
e 

f 
d

a 

b

test test test 

a a a 

? 

(k,2) edges 

(k) vertices 
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+ Reducing the Clique Problem to  
Circuit Learning 

c 
e 

f 
d

a 

b

test test test 

a a a 

? 

(k,2) edges 

(k) vertices 

a b f 
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+ Reducing the Clique Problem to  
Circuit Learning 

c 
e 

f 
d

a 

b

test test test 

a a a 

? 

(k,2) edges 

(k) vertices 

c d f 
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+ Hardness of Learning Circuits of 
Unrestricted Topology 

  The clique problem is complete for the parameterized 
complexity class W[1] 

 There is no known algorithm for the clique problem 
that runs in time f(k)nc (and we believe one doesn’t 
exist) 

  Theorem An algorithm for learning circuits polynomial in 
the number of wires and alphabet size would imply fixed 
parameter tractability for all problems in W[1] 
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+ To Compare with the Boolean Case 

Depth Fan-in Gates Learnability 

Log Constant Arbitrary Poly-time 

Depth Fan-in Gates Learnability 

Log Constant Arbitrary W[1] Hard 

Boolean Circuits [AACW ’06]: 

Large Alphabet Circuits: 

This motivates looking at classes of large-
alphabet circuits with restricted topology 
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+ A Circuit’s Underlying Graph 

∧ 

∨ ¬ 

0 1 

A 

C D 

B 

E 

We only consider circuits whose simple, 
connected, directed graphs are acyclic. 
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+ Transitively Reduced Circuits 

A circuit is transitively reduced if its underlying 
directed graph has no shortcuts.  If (u,v) is an edge 
and there is a path of length ≥ 2 from u to v, then 
(u,v) is a shortcut edge 
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+

A 

B 

Distinguishing Tables 

 For each wire w, we keep a distinguishing table.  A 1 
entry in Tw(σ,τ) means alphabet values σ and τ are 
distinguishable. For each 1 entry we keep a 
corresponding distinguishing path and a “processed 
bit.” 

In Out 

a a 

b a 

c b 

Gate functions 

Out 

a 

Distinguishing Tables 

A 

B 

a b c 

a - 1 1 

b - - 1 

c - - - 

a b c 

a - 0 1 

b - - 1 

c - - - 
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+ Distinguishing Paths 19 
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+ Distinguishing Paths 

a b c 

a - 1(u) 1(u) 

b - - 1(u) 

c - - - 

Notice that for transitively 
reduced circuits, no wires 
along a distinguishing path 
are side wires. 

21 



+ Distinguishing Paths 

a b c 

a - 1(u) 1(u) 

b - - 1(u) 

c - - - 

Notice that for transitively 
reduced circuits, no wires 
along a distinguishing path 
are side wires. 
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+ The Distinguishing Paths 
Algorithm (Outline) 

 For the output wire wn, we initialize Twn
 with all 

values initialized to 1, marked unprocessed.  The 
rest of the tables are initialized to all 0’s. 

 While there are unprocessed 1 entries, pick one 
and run Find Inputs and Extend Paths. 

 Finally, Reconstruct the Circuit. 
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+ Find Inputs and Extend Paths 

a b c 

a - 1(u) 1(u) 

b - - 1(u) 

c - - - 

Now we want to use this 
distinguishing path to Find 
more Inputs and Extend the 
Paths to find new 
distinguishing paths. 
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+ Find Inputs and Extend Paths 

a b c 

a - 1(u) 1(u) 

b - - 1(u) 

c - - - 
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+ Find Inputs and Extend Paths 

a b c 

a - 1(u) 1(u) 

b - - 1(u) 

c - - - 

a b c 

a - 1(u) 0 

b - - 1(u) 

c - - - 
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+ Find Inputs and Extend Paths 

a b c 

a - 1(p) 1(u) 

b - - 1(u) 

c - - - 

a b c 

a - 1(u) 0 

b - - 1(u) 

c - - - 
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+ Reconstructing Transitively 
Reduced Circuits 

 We keep a separate directed graph G to 
reconstruct the graph of the circuit. 
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+ Reconstructing Transitively 
Reduced Circuits 

 We keep a separate directed graph G to 
reconstruct the graph of the circuit. 

 Theorem The complete distinguishing 
tables and G are enough to construct a 
circuit behaviorally equivalent to the target 
circuit in polynomial time and O(n2k+1s2k+2) 
queries. 
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+ Bounded Shortcut Width 

 Bounded shortcut width is a generalization of 
transitive reduction. 

 The shortcut width of a wire wi is the number of 
wires wj such that wj is both an ancestor of wi and an 
input of a descendent of wi. 
 Transitively reduced circuits have shortcut width 0. 

2 

1 

1 

0 0 

0 
The bounded shortcut width of 

a circuit is the maximum 
shortcut width of any output-
connected wire in the circuit. 
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+ Distinguishing Paths with Shortcuts 

 We generalize the definition of a 
distinguishing path to a distinguishing path 
with shortcuts.   
 These are made of path wires, side wires, 

and cut wires. 

 We also generalize the notion of 
distinguishing tables to include cut wires. 

output 
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+ Learning Circuits of Bounded 
Shortcut Width 

 When all 1 entries in the generalized distinguishing 
tables are processed, the tables and graph G we can 
create a set of sufficient experiments for 
CircuitBuilder of [AACW ’06]. 

 Theorem The Shortcuts Algorithm learns the class 
of circuits having n wires, alphabet size s, fan-in 
bound k, and shortcut width bounded by b, using 
nsO(k+b) value injection queries and time 
polynomial in the number of queries. 
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+ Learning Analog Circuits 

 An analog circuit is a circuit for which Σ = [0,1]. 

 ε-equivalence: If d(C(e),C’(e)) ≤ ε for every 
experiment e, then C and C’ are ε-equivalent. 

 We can discretize analog circuits that satisfy a 
Lipshitz condition and use our large-alphabet 
learning algorithms on them. 

 Theorem There exists a polynomial time 
algorithm that learns up to ε-equivalence any 
analog circuit of n wires, depth log(n), constant 
fan-in, Lipshitz gate functions, and shortcut 
width bounded by a constant. 
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+

Part II 
Graphical Models 

work done with Dana Angluin, James Aspnes, David Eisenstat, and Jiang Chen 
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+

Part II 
Graphical Models 

aka Bayesian Networks and Probabilistic Circuits 

work done with Dana Angluin, James Aspnes, David Eisenstat, and Jiang Chen 
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+ (Acyclic) Probabilistic Circuits 

Inpu
t 

P(1) 

0 .4 

1 .8 

Input 1 Input 2 P(1) 

0 0 .7 

0 1 1 

1 0 .5 

1 1 0 

P(1) 

.9 

P(1) 

.9 

Input 1 Input 2 P(1) 

0 0 .15 

0 1 .5 

1 0 1 

1 1 .3 
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+ (Acyclic) Probabilistic Circuits 

Inpu
t 

P(1) 

0 .4 

1 .8 

Input 1 Input 2 P(1) 

0 0 .7 

0 1 1 

1 0 .5 

1 1 0 

P(1) 

.9 

P(1) 

.9 

Input 1 Input 2 P(1) 

0 0 .15 

0 1 .5 

1 0 1 

1 1 .3 

VIQs on Probabilistic Circuits 
Exact VIQs 
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+ (Acyclic) Probabilistic Circuits 

Inpu
t 

P(1) 

0 .4 

1 .8 

Input 1 Input 2 P(1) 

0 0 .7 

0 1 1 

1 0 .5 

1 1 0 

P(1) 

.9 

P(1) 

.9 

Input 1 Input 2 P(1) 

0 0 .15 

0 1 .5 

1 0 1 

1 1 .3 

VIQs on Probabilistic Circuits 
Exact VIQs 

free 

free .5 

0 

free 
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+
The Learning Problems 

 ε-Approximate Learning 
 ε-behavioral equivalence: Circuits C and C’ are 
ε-behaviorally equivalent if for any experiment s, 
d(C(s)-C’(s))< ε. 
 d(C(s)-C’(s)) is a notion of statistical distance 

 The problem: Given query access to a hidden 
circuit C*, find a circuit C ε-behaviorally equivalent 
to C* by making value-injection queries. 

 Exact Learning 
 behavioral equivalence: Two circuits C and C’ are 

behaviorally equivalent if for any experiment s, 
C(s)=C’(s). 

 The problem: Given query access to a hidden 
circuit C*, find a circuit C behaviorally equivalent to 
C* by making exact value-injection queries. 
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+
Previous Work 

Circuit Fan-in Topology Gates VIQ 
Learnability 

Boolean 2 arbitrary AND/OR NP-Hard 

Boolean unbounded constant 
depth 

AND/OR/
Θ2 

NP-Hard 

Boolean constant log depth arbitrary Poly-time 

Large ∑ constant log depth arbitrary W(1) Hard in 
shortcut width 

Large ∑ constant bounded 
shortcut 
width 

arbitrary Poly-time 

Analog constant bounded 
shortcut 
width 

arbitrary Poly-time 
approximate 

40 



+
Main Results on Probabilistic 

Circuits 

 The Test Path Lemma 

 Boolean Probabilistic Circuits 
 Approximately Learnable 

 Larger Alphabet Probabilistic Circuits 
 Not Learnable Using Test Paths 
 Learnable with Function Injection Queries 
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+
Main Results on Probabilistic 

Circuits 

 The Test Path Lemma 

 Boolean Probabilistic Circuits 
 Approximately Learnable 

 Larger Alphabet Probabilistic Circuits 
 Not Learnable Using Test Paths 
 Learnable with Function Injection Queries 

If nothing else, I want 
to show you how 

probabilistic circuits 
behave differently 

than you might 
expect 
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+
The Test Path Lemma 

 A test path for a wire w is a value injection experiment in 
which the free gates form a directed path in the circuit 
graph from w to the output wire. All the other wires in the 
circuit are fixed, including the inputs of w. 

 The test path lemma: Let C be a deterministic circuit.  
If for some value injection experiment e, wire w and 

alphabet symbols  σ and τ it is the case that 
 C(p|w=σ) = C(p|w=τ)  

Then for every test path p < e, then also 
 C(e|w=σ) = C(e|w=τ). 
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+
Test Path Lemma Illustrated 
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+
Test Path Lemma Illustrated 

1 

1 
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+
Test Path Lemma Illustrated 

0 

0 
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+
Test Path Lemma Illustrated 

0 

0 
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+
Test Path Lemma Illustrated 

1 

1 

48 



+
Test Path Lemma Illustrated 

0 

0 
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+
Test Path Lemma Illustrated 

1 

1 
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+
Test Path Lemma Illustrated 
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+ Attenuation of Signal in Test Paths 

Let G(w1,w2,w3,w4) = ((1-w1)+2w2+2w3+2w4)/7 

w1 = 0/1 

w5=G(w1,w2,w3,w4) 

w2=w1 w3=w1 

w1 

w4=w1 

  If e sets all wires to be free, 
then 

 d(D1(e|w=0),D1(e|w=1)) = 5/7. 
  But for any test path p for w1 

 d(D1(p|w=0),D1(p|w=1)) = 1/7. 
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+
Exponential Attenuation 
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+
Exponential Attenuation 
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+
Boolean Probabilistic Circuits 

But we still have (attenuated) test paths 

There is a nonadaptive learning algorithm that with probability at least 
(1 － δ) ε-approximately learns any Boolean probabilistic circuit w/ n 
wires, constant fan-in and depth c log n using value injection queries in 
time bounded by a polynomial in n, 1/ ε and log(1/ δ). 

Some magic 
happens 
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+
Boolean Probabilistic Circuits 

But we still have (attenuated) test paths 

There is a nonadaptive learning algorithm that with probability at least 
(1 － δ) ε-approximately learns any Boolean probabilistic circuit w/ n 
wires, constant fan-in and depth c log n using value injection queries in 
time bounded by a polynomial in n, 1/ ε and log(1/ δ). 

Circuit Builder 
[AACW ’06] 
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+ Larger Alphabet Probabilistic  
Circuits 

  Lets consider probabilistic circuits that have gates that operate on 
more than two alphabet symbols. 

  What happens to the test path lemma in the large alphabet, 
probabilistic case? 
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+ Test Paths Fail (Completely)  
for |∑|>2 

w5=X(w3,w4) 

w3=L(w2) w4=R(w2) 

w2=T(w1) 

w1 

T(00)=T(11) = U({00,11}) 

T(01)=T(10) = U({01,10}) 

L(00)=L(01)= 00 

L(10)=L(11)= 01 

R(00)=R(10)= 00 

R(01)=R(11)= 01 

X(ab,cd)= 0(bd) 

w1 = 00 / 01 
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+
Function Injection Queries 

  An alphabet transformation is a function f that maps symbols to 
distribution over symbols. 

  A function injection experiment is a mapping that for each wire 
either leaves it free, assigns it an alphabet symbol, or assigns a 
transformation f. 

  A function injection query (FIQ) takes a function injection 
experiment and returns the symbol assigned to the output wire. 
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+
Learning Large Alphabet Circuits 

 A 2-partition experiment is a function injection 
experiment in which every alphabet 
transformation is a 2-partition. 

 By using 2-partition experiments, we can “smash” 
the large alphabet circuits back to the Boolean 
case. 
 We get same positive learnability results for 

probabilistic large alphabet circuits using FIQs 
as we have for probabilistic Boolean circuits 
using VIQs.  
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+ Results Table 
Circuit Fan-in Topology Gates VIQ 

Learnability 

Boolean 2 arbitrary AND/OR NP-Hard 

Boolean unbounded const depth AND/OR/Θ2 NP-Hard 

Boolean constant log depth arbitrary Poly-time 

Large ∑ constant log depth arbitrary W(1) Hard in 
shortcut width 

Large ∑ constant Bounded sc 
width 

arbitrary Poly-time 

Analog constant bounded sc 
width 

arbitrary Poly-time 
approximate 

Probabilistic 
Boolean 

constant log depth arbitrary Poly-time 
approximate 

Probabilistic 
Large ∑ 

constant log depth arbitrary Poly-time w/ 
FIQs 

Probabilistic 
cyclic! 

Unbounded arbitrary independent 
cascade 

Poly-time w/ 
exact VIQs 
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+

Part III 
Social Networks 

work done with Dana Angluin and James Aspnes 
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+ Trends Spreading through a Social 
Network 
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+ Trends Spreading through a Social 
Network 

64 



+ Trends Spreading through a Social 
Network 
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+ Trends Spreading through a Social 
Network 
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+ Trends Spreading through a Social 
Network 
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+ What the Learner Sees 
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+ Activations and Suppressions 

2 

4 

1 

3 

5 

69 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 70 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 71 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 72 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 73 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 74 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 75 



+

2 

4 

1 

3 

5 

Activations and Suppressions 76 



+

2 

4 

1 

3 

5 
1 

.5 

.5 

.3 

.3 

.5 

.8 

.2 

.8 

.8 

.5 

Activations and Suppressions 77 



+

2 

4 

1 

3 

5 

Activations and Suppressions 78 



+ Exact Value Injection Queries 

2 

4 

1 

3 

5 

0.72 
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+ The Learning Task 

 Two social networks S and S’ are behaviorally 
equivalent if for any experiment e, S(e) = S’(e) 

 Given access to a hidden social network S*, the 
learning problem is to find a social network S 
behaviorally equivalent to S* using value injection 
queries. 
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+ The Percolation Model 

Given a network S and a VIQ 

  All edges entering or leaving a suppressed node are 
automatically “closed.” 

  Each remaining edge (u,v) is “open” with probability p(u,v) and 
“closed” with probability (1- p(u,v)) 

  The result of a VIQ is the probability there is a path from a 
activated node to the output via open edges in S 
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+
A Lower Bound 

.  .  .  

.  .  .  

1 
1 

1 

1 1 1 
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+
A Lower Bound 

.  .  .  

.  .  .  

All queries give 1-bit answers 

1 
1 

1 

1 1 1 
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+
A Lower Bound 

.  .  .  

.  .  .  

2Ω(n2) such graphs, Ω(n2) l.b. 

1 
1 

1 

1 1 1 
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+
An Algorithm: First Some Definitions 

•  The depth of a node is its distance to the root 
•  An Up edge is an edge from a node of larger depth to a 

node of smaller depth 
•  A Level edge is an edge between two nodes of same 

depth 
•  A Down edge is an edge from a node at smaller depth 

to a node at higher depth 
•  A leveled graph of a social network is the graph of its 

Up edges 
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+ Excitation Paths 

 An excitation path for a node n is a VIQ in 
which a subset of the free agents form a 
simple directed path from n to the output.  
All agents not on the path with inputs into 
the path are suppressed. 

 We also have a shortest excitation path 

? 

? 

node n 
output 

86 



+
The Learning Algorithm 

For Networks Without 1 Edges 

 First Find-Up-Edges to learn the leveled graph 
of S 

 For each level, Find-Level-Edges 

 For each level, starting from the bottom, Find-
Down-Edges 
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+
Find-Up-Edges 
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+
Find-Up-Edges 
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+
Find-Up-Edges 
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+
Find-Up-Edges 
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+
Find-Up-Edges 
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+
Find-Up-Edges 

p(u,v) 
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+
Find-Level-Edges 
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+
Find-Level-Edges 
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+
Find-Level-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 
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+
Find-Down-Edges 

 For each node u at current level 
 Sort each node vi in C (complete set) by 

distance to the root in G – {u} 
 Let v1 … vk be the sorted vis 
 Let pi1 … pik be their corresponding shortest 

paths to the root in G – {u} 
 For i from 1 to k 
 Do experiment of firing u, leaving pii free, and 

suppressing the rest of the nodes. 
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+ For Example 
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+ With Ones – a Problem 
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+ With Ones – a Problem 
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+ With Ones 

 Algorithm gets more complicated 

 Level edges and down edges are found in 
one subroutine 

 In looking for down edges from u, need to 
avoid not just u, but also all nodes 
reachable from u by 1 edges 
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+ In the End 

 We do 1 query per each possible edge, giving 
an O(n2) algorithm 

 Matches the Ω(n2) lower bound 
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+ Finding Influential Nodes 

 Suppose instead of learning the social 
network, we wanted to find the smallest 
influential set of nodes quickly. 

 A set of nodes is influential if, when activated, 
activates the output with probability at least p 

 NP Hard to Approximate to o(log n), even if 
we know the structure of the network 
 we show this by a reduction from Set Cover 
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+ An Approximation Algorithm 

 Say the optimal solution has m nodes 

 Suppose we wanted to fire the output with 
probability  (p – ε) 

 Let I be the set of chosen influential nodes. 

 Observation: at any point in the algorithm, 
greedily adding one more node w to I makes 
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+ Analyzing Greedy 

  Using a greedy algorithm, we let k be the number of rounds 
the algorithm is run 
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+
Summary 

  Motivated by real-world problems. 

  A new and interesting ways to analyze circuit learning! 

  Interesting (and surprising) learnability boundaries! 

  Many questions open 
  Restricting the number of non-free gates in an experiment. 

  More realistic models of circuits (ie social networks). 

  Exact vs non-exact queries. 

  Connections to complexity theory. 
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