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Erdős-Rényi	Random	Graphs	

G(n,p)	generates	graph	G	on	n	ver$ces	by	
including	each	possible	edge	independently	
with	probability	p.	

3	

G(n,p)	(4,	0.5)	
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Typical	Examples	
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n	=	100,	p	=	0.01	 n	=	100,	p	=	0.1	 n	=	100,	p	=	0.5	

Created	using	soVware	by	Christopher	Manning,	available	on	
hXp://bl.ocks.org/christophermanning/4187201	



Erdős-Rényi	Random	Graphs	

E-R	random	graphs	are	an	interes$ng	“object”	of	
study	in	combinatorics.	
	

– When	does	G	have	a	giant	component?	

– When	is	G	connected?	

– How	large	is	the	largest	clique	in	G?	
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Erdős-Rényi	Random	Graphs	

E-R	random	graphs	are	an	interes$ng	“object”	of	
study	in	combinatorics.	
	

– When	does	G	have	a	giant	component?	
	when	np	→	c	>	1	

– When	is	G	connected?	
	sharp	connec$vity	threshold	at	p	=	ln/n	

– How	large	is	the	largest	clique	in	G?	
	for	p=½,	largest	clique	has	size	k(n)	≈	2lg2(n)	
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w.h.p. for G ~ G(n,½), k(n) ≈ 2lg2(n) 

why?	
•  let	Xk	be	the	number	of	cliques	in	G	~	G(n,.5)	

•  																										<	1	for	k	>	≈	2lg2n	

•  in	fact,	(for	large	n)	the	largest	clique	is	almost	
certainly	k(n)	=	2lg2(n)	or	2lg2(n)+1	[Matula	’76]	
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Where	is	the	largest	clique?	
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Finding	Large	Cliques	

for	worst-case	graphs:	
	

			finding	largest	clique	is	NP-Hard.	
						(very	very	unlikely	to	have	efficient	algorithms)	
			W[1]-Hard	
						(very	likely	gets	harder	as	target	cliques	grow)	
			hard	to	approximate	to	n1-ε	for	any	ε	>	0	
						(give	up)	
	
Hope:	in	E-R	random	graphs,	finding	large	cliques	is	
easier.	
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Finding	Large	Cliques	in	G	~	G(n,½)	
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•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
   remove v and its non-neighbors from S
}
return T
	

•  Conject	
•  ure	[Karp	’76]:	no	efficient	method	to	find	cliques	of	
size	(1+ε)lg2n	in	E-R	random	graphs.	
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•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
   remove v and its non-neighbors from S
}
return T
	

•  Conjecture	[Karp	’76]:	for	any	ε	>	0,	there’s	no	
efficient	method	to	find	cliques	of	size	(1+ε)lg2n	in	E-
R	random	graphs.	
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Finding	Large	Cliques	in	G	~	G(n,½)	

20	
s$ll	open		(would	imply	P	≠	NP)	

•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
   remove v and its non-neighbors from S
}
return T
	

•  Conjecture	[Karp	’76]:	for	any	ε	>	0,	there’s	no	
efficient	method	to	find	cliques	of	size	(1+ε)lg2n	in	E-
R	random	graphs.	
	



Summary	

In	E-R	random	graphs	
– clique	of	size	2lg2n	exists		
– can	efficiently	find	clique	of	size	lg2n	
–  likely	cannot	efficiently	find	cliques	size	(1+ε)lg2n	

	
What	to	do?	
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Summary	

In	E-R	random	graphs	
– clique	of	size	2lg2n	exists		
– can	efficiently	find	clique	of	size	lg2n	
–  likely	cannot	efficiently	find	cliques	size	(1+ε)lg2n	

	
What	to	do?	

–  make	the	problem	easier	by	“plan$ng”	a	large	
clique	to	be	found!	[Jerrum	’92]	
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planted	
cliques	



Planted	Clique	

the	process:	G	~	G(n,p,k)	
1.  generate	G	~	G(n,p)	
2.  add	clique	to	random	subset	of	k	<	n	ver$ces	of	G	
	
	
Goal:	given	G	~	G(n,p,k),	find	the	k	ver$ces	where	the	
clique	was	“planted”	(algorithm	knows	values:	n,p,k)	
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Progress	on	Planted	Clique	
For	G	~	G(n,½,k),	clearly	no	hope	for	k	≤	2lg2n	+1.	
	
For	k	>	2lg2n+1,	there	is	an	“obvious”	nO(lg	n)-algorithm:		
	

 input: G from (n,1/2,k) with k > 2lg2n+1 
 1) Check all S⊂V of size |S|=2lg2n+2 for S 
    that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
    all w in S: S = S∪{v}
 3) return S

   	

What	is	the	smallest	value	of	k	that	we	have	a	
polynomial	$me	algorithm	for?	Any	guesses?	

25	

Unfortunately,	this	is	not	polynomial	$me.	
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•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute 

values of coordinates of v2. Let W be the 
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k 
neighbors in W
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State-of-the-Art	for	Polynomial	Time	



State-of-the-Art	for	Polynomial	Time	
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Bipar$te	Version	

State-of-the-Art	for	Polynomial	Time	
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Bipar$te	Version	
In	fact,	(bipar$te)	planted	clique	was	
recently	used	as	alternate	
cryptographic	primi$ve	for	k	<	n1/2-ε.	
[Applebaum-Barak-Wigderson	’09]	

State-of-the-Art	for	Polynomial	Time	
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my	goal:	explain	why	there	has	been	no	
progress	on	this	problem	past	n1/2.	[FGVRX’13]	

State-of-the-Art	for	Polynomial	Time	
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my	goal:	explain	why	there	has	been	no	
progress	on	this	problem	past	n1/2.	[FGVRX’13]	

But	first	we	have	to	discuss	solving	linear	systems!	

State-of-the-Art	for	Polynomial	Time	
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Solving	Linear	Systems	
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solve	for	n	unknowns		

the	linear	equa$ons	are	over	GF(2),	ie	{0,1}n	



Ax	=	b	
Solving	Random	Linear	Systems	
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Ax	=	b	
Solving	Random	Linear	Systems	
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Ax	=	b	
Solving	Random	Linear	Systems	
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Ax	=	b	
Solving	Random	Linear	Systems	
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Ax	=	b	
Solving	Random	Linear	Systems	
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Ax	=	b	
Solving	Random	Linear	Systems	

41	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

choose	any	m	=	poly(n)	
solve	for	unique	x	in	poly	$me.	

	

How?	



Ax	=	b	
A	Twist	
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choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

How?	

entries	of	b	flipped	
independently	with		

prob.	1/100	

x	0 ︎



Ax	=	b	
A	Twist	

43	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

it’s	a	big	open	ques$on	is	theore$cal	CS	called	“noisy	parity”.	

x	0 ︎

entries	of	b	flipped	
independently	with		

prob.	1/100	



Ax	=	b	
A	Twist	
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entries	of	b	flipped	
independently	with		

prob.	1/100	

choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

current	best	is	2O(n/lgn)	$me.	[BlumKW	’00]	



Ax	=	b	
A	Twist	
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x	0 ︎

In	fact,	LPN	was	recently	used	as	
alternate	cryptographic	primi$ve.	

[Peikart	’09]	

entries	of	b	flipped	
independently	with		

prob.	1/100	
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learning	
theory	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	a1	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(a1)	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	a2	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(a2)	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	a3	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(a3)	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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…	distribu$on	 …	f∈F	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	am	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	
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distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	am+1	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(am+1)	

learner	

h(am+1)	

[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	data	am+2	

learner	
[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(am+2)	

learner	

h(am+2)	

[Valiant	’84]	



PAC	Learning,	in	One	Slide	
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distribu$on	 f∈F	 f(am+2)	

learner	

h(am+2)	

≈	

[Valiant	’84]	
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Remember	the	coefficients	of	the	equa$ons	are	
generated	uniformly	at	random	from	{0,1}n.	
	
So,	if	∃i	s.t.	xi	≠x’i,	then	f	and	h	will	disagree	½	of	the	
$me.		Hence,	2n	different	orthogonal	func$ons.	

form	the	Fourier	basis	in	DFA	



When	there’s	noise…	
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sta$s$cal	
queries	
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Sta$s$cal	Query	Learning	
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[Kearns	’93]	
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Sta$s$cal	Query	Learning	
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[Kearns	’93]	

q(a,	f(a))	
q:	{1,0}n×{0,1}	→	{0,1}	
and	sample	size	S	
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Sta$s$cal	Query	Learning	
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( ) q(a,	f(a))	
q:	{1,0}n×{0,1}	→	{0,1}	
and	sample	size	S	

something	like	

EU[q(a,	f(a))]±	1/S1/2	

[Kearns	’93]	
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Sta$s$cal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

( ) q	

poly(n)	

[Kearns	’93]	



U	

Sta$s$cal	Query	Learning	
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[Kearns	’93]	



Sta$s$cal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	sta$s$cal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	sta$s$cal	queries.	
	 	proof	idea:	b/c	the	linear	func5ons	are	orthogonal		
	 	under	U,	queries	are	either	uninforma5ve	or	
	 	“eliminate”	one	wrong	linear	func5on	at	a	5me	(and	
	 	there	are	2n)	
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Sta$s$cal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	sta$s$cal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	sta$s$cal	queries.	

•  Theorem	[Blum	et	al	’94],	when	a	family	of	func$ons	
has	exponen$ally	high	“SQ	dim”	it	is	not	learnable	
with	sta$s$cal	queries.	
–  SQ	dim	is	roughly	the	number	of	nearly-orthogonal	
func$ons	(wrt	a	reference	distribu$on).	Linear	func$ons	
have	SQ	dimension	=	2n.	
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Sta$s$cal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	sta$s$cal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	sta$s$cal	queries.	

•  Theorem	[Blum	et	al	’94],	when	a	family	of	func$ons	
has	exponen$ally	high	“SQ	dim”	it	is	not	learnable	
with	sta$s$cal	queries.	

•  Shockingly,	almost	all	learning	algorithms	can	be	
implemented	w/	sta$s$cal	queries!	So	high	SQ	dim	is	
a	serious	barrier	to	learning,	especially	under	noise.	 80	



Summary	

81	

•  Linear	equa$ons	with	errors	seem	hard	to	solve	
(Noisy	parity	func$ons	seem	hard	to	“learn”)	

•  Sta$s$cal	queries	and	sta$s$cal	dimension	from	
learning	theory	are	an	explana$on	as	to	why.	

				(almost	all	our	learning	algorithms	are	sta$s$cal)	
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Summary	

•  Linear	equa$ons	with	errors	seem	hard	to	solve	
(Noisy	parity	func$ons	seem	hard	to	“learn”)	

•  Sta$s$cal	queries	and	sta$s$cal	dimension	from	
learning	theory	are	an	explana$on	as	to	why.	

				(almost	all	our	learning	algorithms	are	sta$s$cal)	
	

Idea:	extend	this	framework	to	op$miza$on	
problems	and	use	it	to	explain	the	hardness	of	

planted	clique!	
82	
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sta$s$cal	
algorithms	

[FGRVX	’13]	



Tradi$onal	Algorithms	
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input	data	 output	



Tradi$onal	Algorithms	
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processing	
…	

please	wait	

input	data	 output	



Tradi$onal	Algorithms	
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input	data	 output	



Sta$s$cal	Algorithms	
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output	input	data	



Sta$s$cal	Algorithms	
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q:				→	{0,1},	
sample	size	S	

input	data	 output	



Sta$s$cal	Algorithms	
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≈	E	[q(			)]	±	1/S1/2	
	

q:				→	{0,1},	
sample	size	S	

input	data	 output	



Sta$s$cal	Algorithms	
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poly	

processing	
…	

please	wait	

input	data	 output	



Sta$s$cal	Algorithms	
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poly	

input	data	 output	



Sta$s$cal	Algorithms	
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input	data	

Turns	out	most	(all?)	current	op$miza$on	
algorithms	have	sta$s$cal	analogues!	

poly	

output	



Bipar$te	Planted	Clique	
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Bipar$te	Planted	Clique	
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Sta$s$cal	Algorithms	for	BPC	
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Sta$s$cal	Algorithms	for	BPC	
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Sta$s$cal	Algorithms	for	BPC	
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Sta$s$cal	Algorithms	for	BPC	
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≈	avg	value	of	
q	on	S	samples	



Sta$s$cal	Algorithms	for	BPC	
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poly(n)	

each	row	
	

w.p.		(n-k)/n							is	random	
	 					
	 			is	random,	
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	 	 			coordinates	



•  Extension	of	sta$s$cal	query	model	to	
op$miza$on.	

•  Proving	$ghter,	more	general,	lower	bounds,	
which	apply	to	learning	also.	

101	

Gives	a	new	tool	for	showing	problems	are	difficult.	

Results	



Results	
•  Main	result	(almost):	No	sta$s$cal	algorithm	
making	a	polynomial	number	of	queries	with	
sample	sizes	o(n2/k2),	can	find	planted	cliques	
of	size	k.	
– intui5on:∃many	planted	clique	distribu$ons	with	
small	“overlap”	(nearly	orthogonal	in	some	sense),	
which	are	hard	to	tell	from	normal	E-R	graphs.	

– Implies	that	many	ideas	will	fail	to	work,	including	
Markov	chain	approaches	[Frieze-Kannan	’03]	for	
our	version	of	the	problem.	
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Overview	

Sta$s$cal	oracles	are	a	new	lens	through	which	we	
can	study	exis$ng	algorithms.	
	
Sta$s$cal	lower	bounds	can	help	explain	why	
certain	problems	appear	intractable.	
	
This	idea	gives	the	first	general	lower	bound	for	
the	notorious	planted	clique	problem.	
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Any	Ques$ons?	
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