
Stascal	Algorithms		
and	the	Planted	Clique	Problem	

(and	random	graphs,	linear	equa$ons,	&	machine	learning)	
	

IDS	Seminar	
	

Lev	Reyzin	
UIC	

1	

2	

random	
graphs	

Erdős-Rényi	Random	Graphs	

G(n,p)	generates	graph	G	on	n	ver$ces	by	
including	each	possible	edge	independently	
with	probability	p.	

3	

G(n,p)	(4,	0.5)	

G	

Erdős-Rényi	Random	Graphs	

G(n,p)	generates	graph	G	on	n	ver$ces	by	
including	each	possible	edge	independently	
with	probability	p.	

4	

G(n,p)	

Erdős-Rényi	Random	Graphs	

G(n,p)	generates	graph	G	on	n	ver$ces	by	
including	each	possible	edge	independently	
with	probability	p.	

5	

G(n,p)	(4,	0.5)	

G	

Typical	Examples	

6	

n	=	100,	p	=	0.01	 n	=	100,	p	=	0.1	 n	=	100,	p	=	0.5	

Created	using	soVware	by	Christopher	Manning,	available	on	
hXp://bl.ocks.org/christophermanning/4187201	

Erdős-Rényi	Random	Graphs	

E-R	random	graphs	are	an	interes$ng	“object”	of	
study	in	combinatorics.	
	

– When	does	G	have	a	giant	component?	

– When	is	G	connected?	

– How	large	is	the	largest	clique	in	G?	

7	

Erdős-Rényi	Random	Graphs	

E-R	random	graphs	are	an	interes$ng	“object”	of	
study	in	combinatorics.	
	

– When	does	G	have	a	giant	component?	
	when	np	→	c	>	1	

– When	is	G	connected?	
	sharp	connec$vity	threshold	at	p	=	ln/n	

– How	large	is	the	largest	clique	in	G?	
	for	p=½,	largest	clique	has	size	k(n)	≈	2lg2(n)	

8	

w.h.p. for G ~ G(n,½), k(n) ≈ 2lg2(n)

why?	
•  let	Xk	be	the	number	of	cliques	in	G	~	G(n,.5)	

•  																										<	1	for	k	>	≈	2lg2n	

•  in	fact,	(for	large	n)	the	largest	clique	is	almost	
certainly	k(n)	=	2lg2(n)	or	2lg2(n)+1	[Matula	’76]	

9	

Ε XK[] =
n
k
"

#
$
%

&
'2

− k2()

10	

11	

12	

Where	is	the	largest	clique?	

1	

2	

3	

4	

5	

6	

7	

8	

13	

1	

2	

3	

4	

5	

6	

7	

8	

Finding	Large	Cliques	

for	worst-case	graphs:	
	

			finding	largest	clique	is	NP-Hard.	
						(very	very	unlikely	to	have	efficient	algorithms)	
			W[1]-Hard	
						(very	likely	gets	harder	as	target	cliques	grow)	
			hard	to	approximate	to	n1-ε	for	any	ε	>	0	
						(give	up)	
	
Hope:	in	E-R	random	graphs,	finding	large	cliques	is	
easier.	
			

14	

Finding	Large	Cliques	

for	worst-case	graphs:	
	

			finding	largest	clique	is	NP-Hard.	
						(very	very	unlikely	to	have	efficient	algorithms)	
			W[1]-Hard	
						(very	likely	gets	harder	as	target	cliques	grow)	
			hard	to	approximate	to	n1-ε	for	any	ε	>	0	
						(give	up)	
	
Hope:	in	E-R	random	graphs,	finding	large	cliques	is	
easier.	
			

15	

Finding	Large	Cliques	

for	worst-case	graphs:	
	

			finding	largest	clique	is	NP-Hard.	
						(very	very	unlikely	to	have	efficient	algorithms)	
			W[1]-Hard	
						(very	likely	gets	harder	as	target	cliques	grow)	
			hard	to	approximate	to	n1-ε	for	any	ε	>	0	
						(give	up)	
	
Hope:	in	E-R	random	graphs,	finding	large	cliques	is	
easier.	
			

16	

Finding	Large	Cliques	

for	worst-case	graphs:	
	

			finding	largest	clique	is	NP-Hard.	
						(very	very	unlikely	to	have	efficient	algorithms)	
			W[1]-Hard	
						(very	likely	gets	harder	as	target	cliques	grow)	
			hard	to	approximate	to	n1-ε	for	any	ε	>	0	
						(give	up)	
	
hope:	in	E-R	random	graphs,	finding	large	cliques	is	
easier.	
			

17	

Finding	Large	Cliques	in	G	~	G(n,½)	

18	

•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T
	

•  Conject	
•  ure	[Karp	’76]:	no	efficient	method	to	find	cliques	of	
size	(1+ε)lg2n	in	E-R	random	graphs.	
	

Finding	Large	Cliques	in	G	~	G(n,½)	
•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T
	

•  Conjecture	[Karp	’76]:	for	any	ε	>	0,	there’s	no	
efficient	method	to	find	cliques	of	size	(1+ε)lg2n	in	E-
R	random	graphs.	
	

19	

Finding	Large	Cliques	in	G	~	G(n,½)	

20	
s$ll	open		(would	imply	P	≠	NP)	

•  Finding	a	clique	of	size	=	lg2(n)	is	“easy”	
	

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T
	

•  Conjecture	[Karp	’76]:	for	any	ε	>	0,	there’s	no	
efficient	method	to	find	cliques	of	size	(1+ε)lg2n	in	E-
R	random	graphs.	
	

Summary	

In	E-R	random	graphs	
– clique	of	size	2lg2n	exists		
– can	efficiently	find	clique	of	size	lg2n	
–  likely	cannot	efficiently	find	cliques	size	(1+ε)lg2n	

	
What	to	do?	

21	

Summary	

In	E-R	random	graphs	
– clique	of	size	2lg2n	exists		
– can	efficiently	find	clique	of	size	lg2n	
–  likely	cannot	efficiently	find	cliques	size	(1+ε)lg2n	

	
What	to	do?	

–  make	the	problem	easier	by	“plan$ng”	a	large	
clique	to	be	found!	[Jerrum	’92]	

22	

23	

planted	
cliques	

Planted	Clique	

the	process:	G	~	G(n,p,k)	
1.  generate	G	~	G(n,p)	
2.  add	clique	to	random	subset	of	k	<	n	ver$ces	of	G	
	
	
Goal:	given	G	~	G(n,p,k),	find	the	k	ver$ces	where	the	
clique	was	“planted”	(algorithm	knows	values:	n,p,k)	
	
	

24	

Progress	on	Planted	Clique	
For	G	~	G(n,½,k),	clearly	no	hope	for	k	≤	2lg2n	+1.	
	
For	k	>	2lg2n+1,	there	is	an	“obvious”	nO(lg	n)-algorithm:		
	

 input: G from (n,1/2,k) with k > 2lg2n+1
 1) Check all S⊂V of size |S|=2lg2n+2 for S
 that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
 all w in S: S = S∪{v}
 3) return S

 	

What	is	the	smallest	value	of	k	that	we	have	a	
polynomial	$me	algorithm	for?	Any	guesses?	

25	

Unfortunately,	this	is	not	polynomial	$me.	

Progress	on	Planted	Clique	
For	G	~	G(n,½,k),	clearly	no	hope	for	k	≤	2lg2n	+1.	
	
For	k	>	2lg2n+1,	there	is	an	“obvious”	nO(lg	n)-algorithm:		
	

 input: G from (n,1/2,k) with k > 2lg2n+1
 1) Check all S⊂V of size |S|=2lg2n+2 for S
 that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
 all w in S: S = S∪{v}
 3) return S

 	

What	is	the	smallest	value	of	k	that	we	have	a	
polynomial	$me	algorithm	for?	Any	guesses?	

26	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

27	

State-of-the-Art	for	Polynomial	Time	

State-of-the-Art	for	Polynomial	Time	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			

 input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

28	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

29	

Bipar$te	Version	

State-of-the-Art	for	Polynomial	Time	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

30	

Bipar$te	Version	

State-of-the-Art	for	Polynomial	Time	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

31	

Bipar$te	Version	
In	fact,	(bipar$te)	planted	clique	was	
recently	used	as	alternate	
cryptographic	primi$ve	for	k	<	n1/2-ε.	
[Applebaum-Barak-Wigderson	’09]	

State-of-the-Art	for	Polynomial	Time	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

32	

my	goal:	explain	why	there	has	been	no	
progress	on	this	problem	past	n1/2.	[FGVRX’13]	

State-of-the-Art	for	Polynomial	Time	

•  k	≥	c	(n	lg	n)1/2	is	trivial.	The	degrees	of	the	ver$ces	in	the	
plant	“stand	out.”	(proof	via	Hoeffding	&	union	bound)	

•  k	=	c	n1/2	is	best	so	far.	[Alon-Krivelevich-Sudokov	’98]	
			
input: G from (n,1/2,k) with k ≥ 10 n1/2

1)  find 2nd eigenvector v2 of A(G)
2)  Sort V by decreasing order of absolute

values of coordinates of v2. Let W be the
top k vertices in this order.

3)  Return Q, the set of vertices with ≥ ¾k
neighbors in W

33	

my	goal:	explain	why	there	has	been	no	
progress	on	this	problem	past	n1/2.	[FGVRX’13]	

But	first	we	have	to	discuss	solving	linear	systems!	

State-of-the-Art	for	Polynomial	Time	

34	

linear	
systems	

Solving	Linear	Systems	

35	

Ax	=	b	
n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	

solve	for	n	unknowns		

the	linear	equa$ons	are	over	GF(2),	ie	{0,1}n	

Ax	=	b	
Solving	Random	Linear	Systems	

36	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	

Ax	=	b	
Solving	Random	Linear	Systems	

37	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	0 1 0

1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Ax	=	b	
Solving	Random	Linear	Systems	

38	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	

1
0
1

!

"

#
#
#

$

%

&
&
&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Ax	=	b	
Solving	Random	Linear	Systems	

39	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

1
0
1

!

"

#
#
#

$

%

&
&
&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Ax	=	b	
Solving	Random	Linear	Systems	

40	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Ax	=	b	
Solving	Random	Linear	Systems	

41	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

choose	any	m	=	poly(n)	
solve	for	unique	x	in	poly	$me.	

	

How?	

Ax	=	b	
A	Twist	

42	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

How?	

entries	of	b	flipped	
independently	with		

prob.	1/100	

x	0 ︎

Ax	=	b	
A	Twist	

43	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

it’s	a	big	open	ques$on	is	theore$cal	CS	called	“noisy	parity”.	

x	0 ︎

entries	of	b	flipped	
independently	with		

prob.	1/100	

Ax	=	b	
A	Twist	

44	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x	0 ︎

entries	of	b	flipped	
independently	with		

prob.	1/100	

choose	any	m	=	poly(n)	
solve	for	x	(that	generated	original	b)	in	poly	$me.	

	

current	best	is	2O(n/lgn)	$me.	[BlumKW	’00]	

Ax	=	b	
A	Twist	

45	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x	0 ︎

In	fact,	LPN	was	recently	used	as	
alternate	cryptographic	primi$ve.	

[Peikart	’09]	

entries	of	b	flipped	
independently	with		

prob.	1/100	

46	

learning	
theory	

PAC	Learning,	in	One	Slide	

47	

distribu$on	 f∈F	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

48	

distribu$on	 f∈F	data	a1	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

49	

distribu$on	 f∈F	 f(a1)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

50	

distribu$on	 f∈F	data	a2	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

51	

distribu$on	 f∈F	 f(a2)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

52	

distribu$on	 f∈F	data	a3	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

53	

distribu$on	 f∈F	 f(a3)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

54	

…	distribu$on	 …	f∈F	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

55	

distribu$on	 f∈F	data	am	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

56	

distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

57	

distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

58	

distribu$on	 f∈F	 f(am)	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

59	

distribu$on	 f∈F	data	am+1	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

60	

distribu$on	 f∈F	 f(am+1)	

learner	

h(am+1)	

[Valiant	’84]	

PAC	Learning,	in	One	Slide	

61	

distribu$on	 f∈F	data	am+2	

learner	
[Valiant	’84]	

PAC	Learning,	in	One	Slide	

62	

distribu$on	 f∈F	 f(am+2)	

learner	

h(am+2)	

[Valiant	’84]	

PAC	Learning,	in	One	Slide	

63	

distribu$on	 f∈F	 f(am+2)	

learner	

h(am+2)	

≈	

[Valiant	’84]	

Learning	Linear	Func$ons	(mod	2)	

64	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	U	

Learning	Linear	Func$ons	(mod	2)	

65	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	U	

Learning	Linear	Func$ons	(mod	2)	

66	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	U	

Learning	Linear	Func$ons	(mod	2)	

67	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&U	 =	

Learning	Linear	Func$ons	(mod	2)	

68	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	U	

Learning	Linear	Func$ons	(mod	2)	

69	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	

x '1
x '2
x '3

!

"

#
#
##

$

%

&
&
&&

Learning	Linear	Func$ons	(mod	2)	

70	

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

x '1
x '2
x '3

!

"

#
#
##

$

%

&
&
&&

target	f	 hypothesis	h	

Remember	the	coefficients	of	the	equa$ons	are	
generated	uniformly	at	random	from	{0,1}n.	
	
So,	if	∃i	s.t.	xi	≠x’i,	then	f	and	h	will	disagree	½	of	the	
$me.		Hence,	2n	different	orthogonal	func$ons.	

form	the	Fourier	basis	in	DFA	

When	there’s	noise…	

71	

n	variables	

m
	e
qu

a$
on

s	

m
	re

su
lts
	 0

0
1
1
0
1

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
=	 x	0 ︎

72	

stascal	
queries	

U	

Stascal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

()

[Kearns	’93]	

U	

Stascal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

()

[Kearns	’93]	

q(a,	f(a))	
q:	{1,0}n×{0,1}	→	{0,1}	
and	sample	size	S	

U	

Stascal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

() q(a,	f(a))	
q:	{1,0}n×{0,1}	→	{0,1}	
and	sample	size	S	

something	like	

EU[q(a,	f(a))]±	1/S1/2	

[Kearns	’93]	

U	

Stascal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

() q	

poly(n)	

[Kearns	’93]	

U	

Stascal	Query	Learning	

n	variables	
x1
x2
x3

!

"

#
#
##

$

%

&
&
&&

() q	

poly(n)	

[Kearns	’93]	

Stascal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	stascal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	stascal	queries.	
	 	proof	idea:	b/c	the	linear	func5ons	are	orthogonal		
	 	under	U,	queries	are	either	uninforma5ve	or	
	 	“eliminate”	one	wrong	linear	func5on	at	a	5me	(and	
	 	there	are	2n)	

	

78	

Stascal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	stascal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	stascal	queries.	

•  Theorem	[Blum	et	al	’94],	when	a	family	of	func$ons	
has	exponen$ally	high	“SQ	dim”	it	is	not	learnable	
with	stascal	queries.	
–  SQ	dim	is	roughly	the	number	of	nearly-orthogonal	
func$ons	(wrt	a	reference	distribu$on).	Linear	func$ons	
have	SQ	dimension	=	2n.	

79	

Stascal	Queries	

•  Theorem	[Kearns	’93]:	If	a	family	of	func$ons	is	
learnable	with	stascal	queries,	then	it	is	learnable	
(in	the	original	model)	with	noise!	

•  Theorem	[Kearns	’93]:	Linear	func$ons	(mod	2)	are	
not	learnable	with	stascal	queries.	

•  Theorem	[Blum	et	al	’94],	when	a	family	of	func$ons	
has	exponen$ally	high	“SQ	dim”	it	is	not	learnable	
with	stascal	queries.	

•  Shockingly,	almost	all	learning	algorithms	can	be	
implemented	w/	stascal	queries!	So	high	SQ	dim	is	
a	serious	barrier	to	learning,	especially	under	noise.	 80	

Summary	

81	

•  Linear	equa$ons	with	errors	seem	hard	to	solve	
(Noisy	parity	func$ons	seem	hard	to	“learn”)	

•  Stascal	queries	and	stascal	dimension	from	
learning	theory	are	an	explana$on	as	to	why.	

				(almost	all	our	learning	algorithms	are	stascal)	
	
	
l	

Summary	

•  Linear	equa$ons	with	errors	seem	hard	to	solve	
(Noisy	parity	func$ons	seem	hard	to	“learn”)	

•  Stascal	queries	and	stascal	dimension	from	
learning	theory	are	an	explana$on	as	to	why.	

				(almost	all	our	learning	algorithms	are	stascal)	
	

Idea:	extend	this	framework	to	op$miza$on	
problems	and	use	it	to	explain	the	hardness	of	

planted	clique!	
82	

83	

stascal	
algorithms	

[FGRVX	’13]	

Tradi$onal	Algorithms	

84	

input	data	 output	

Tradi$onal	Algorithms	

85	

processing	
…	

please	wait	

input	data	 output	

Tradi$onal	Algorithms	

86	

input	data	 output	

Stascal	Algorithms	

87	

output	input	data	

Stascal	Algorithms	

88	

q:				→	{0,1},	
sample	size	S	

input	data	 output	

Stascal	Algorithms	

89	

≈	E	[q()]	±	1/S1/2	
	

q:				→	{0,1},	
sample	size	S	

input	data	 output	

Stascal	Algorithms	

90	

poly	

processing	
…	

please	wait	

input	data	 output	

Stascal	Algorithms	

91	

poly	

input	data	 output	

Stascal	Algorithms	

92	

input	data	

Turns	out	most	(all?)	current	op$miza$on	
algorithms	have	stascal	analogues!	

poly	

output	

Bipar$te	Planted	Clique	

93	

G	

A(G)	

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

Bipar$te	Planted	Clique	

94	

A(G)	

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

each	row	
	

w.p.		(n-k)/n							is	random	
	 					

	 			is	random,	
w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

Bipar$te	Planted	Clique	

95	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

each	row	
	

w.p.		(n-k)/n							is	random	
	 					

	 			is	random,	
w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

Stascal	Algorithms	for	BPC	

96	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

Stascal	Algorithms	for	BPC	

97	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

each	row	
	

w.p.		(n-k)/n							is	random	
	 					
	 			is	random,	

w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

Stascal	Algorithms	for	BPC	

98	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

q:	{0,1}n	à	{0,1},	S	

each	row	
	

w.p.		(n-k)/n							is	random	
	 					
	 			is	random,	

w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

Stascal	Algorithms	for	BPC	

99	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

q:	{0,1}n	à	{0,1},	S	

each	row	
	

w.p.		(n-k)/n							is	random	
	 					
	 			is	random,	

w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

≈	avg	value	of	
q	on	S	samples	

Stascal	Algorithms	for	BPC	

100	

A(G)	

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

!

"

#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&

poly(n)	

each	row	
	

w.p.		(n-k)/n							is	random	
	 					
	 			is	random,	

w.p.		k/n									except	in	“plant”	
	 	 			coordinates	

•  Extension	of	stascal	query	model	to	
op$miza$on.	

•  Proving	$ghter,	more	general,	lower	bounds,	
which	apply	to	learning	also.	

101	

Gives	a	new	tool	for	showing	problems	are	difficult.	

Results	

Results	
•  Main	result	(almost):	No	stascal	algorithm	
making	a	polynomial	number	of	queries	with	
sample	sizes	o(n2/k2),	can	find	planted	cliques	
of	size	k.	
– intui5on:∃many	planted	clique	distribu$ons	with	
small	“overlap”	(nearly	orthogonal	in	some	sense),	
which	are	hard	to	tell	from	normal	E-R	graphs.	

– Implies	that	many	ideas	will	fail	to	work,	including	
Markov	chain	approaches	[Frieze-Kannan	’03]	for	
our	version	of	the	problem.	

102	

Overview	

Stascal	oracles	are	a	new	lens	through	which	we	
can	study	exis$ng	algorithms.	
	
Stascal	lower	bounds	can	help	explain	why	
certain	problems	appear	intractable.	
	
This	idea	gives	the	first	general	lower	bound	for	
the	notorious	planted	clique	problem.	

103	

Any	Ques$ons?	

104	

