
Statistical Algorithms and
Planted Cliques 

(and random graphs, linear equations,
& machine learning) 

 
IIT Applied Math Colloquium 

 
Lev Reyzin  

UIC

1

2

random
graphs

Erdős-Rényi Random Graphs

G(n,p) generates graph G on n vertices by
including each possible edge
independently with probability p.

3

G(n,p)(4, 0.5)

G

Erdős-Rényi Random Graphs

G(n,p) generates graph G on n vertices by
including each possible edge
independently with probability p.

4

G(n,p)

Erdős-Rényi Random Graphs

G(n,p) generates graph G on n vertices by
including each possible edge
independently with probability p.

5

G(n,p)(4, 0.5)

G

Typical Examples

6

n = 100, p = 0.01 n = 100, p = 0.1 n = 100, p = 0.5

Created using software by Christopher Manning,
available on

http://bl.ocks.org/christophermanning/4187201

Erdős-Rényi Random Graphs

E-R random graphs are an interesting
“object” of study in combinatorics.

–When does G have a giant component?

–When is G connected?

– How large is the largest clique in G?

7

Erdős-Rényi Random Graphs

E-R random graphs are an interesting
“object” of study in combinatorics.

–When does G have a giant component?
 when np → c > 1
–When is G connected?
 sharp connectivity threshold at p = ln/n
– How large is the largest clique in G?
 for p=½, largest clique has size k(n) ≈ 2lg2(n)

8

w.h.p. for G ~ G(n,½), k(n) ≈ 2lg2(n)

why?

• let Xk be the number of cliques in G ~ G(n,.5)

• < 1 for k > ≈ 2lg2n

• in fact, (for large n) the largest clique is
almost certainly k(n) = 2lg2(n) or 2lg2(n)+1
[Matula ’76]

9

Ε XK[]=
n
k
⎛

⎝
⎜
⎞

⎠
⎟2

− k2()

10

11

12

Where is the largest clique?

1

2

3

4

5

6

7

8

13

1

2

3

4

5

6

7

8

Finding Large Cliques

for worst-case graphs:

 finding largest clique is NP-Hard.
 (very very unlikely to have efficient algorithms)
 W[1]-Hard
 (very likely gets harder as target cliques grow)
 hard to approximate to n1-ε for any ε > 0
 (give up)

Hope: in E-R random graphs, finding large cliques is
easier.

14

Finding Large Cliques

for worst-case graphs:

 finding largest clique is NP-Hard.
 (very very unlikely to have efficient algorithms)
 W[1]-Hard
 (very likely gets harder as target cliques grow)
 hard to approximate to n1-ε for any ε > 0
 (give up)

Hope: in E-R random graphs, finding large cliques is
easier.

15

Finding Large Cliques

for worst-case graphs:

 finding largest clique is NP-Hard.
 (very very unlikely to have efficient algorithms)
 W[1]-Hard
 (very likely gets harder as target cliques grow)
 hard to approximate to n1-ε for any ε > 0
 (give up)

Hope: in E-R random graphs, finding large cliques is
easier.

16

Finding Large Cliques

for worst-case graphs:

 finding largest clique is NP-Hard.
 (very very unlikely to have efficient algorithms)
 W[1]-Hard
 (very likely gets harder as target cliques grow)
 hard to approximate to n1-ε for any ε > 0
 (give up)

hope: in E-R random graphs, finding large cliques is
easier.

17

Finding Large Cliques in G ~ G(n,½)

18

• Finding a clique of size = lg2(n) is “easy”

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T

• Conject
• ure [Karp ’76]: no efficient method to find cliques

of size (1+ε)lg2n in E-R random graphs.

Finding Large Cliques in G ~ G(n,½)

• Finding a clique of size = lg2(n) is “easy”

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T

• Conjecture [Karp ’76]: for any ε > 0, there’s no
efficient method to find cliques of size (1+ε)lg2n in
E-R random graphs.

19

Finding Large Cliques in G ~ G(n,½)

20still open (would imply P ≠ NP)

• Finding a clique of size = lg2(n) is “easy”

initialize T = Ø, S = V
while (S ≠ Ø) {
 pick random v∈S and add v to T
 remove v and its non-neighbors from S
}
return T

• Conjecture [Karp ’76]: for any ε > 0, there’s no
efficient method to find cliques of size (1+ε)lg2n in
E-R random graphs.

Summary

In E-R random graphs
– clique of size 2lg2n exists

– can efficiently find clique of size lg2n

– likely cannot efficiently find cliques size
(1+ε)lg2n

What to do?

21

Summary

In E-R random graphs
– clique of size 2lg2n exists

– can efficiently find clique of size lg2n

– likely cannot efficiently find cliques size
(1+ε)lg2n

What to do?
– make the problem easier by “planting” a

large clique to be found! [Jerrum ’92]
22

23

planted
cliques

Planted Clique

the process: G ~ G(n,p,k)

1. generate G ~ G(n,p)

2. add clique to random subset of k < n vertices of G

Goal: given G ~ G(n,p,k), find the k vertices where
the clique was “planted” (algorithm knows values:
n,p,k)

24

Progress on Planted Clique

For G ~ G(n,½,k), clearly no hope for k ≤ 2lg2n +1.
For k > 2lg2n+1, there is an “obvious” nO(lg n)-algorithm:

 input: G from (n,1/2,k) with k > 2lg2n+1
 1) Check all S⊂V of size |S|=2lg2n+2 for S
 that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
 all w in S: S = S∪{v}
 3) return S

What is the smallest value of k that we have a
polynomial time algorithm for? Any guesses?

25

Unfortunately, this is not polynomial time.

Progress on Planted Clique

For G ~ G(n,½,k), clearly no hope for k ≤ 2lg2n +1.
For k > 2lg2n+1, there is an “obvious” nO(lg n)-algorithm:

 input: G from (n,1/2,k) with k > 2lg2n+1
 1) Check all S⊂V of size |S|=2lg2n+2 for S
 that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
 all w in S: S = S∪{v}
 3) return S

What is the smallest value of k that we have a
polynomial time algorithm for? Any guesses?

26

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k = c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

27

State-of-the-Art for Polynomial Time

State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

 input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

28

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

29

Bipartite Version

State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

30

Bipartite Version

State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

31

Bipartite Version

In fact, (bipartite) planted clique
was recently used as alternate
cryptographic primitive for k < n1/2-ε.
[Applebaum-Barak-Wigderson ’09]

State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

32

my goal: explain why there has been no
progress on this problem past n1/2.
[FGVRX’13]

State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the
plant “stand out.” (proof via Hoeffding & union bound)

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98]

input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values

of coordinates of v2. Let W be the top k
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k
neighbors in W

33

my goal: explain why there has been no
progress on this problem past n1/2.
[FGVRX’13]
But first we have to discuss solving linear
systems!

State-of-the-Art for Polynomial Time

34

linear
systems

Solving Linear Systems

35

Ax= b
n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

solve for n unknowns

the linear equations are over GF(2), ie
{0,1}n

Ax= b
Solving Random Linear Systems

36

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

ra
nd

om

ra
nd

om

Ax= b
Solving Random Linear Systems

37

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

ra
nd

om

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Ax= b
Solving Random Linear Systems

38

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

1
0
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Ax= b
Solving Random Linear Systems

39

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1
0
1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Ax= b
Solving Random Linear Systems

40

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

Ax= b
Solving Random Linear Systems

41

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

choose any m = poly(n)
solve for unique x in poly time.

How?

Ax= b
A Twist

42

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

choose any m = poly(n)
solve for x (that generated original b) in poly time.

How?

entries of b flipped
independently with

prob. 1/100

x 0

Ax= b
A Twist

43

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

choose any m = poly(n)
solve for x (that generated original b) in poly time.

it’s a big open question is theoretical CS called “noisy
parity”.

x 0

entries of b flipped
independently with

prob. 1/100

Ax= b
A Twist

44

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x 0

entries of b flipped
independently with

prob. 1/100

choose any m = poly(n)
solve for x (that generated original b) in poly time.

current best is 2O(n/lgn) time. [BlumKW ’00]

Ax= b
A Twist

45

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x 0

In fact, LPN was recently used as
alternate cryptographic primitive.

[Peikart ’09]

entries of b flipped
independently with

prob. 1/100

46

learning
theory

PAC Learning, in One Slide

47

distribution f∈F

learner
[Valiant ’84]

PAC Learning, in One Slide

48

f∈Fdata a1

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

49

f∈F f(a1)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

50

f∈Fdata a2

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

51

f∈F f(a2)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

52

f∈Fdata a3

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

53

f∈F f(a3)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

54

… …f∈F

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

55

f∈Fdata am

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

56

f∈F f(am)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

57

f∈F f(am)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

58

f∈F f(am)

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

59

f∈Fdata am+1

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

60

f∈F f(am+1)

learner

h(am+1)

[Valiant ’84]

distribution

PAC Learning, in One Slide

61

f∈Fdata am+2

learner
[Valiant ’84]

distribution

PAC Learning, in One Slide

62

f∈F f(am+2)

learner

h(am+2)

[Valiant ’84]

distribution

PAC Learning, in One Slide

63

f∈F f(am+2)

learner

h(am+2)

≈

[Valiant ’84]

distribution

Learning Linear Functions (mod 2)

64

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=U

Learning Linear Functions (mod 2)

65

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=U

Learning Linear Functions (mod 2)

66

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=U

Learning Linear Functions (mod 2)

67

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟U =

Learning Linear Functions (mod 2)

68

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=U

Learning Linear Functions (mod 2)

69

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
x'1
x '2
x'3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

Gaussia
n

elim
inatio

n

Learning Linear Functions (mod 2)

70

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

x'1
x '2
x'3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

target f hypothesis h

Remember the coefficients of the equations are
generated uniformly at random from {0,1}n.

So, if ∃i s.t. xi ≠x’i, then f and h will disagree ½
of the time. Hence, 2n different orthogonal
functions.

form the Fourier basis in DFA

When there’s noise…

71

n variables

m
 e

qu
at

io
ns

m
 r

es
ul

ts

0
0
1
1
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

0 1 0
1 1 1
0 0 1
0 1 1
0 0 0
1 1 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

= x 0

72

statistical
queries

U

Statistical Query Learning

n variables
x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

()

[Kearns ’93]

U

Statistical Query Learning

n variables
x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

()

[Kearns ’93]

q(a, f(a))
q: {1,0}n×{0,1} → {0,1}
and sample size S

U

Statistical Query Learning

n variables
x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

() q(a, f(a))
q: {1,0}n×{0,1} → {0,1}
and sample size S

something like

EU[q(a, f(a))]± 1/S1/2

[Kearns ’93]

U

Statistical Query Learning

n variables
x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

() q

poly(n)

[Kearns ’93]

U

Statistical Query Learning

n variables
x1
x2
x3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

() q

poly(n)

[Kearns ’93]

Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is
learnable with statistical queries, then it is
learnable (in the original model) with noise!

• Theorem [Kearns ’93]: Linear functions (mod 2)
are not learnable with statistical queries.

proof idea: b/c the linear functions are
orthogonal under U, queries are either
uninformative or “eliminate” one wrong linear
function at a time (and there are 2n)

78

Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is
learnable with statistical queries, then it is
learnable (in the original model) with noise!

• Theorem [Kearns ’93]: Linear functions (mod 2)
are not learnable with statistical queries.

• Theorem [Blum et al ’94], when a family of
functions has exponentially high “SQ dim” it is not
learnable with statistical queries.
– SQ dim is roughly the number of nearly-orthogonal

functions (wrt a reference distribution). Linear
functions have SQ dimension = 2n.

79

Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is
learnable with statistical queries, then it is
learnable (in the original model) with noise!

• Theorem [Kearns ’93]: Linear functions (mod 2)
are not learnable with statistical queries.

• Theorem [Blum et al ’94], when a family of
functions has exponentially high “SQ dim” it is not
learnable with statistical queries.

• Shockingly, almost all learning algorithms can be
implemented w/ statistical queries! So high SQ dim is
a serious barrier to learning, especially under noise.

80

Summary

81

• Linear equations with errors seem hard to solve
(Noisy parity functions seem hard to “learn”)

• Statistical queries and statistical dimension from
learning theory are an explanation as to why.

 (almost all our learning algorithms are statistical)

l

Summary

• Linear equations with errors seem hard to solve
(Noisy parity functions seem hard to “learn”)

• Statistical queries and statistical dimension from
learning theory are an explanation as to why.

 (almost all our learning algorithms are statistical)

Idea: extend this framework to optimization
problems and use it to explain the hardness of

planted clique!

82

83

statistical
algorithms

[FGRVX ’13]

Traditional Algorithms

84

input data output

Traditional Algorithms

85

processing
…

please wait

input data output

Traditional Algorithms

86

input data output

Statistical Algorithms

87

outputinput data

Statistical Algorithms

88

q: → {0,1},
sample size S

input data output

Statistical Algorithms

89

≈ E [q()] ± 1/S1/2

q: → {0,1},
sample size S

input data output

Statistical Algorithms

90

poly

processing
…

please wait

input data output

Statistical Algorithms

91

poly

input data output

Statistical Algorithms

92

input data

Turns out most (all?) current optimization
algorithms have statistical analogues!

poly

output

Bipartite Planted Clique

93

G

A(G)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Bipartite Planted Clique

94

A(G)

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

Bipartite Planted Clique

95

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

Statistical Algorithms for BPC

96

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

Statistical Algorithms for BPC

97

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

Statistical Algorithms for BPC

98

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

q: {0,1}n ! {0,1}, S

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

Statistical Algorithms for BPC

99

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

q: {0,1}n ! {0,1}, S

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

≈ avg value of
q on S samples

Statistical Algorithms for BPC

100

A(G)

1 1 1 0 0 1 1
0 1 1 1 1 0 1
1 0 1 1 0 1 1
0 0 0 1 1 0 0
0 0 1 0 1 0 1
0 1 0 1 1 1 1
0 1 1 1 0 1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

poly(n)

each row

w.p. (n-k)/n is random

 is random,
w.p. k/n except in
“plant”
 coordinates

• Extension of statistical query model to
optimization.

• Proving tighter, more general, lower
bounds, which apply to learning also.

101

Gives a new tool for showing problems are
difficult.

Results

Results
• Main result (almost): No statistical

algorithm making a polynomial number of
queries with sample sizes o(n2/k2), can
find planted cliques of size k.
– intuition:∃ many planted clique distributions

with small “overlap” (nearly orthogonal in
some sense), which are hard to tell from
normal E-R graphs.
– Implies that many ideas will fail to work,

including Markov chain approaches [Frieze-
Kannan ’03] for our version of the problem.102

Overview

Statistical oracles are a new lens through
which we can study existing algorithms.

Statistical lower bounds can help explain why
certain problems appear intractable.

This idea gives the first general lower bound
for the notorious planted clique problem.

103

104

planted
partitions

105

Planted Partition Problem

• n = sk nodes
• k partitions of size s

• Problem introduced by McSherry [’01] who
gave an algorithm for k ≥ c n2/3, and
algorithms are now known for k ≥ c n1/2.
[Giesen-Mitsche ’05, Oymak-Hassibi ’11, Ames
’14, Chen et al. ’14, Cole-Friedland-R ’17]

106

Open Problem

• One natural (difficult) open problem is to
prove analogous statistical bounds for the
planted partitions problem.

107

Any Questions?

108

