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Erdős-Rényi Random Graphs

G(n,p) generates graph G on n vertices by 
including each possible edge 
independently with probability p.

3

G(n,p)(4, 0.5)

G
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Typical Examples

6

n = 100, p = 0.01 n = 100, p = 0.1 n = 100, p = 0.5

Created using software by Christopher Manning, 
available on 

http://bl.ocks.org/christophermanning/4187201



Erdős-Rényi Random Graphs

E-R random graphs are an interesting 
“object” of study in combinatorics. 

–When does G have a giant component? 

–When is G connected? 

– How large is the largest clique in G?
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Erdős-Rényi Random Graphs

E-R random graphs are an interesting 
“object” of study in combinatorics. 

–When does G have a giant component? 
 when np → c > 1 
–When is G connected? 
 sharp connectivity threshold at p = ln/n 
– How large is the largest clique in G? 
 for p=½, largest clique has size k(n) ≈ 2lg2(n)
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w.h.p. for G ~ G(n,½), k(n) ≈ 2lg2(n)

why? 

• let Xk be the number of cliques in G ~ G(n,.5) 

•                     < 1 for k > ≈ 2lg2n 

• in fact, (for large n) the largest clique is 
almost certainly k(n) = 2lg2(n) or 2lg2(n)+1 
[Matula ’76]
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Where is the largest clique?
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Finding Large Cliques

for worst-case graphs: 

   finding largest clique is NP-Hard. 
      (very very unlikely to have efficient algorithms) 
   W[1]-Hard 
      (very likely gets harder as target cliques grow) 
   hard to approximate to n1-ε for any ε > 0 
      (give up) 

Hope: in E-R random graphs, finding large cliques is 
easier. 
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Finding Large Cliques in G ~ G(n,½)
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• Finding a clique of size = lg2(n) is “easy” 

initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
   remove v and its non-neighbors from S
}
return T

• Conject 
• ure [Karp ’76]: no efficient method to find cliques 

of size (1+ε)lg2n in E-R random graphs.
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initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
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Finding Large Cliques in G ~ G(n,½)

20still open  (would imply P ≠ NP)

• Finding a clique of size = lg2(n) is “easy” 

initialize T = Ø, S = V
while (S ≠ Ø) {
   pick random v∈S and add v to T
   remove v and its non-neighbors from S
}
return T

• Conjecture [Karp ’76]: for any ε > 0, there’s no 
efficient method to find cliques of size (1+ε)lg2n in 
E-R random graphs.



Summary

In E-R random graphs 
– clique of size 2lg2n exists  

– can efficiently find clique of size lg2n 

– likely cannot efficiently find cliques size 
(1+ε)lg2n 

What to do?
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Summary

In E-R random graphs 
– clique of size 2lg2n exists  

– can efficiently find clique of size lg2n 

– likely cannot efficiently find cliques size 
(1+ε)lg2n 

What to do? 
– make the problem easier by “planting” a 

large clique to be found! [Jerrum ’92]
22
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Planted Clique

the process: G ~ G(n,p,k) 

1. generate G ~ G(n,p) 

2. add clique to random subset of k < n vertices of G 

Goal: given G ~ G(n,p,k), find the k vertices where 
the clique was “planted” (algorithm knows values: 
n,p,k)
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Progress on Planted Clique

For G ~ G(n,½,k), clearly no hope for k ≤ 2lg2n +1. 
For k > 2lg2n+1, there is an “obvious” nO(lg n)-algorithm:  

 input: G from (n,1/2,k) with k > 2lg2n+1 
 1) Check all S⊂V of size |S|=2lg2n+2 for S 
    that induces a clique in G.
 2) For each v∈V, if (v,w) is edge for
    all w in S: S = S∪{v}
 3) return S

   

What is the smallest value of k that we have a 
polynomial time algorithm for? Any guesses?

25

Unfortunately, this is not polynomial time.
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• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the 
plant “stand out.” (proof via Hoeffding & union bound) 

• k = c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98] 
   
input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values 

of coordinates of v2. Let W be the top k 
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k 
neighbors in W

27
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State-of-the-Art for Polynomial Time

• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the 
plant “stand out.” (proof via Hoeffding & union bound) 

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98] 
   
  
  input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
2) Sort V by decreasing order of absolute values 

of coordinates of v2. Let W be the top k 
vertices in this order.

3) Return Q, the set of vertices with ≥ ¾k 
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Bipartite Version

State-of-the-Art for Polynomial Time
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• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the 
plant “stand out.” (proof via Hoeffding & union bound) 

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98] 
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Bipartite Version

In fact, (bipartite) planted clique 
was recently used as alternate 
cryptographic primitive for k < n1/2-ε. 
[Applebaum-Barak-Wigderson ’09]

State-of-the-Art for Polynomial Time
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my goal: explain why there has been no 
progress on this problem past n1/2. 
[FGVRX’13]
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• k ≥ c (n lg n)1/2 is trivial. The degrees of the vertices in the 
plant “stand out.” (proof via Hoeffding & union bound) 

• k ≥ c n1/2 is best so far. [Alon-Krivelevich-Sudokov ’98] 
   
input: G from (n,1/2,k) with k ≥ 10 n1/2

1) find 2nd eigenvector v2 of A(G)
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of coordinates of v2. Let W be the top k 
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3) Return Q, the set of vertices with ≥ ¾k 
neighbors in W
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my goal: explain why there has been no 
progress on this problem past n1/2. 
[FGVRX’13]
But first we have to discuss solving linear 
systems!

State-of-the-Art for Polynomial Time
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Solving Linear Systems
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the linear equations are over GF(2), ie 
{0,1}n



Ax= b
Solving Random Linear Systems
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Ax= b
Solving Random Linear Systems
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Ax= b
Solving Random Linear Systems
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Ax= b
Solving Random Linear Systems
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current best is 2O(n/lgn) time. [BlumKW ’00]
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In fact, LPN was recently used as 
alternate cryptographic primitive. 

[Peikart ’09]

entries of b flipped 
independently with  

prob. 1/100
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PAC Learning, in One Slide

47

distribution f∈F

learner
[Valiant ’84]
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48

f∈Fdata a1

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(a1)

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈Fdata a2

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(a2)

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈Fdata a3

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(a3)

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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… …f∈F

learner
[Valiant ’84]

distribution
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f∈Fdata am

learner
[Valiant ’84]

distribution
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f∈F f(am)

learner
[Valiant ’84]
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f∈F f(am)

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈Fdata am+1

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(am+1)

learner

h(am+1)

[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈Fdata am+2

learner
[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(am+2)

learner

h(am+2)

[Valiant ’84]

distribution



PAC Learning, in One Slide
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f∈F f(am+2)

learner

h(am+2)

≈

[Valiant ’84]

distribution



Learning Linear Functions (mod 2)
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Learning Linear Functions (mod 2)
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Learning Linear Functions (mod 2)
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target f hypothesis h

Remember the coefficients of the equations are 
generated uniformly at random from {0,1}n. 

So, if ∃i s.t. xi ≠x’i, then f and h will disagree ½ 
of the time.  Hence, 2n different orthogonal 
functions. 

form the Fourier basis in DFA
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q(a, f(a)) 
q: {1,0}n×{0,1} → {0,1} 
and sample size S
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Statistical Query Learning

n variables
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( ) q(a, f(a)) 
q: {1,0}n×{0,1} → {0,1} 
and sample size S

something like 

EU[q(a, f(a))]± 1/S1/2

[Kearns ’93]
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Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is 
learnable with statistical queries, then it is 
learnable (in the original model) with noise! 

• Theorem [Kearns ’93]: Linear functions (mod 2) 
are not learnable with statistical queries. 

proof idea: b/c the linear functions are 
orthogonal under U, queries are either 
uninformative or “eliminate” one wrong linear 
function at a time (and there are 2n)
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Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is 
learnable with statistical queries, then it is 
learnable (in the original model) with noise! 

• Theorem [Kearns ’93]: Linear functions (mod 2) 
are not learnable with statistical queries. 

• Theorem [Blum et al ’94], when a family of 
functions has exponentially high “SQ dim” it is not 
learnable with statistical queries. 
– SQ dim is roughly the number of nearly-orthogonal 

functions (wrt a reference distribution). Linear 
functions have SQ dimension = 2n.
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Statistical Queries

• Theorem [Kearns ’93]: If a family of functions is 
learnable with statistical queries, then it is 
learnable (in the original model) with noise! 

• Theorem [Kearns ’93]: Linear functions (mod 2) 
are not learnable with statistical queries. 

• Theorem [Blum et al ’94], when a family of 
functions has exponentially high “SQ dim” it is not 
learnable with statistical queries. 

• Shockingly, almost all learning algorithms can be 
implemented w/ statistical queries! So high SQ dim is 
a serious barrier to learning, especially under noise.
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Summary

81

• Linear equations with errors seem hard to solve 
(Noisy parity functions seem hard to “learn”) 

• Statistical queries and statistical dimension from 
learning theory are an explanation as to why. 

    (almost all our learning algorithms are statistical) 

l



Summary

• Linear equations with errors seem hard to solve 
(Noisy parity functions seem hard to “learn”) 

• Statistical queries and statistical dimension from 
learning theory are an explanation as to why. 

    (almost all our learning algorithms are statistical) 

Idea: extend this framework to optimization 
problems and use it to explain the hardness of 

planted clique!

82



83

statistical 
algorithms

[FGRVX ’13]



Traditional Algorithms
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input data output



Traditional Algorithms
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processing 
… 

please wait

input data output



Traditional Algorithms
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Statistical Algorithms
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Statistical Algorithms
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q:    → {0,1}, 
sample size S

input data output



Statistical Algorithms
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≈ E [q(   )] ± 1/S1/2 

q:    → {0,1}, 
sample size S

input data output
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poly

processing 
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please wait

input data output
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poly

input data output



Statistical Algorithms
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input data

Turns out most (all?) current optimization 
algorithms have statistical analogues!

poly

output
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• Extension of statistical query model to 
optimization. 

• Proving tighter, more general, lower 
bounds, which apply to learning also.

101

Gives a new tool for showing problems are 
difficult.

Results



Results
• Main result (almost): No statistical 

algorithm making a polynomial number of 
queries with sample sizes o(n2/k2), can 
find planted cliques of size k. 
– intuition:∃ many planted clique distributions 

with small “overlap” (nearly orthogonal in 
some sense), which are hard to tell from 
normal E-R graphs. 
– Implies that many ideas will fail to work, 

including Markov chain approaches [Frieze-
Kannan ’03] for our version of the problem.102



Overview

Statistical oracles are a new lens through 
which we can study existing algorithms. 

Statistical lower bounds can help explain why 
certain problems appear intractable. 

This idea gives the first general lower bound 
for the notorious planted clique problem.
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planted 
partitions
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Planted Partition Problem

• n = sk nodes 
• k partitions of size s 

• Problem introduced by McSherry [’01] who 
gave an algorithm for k ≥ c n2/3, and 
algorithms are now known for k ≥ c n1/2. 
[Giesen-Mitsche ’05, Oymak-Hassibi ’11, Ames 
’14, Chen et al. ’14, Cole-Friedland-R ’17]
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Open Problem

• One natural (difficult) open problem is to 
prove analogous statistical bounds for the 
planted partitions problem.
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Any Questions?
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