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How do we learn social networks?



N1H1 Initial Infections (2009)



Learning Model
• A social network consists of agents and 

connections. The goal is to determine the graph of 
a target network. 

• Passive Learning – observing a network from the 
outside and make conclusions about its structure. 

• Each observed outbreak induces (or exposes) a 
connectivity constraint.  
• Namely the graph is connected on the induced 

subset of nodes.



The Constraints

• Let p(u,v) be the a priori probability of an edge 
between nodes u and v. 

• If the prior distribution is independent (and 
probabilities are small), the maximum likelihood 
social network maximizes              . 

• This is equivalent to satisfying the connectivity 
constraints while minimizing the sum of the log-
likelihood costs                       .                         



Finding the Cheapest Network 
Consistent with the Constraints



Finding the Cheapest Network 
Consistent with the Constraints



Our Network Inference Problem 
(aka Network Construction)

• Given: 
• vertices: V = {v1,...,vn}  
• costs: ce for each edge e={vi,vj}  
• constraints: S = {S1,...,Sr}, with 

• Find: a set E of edges of lowest cost such that 
each Si induces a connected subgraph of G=(V,E)



Ordered Constraints
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Ordered Constraint Model

• an ordered constraint O is an ordering on a subset of 
V of size s > 1. The ordered constraint    O = (vk1,...,vks) 
is satisfied if for any 2 ≤ i ≤ s, there exists an 1 ≤ j < i 
such that the e = {vkj,vki} is included in the solution. 

• goal: given a set of vertices, and edge costs, find a 
set E of edges of lowest cost that satisfies all the 
ordered constraints. 

• notice: ordered constraints are a special case of the 
subgraph constraints model
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Ordered Constraints 
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Ordered Constraints are a special 
case



Results for Offline Problems

• For both problems, if P≠NP, we have Ω(log n) 
hardness of approximation. 
• proofs reduce from Hitting Set 

• For both problems, there exist polynomial time 
O(log r + log n)-approximation algorithms, where r 
is the number of constraints. 
• greedy algorithm minimizing a potential function



Online Version of the Problem

• Subgraph or ordered constraints, Si or Oi, 
respectively, come in online. 

• Must satisfy each constraint as it comes in. Can 
add but not remove edges. 
• Seemingly good ideas like placing an MST on 

each constraint can perform very badly. 

• Can consider adaptive or oblivious adversaries.



• An O(n2/3 log2/3n)-competitive algorithm: Initially, place 
a random graph w/ p = c n-1/3 log2/3n.  Then place a 
clique on any unsatisfied constraint. 

• Outline of analysis:  
• all constraints Si, |Si| ≥ n1/3log1/3(n) are almost surely 

satisfied. 
• For all constraints Si, |Si| < n1/3 log1/3(n) that are not 

already covered, the added clique hits at least 1 edge 
in OPT. 

• We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) edges in 
expectation. QED.

Fun Ideas



Less fun ideas
• Algorithm: we first solve fractional version of this 

problem via a multiplicative updates method.  Then we 
use clever rounding scheme to integral solutions. 
[Techniques from Alon et al. (’06) and Buchbinder-Naor (’09).] 
• (less fun because the math gets messy) 

• Against oblivious adversaries, gives O((log r+log n) log 
n)-competitive algorithm for ordered case. 

• There are also a Ω(log n)-competitive lower bound 
against oblivious adversaries. 



Special Graph Structures
• when OPT is known to be a star and costs are uniform:  

• optimal ratio is Ω(log(n)) in general case 

• optimal ratio is 3/2 in ordered case.

• when OPT is known to be a path and costs are uniform: 

• optimal ratio is Ω(log(n)) in general case 

• optimal ratio is 2 in ordered case.



PQ-trees (not fun at all)



Summary

• Learning from constraints is just one formalization 
of a social network learning problem. 

• Almost no matching bounds — theory problems 
open for pretty much every regime. 

• Lots of data to try out these models on.  
• E.g. future work to experiment Twitter RT data 

and to test algorithms in practice.


