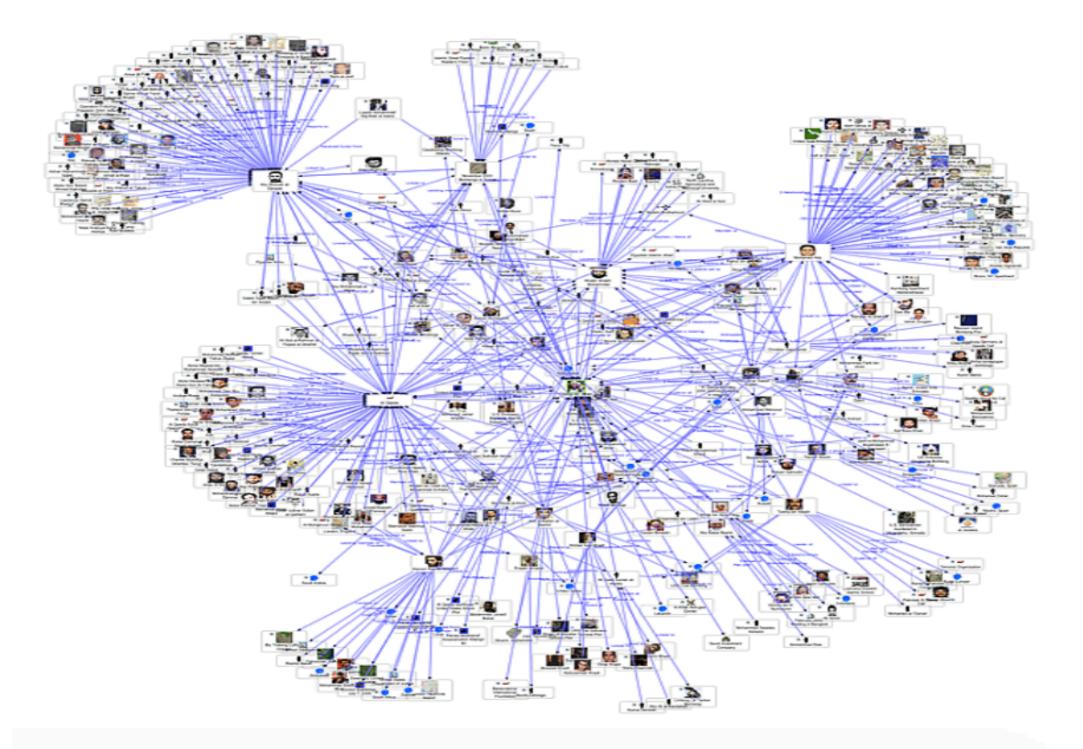
Inferring Likely Social Networks from (Ordered) Connectivity Information

based on papers with Yi Huang and Mano Vikash Janardhanan (manuscript'17) Dana Angluin, James Aspnes (ALT '10 & JOCO '15)

How do we learn social networks?



N1H1 Initial Infections (2009)

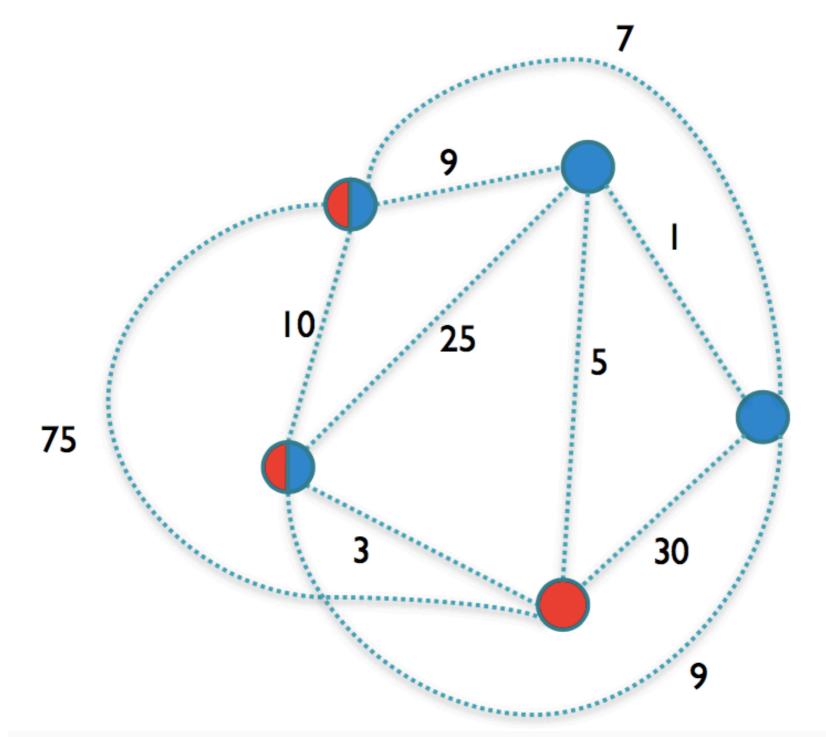
Learning Model

- A social network consists of agents and connections. The goal is to determine the graph of a target network.
- **Passive Learning** observing a network from the outside and make conclusions about its structure.
- Each observed outbreak induces (or exposes) a connectivity constraint.
 - Namely the graph is connected on the induced subset of nodes.

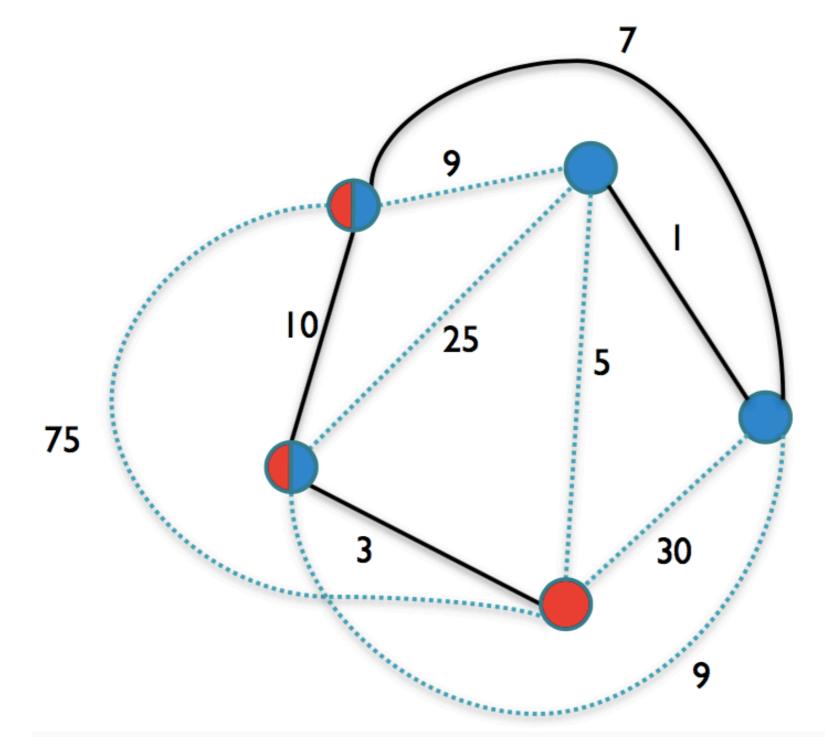
The Constraints

- Let p(u,v) be the a priori probability of an edge between nodes u and v.
- If the prior distribution is **independent** (and probabilities are small), the maximum likelihood social network maximizes $\prod_{u,v \in V} p_{(u,v)}$.
- This is equivalent to satisfying the connectivity constraints while **minimizing the sum** of the log-likelihood costs $\sum_{v,u\in V} -\log(p_{(u,v)})$.

Finding the Cheapest Network Consistent with the Constraints



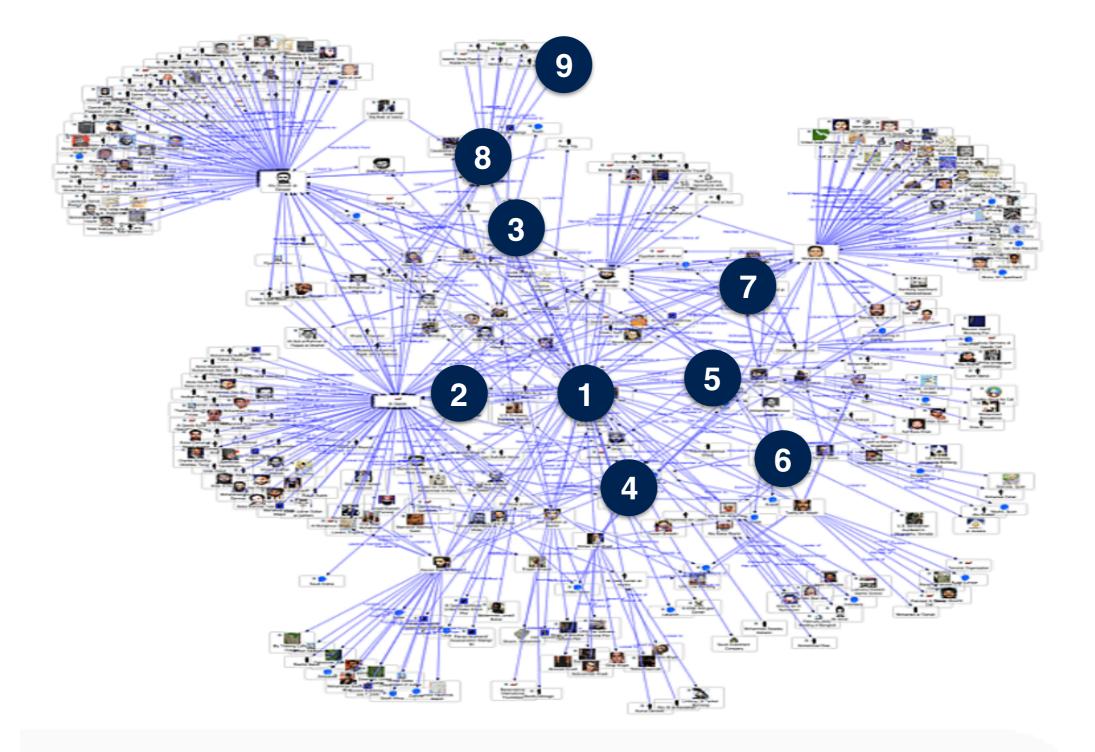
Finding the Cheapest Network Consistent with the Constraints



Our Network Inference Problem (aka Network Construction)

- Given:
 - <u>vertices</u>: $V = \{v_1, ..., v_n\}$
 - <u>costs</u>: c_e for each edge $e = \{v_i, v_j\}$
 - <u>constraints</u>: $S = \{S_1, \dots, S_r\}$, with
- Find: a set E of edges of lowest cost such that each S_i induces a connected subgraph of G=(V,E)

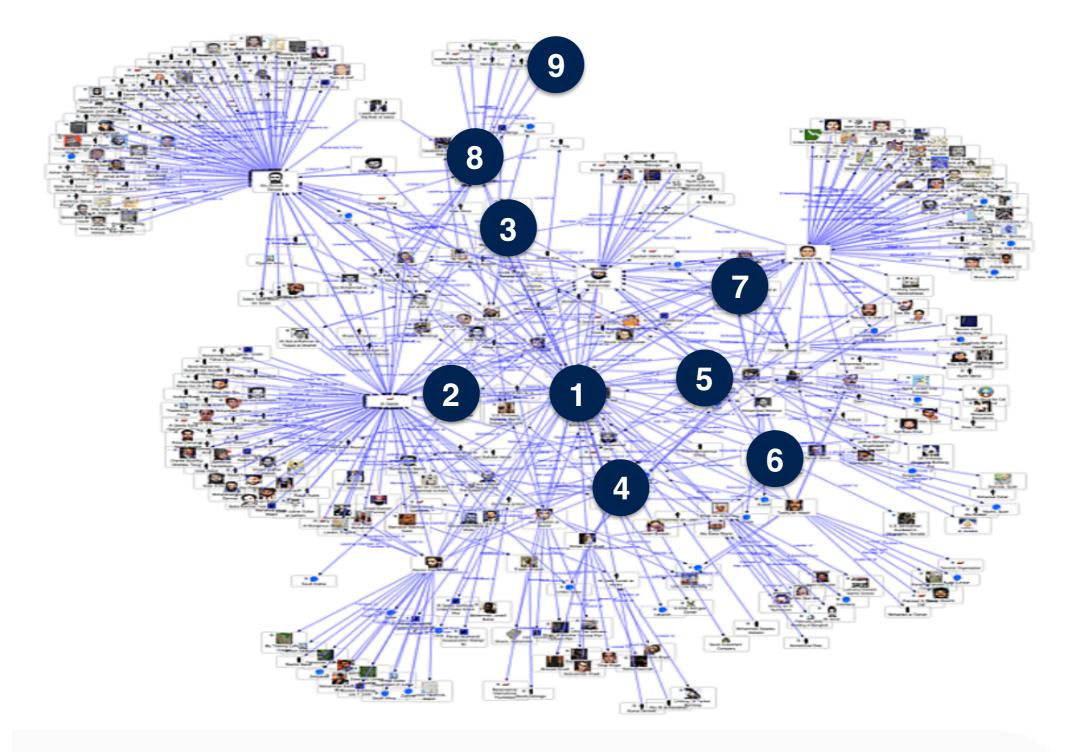
Ordered Constraints



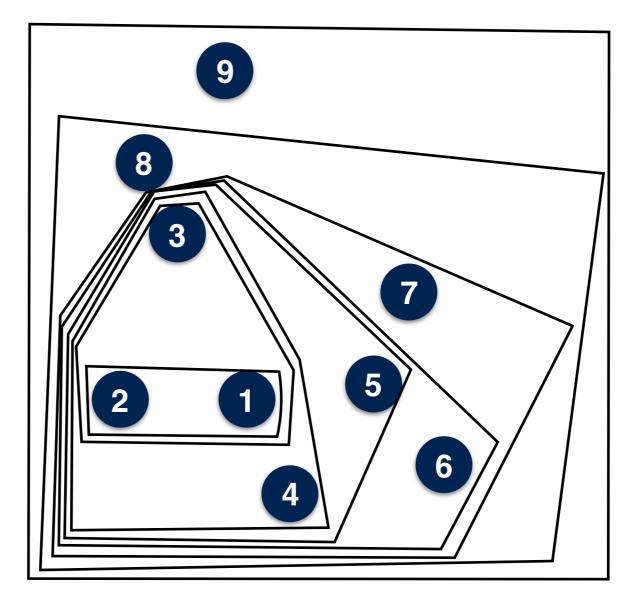
Ordered Constraint Model

- an ordered constraint O is an ordering on a subset of V of size s > 1. The ordered constraint $O = (v_{k1}, ..., v_{ks})$ is satisfied if for any $2 \le i \le s$, there exists an $1 \le j < i$ such that the $e = \{v_{kj}, v_{ki}\}$ is included in the solution.
- goal: given a set of vertices, and edge costs, find a set E of edges of lowest cost that satisfies all the ordered constraints.
- notice: ordered constraints are a <u>special case</u> of the subgraph constraints model

Ordered Constraints



Ordered Constraints are a special case



Results for Offline Problems

- For both problems, if P≠NP, we have Ω(log n) <u>hardness</u> of approximation.
 - proofs reduce from Hitting Set
- For both problems, there exist polynomial time
 O(log r + log n)-approximation algorithms, where r is the number of constraints.
 - greedy algorithm minimizing a potential function

Online Version of the Problem

- Subgraph or ordered constraints, S_i or O_i, respectively, come in **online**.
- Must satisfy each constraint as it comes in. Can add but not remove edges.
 - Seemingly good ideas like placing an MST on each constraint can perform very badly.
- Can consider **adaptive** or **oblivious** adversaries.

Fun Ideas

- An O(n^{2/3} log^{2/3}n)-competitive algorithm: Initially, place a random graph w/ p = c n^{-1/3} log^{2/3}n. Then place a clique on any unsatisfied constraint.
- Outline of analysis:
 - all constraints Si, $|S_i| \ge n^{1/3} \log^{1/3}(n)$ are <u>almost surely</u> <u>satisfied</u>.
 - For all constraints S_i , $|S_i| < n^{1/3} \log^{1/3}(n)$ that are not already covered, the <u>added clique hits at least 1 edge</u> <u>in OPT</u>.
 - We used O(n^{5/3}log^{2/3}(n)+n^{2/3}log^{2/3}(n)OPT) edges in expectation. QED.

Less fun ideas

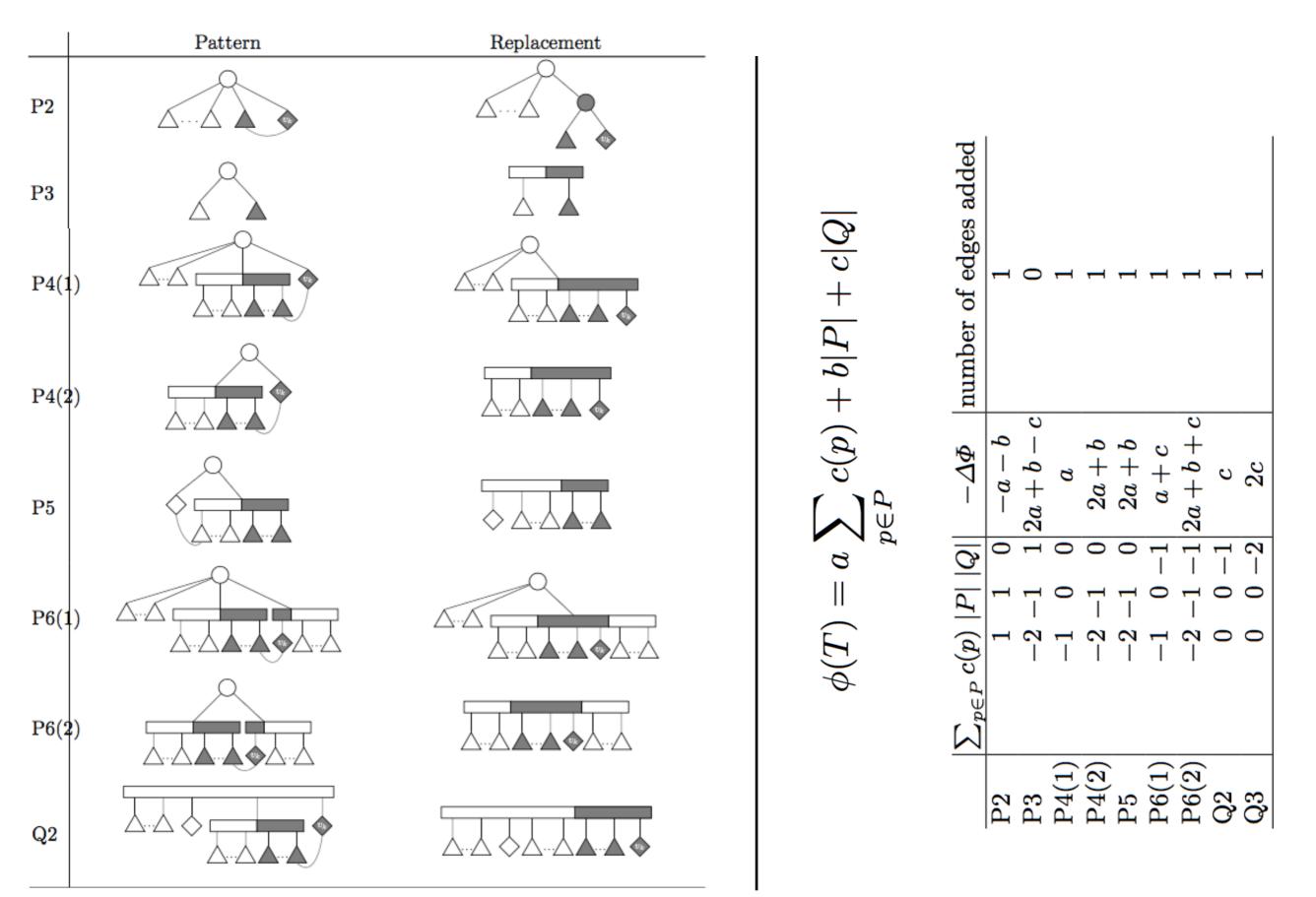
- **Algorithm**: we first solve <u>fractional version</u> of this problem via a <u>multiplicative updates</u> method. Then we use clever <u>rounding scheme</u> to integral solutions. [Techniques from Alon et al. ('06) and Buchbinder-Naor ('09).]
 - (less fun because the math gets messy)
- Against oblivious adversaries, gives O((log r+log n) log n)-competitive algorithm for ordered case.
- There are also a Ω(log n)-competitive lower bound against oblivious adversaries.

Special Graph Structures

- when OPT is known to be a **star** and costs are uniform:
 - optimal ratio is **Ω(log(n)) in general** case
 - optimal ratio is 3/2 in ordered case.

- when OPT is known to be a **path** and costs are uniform:
 - optimal ratio is **Ω(log(n)) in general** case
 - optimal ratio is **2 in ordered** case.

PQ-trees (not fun at all)



Summary

- Learning from constraints is just one formalization of a social network learning problem.
- Almost no matching bounds theory problems open for pretty much every regime.
- Lots of data to try out these models on.
 - E.g. future work to experiment Twitter RT data and to test algorithms in practice.