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Elections

We know who voted.
We know the result.
But we don’t know who voted for whom!

We want to train a model that predicts
future elections.



Supervised Learning (PAC)

A class of functions H is PAC learnable if there is
an efficient algorithm A such that for every target

function c in H, any distribution D over {0,1}", and
forany g, 6 > 0, given

m = poly(1/ €, 1/5, n, size(c))

labeled examples drawn i.i.d. from D, returns a
hypothesis h in H such that

P[1 c(x)2h(x) e]=1-0.



Learning from Proportions (LLP)

A class of functions H is PAC learnable from
label proportions if there is an efficient
algorithm A such that for every target function c

in H, any distribution D over {0,1}", and for any &,
0 > 0, given

m > poly(1/ €, 1/0, n, size(c))

examples drawn i.i.d. from D and p, returns a
hypothesis h in H such that

Pllp(c)- p(h) < €]=1-26.



Label Proportions vs PAC

A class of functions H is PAC learnable if there is an
efficient algorithm A such that for every target function c in

H, any distribution D over {0, 1}”, and for any €, 6 > 0, given
m > poly(1/ €, 1/0, n, size(c)) examples drawn i.i.d. from D
and their labels, returns a hypothesis h in H such that

P[1 C(X)ih(X) < 8] >1 - 0.

A class of functions H is PAC learnable from label
proportions if there is an efficient algorithm A such that for

every target function c in H, any distribution D over {0, 1}",
and for any €, 6 > 0, given m > poly(1/ €, 1/6, n, size(c))
examples drawn i.i.d. from D and p, returns a hypothesis h
in H such that P[|p(c)- p(h)|< €]=1 - 6.



Main Question

What is the complexity of
Learning from Label
Proportions? And how does
LLP learning relate to normal

PAC learning?



An Occam’s Razor Bound
for LLP

For target function c, w.p. at least 1 — 0, for all
heH,

Pe - Phl < IPe — Pl + O(log(1/6) (VC(H)/m)'2)
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Results

e LLP < PAC

* \/C-dimension hardness for LLP]
(hot a complete characterization)

e A nontrivial problem in LLP

under standard complexity-theoretic assumptions
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LLP vs PAC

Theorem: Suppose NP = RP. Then if a
hypothesis class H is efficiently
learnable from label proportions, it is
also efficiently (properly) PAC learnable.
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LLP vs PAC

Theorem: Suppose NP = RP. Then if a hypothesis
class H is efficiently learnable from label proportions,
it is also efficiently (properly) PAC learnable.

proof. involves a reduction from PAC to
LLP. Idea is to make LLP distribution
that forces all (and only the) +
examples to be labeled + by LLP
learner if its threshold is to be met.
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LLP vs PAC

Theorem: Suppose NP = RP. Then if a hypothesis
class H is efficiently learnable from label proportions,
it is also efficiently (properly) PAC learnable.

k:’m,—itnm ifiEESﬂIldC( ):1

D'(z) =< 1 ifze Sandc(z) =0

0 otherwise

where kK = number of positive examples
and € = 1/(2m2)
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VC-dim for LLP

Theorem: Let C be a hypothesis

class such that VC(C) = nY for some
constant y > 0. There Is no efficient
algorithm for PAC learning C from
label proportions unless NP = RP.




VC-dim for LLP

Theorem: Let C be a hypothesis class s.t. VC(C) = nY for
some constant y > 0. There is no efficient algorithm for
PAC learning C from label proportions unless NP = RP.

reminder: the VC-dim is the maximum number
of points a class of functions can shatter.

—@— e.g. VC dimension of intervals is 2
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VC-dim for LLP

Theorem: Let C be a hypothesis class s.t. VC(C) = nY for
some constant y > 0. There is no efficient algorithm for
PAC learning C from label proportions unless NP = RP.

proof idea: can reduce from subset sum to LLP
learning any class with large VC dimension.

How? choose a set of shattered points, make
LLP learner solve subset sum to get the “right”
threshold.
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VC-dim for LLP

Theorem: Let C be a hypothesis class s.t. VC(C) = nY for
some constant y > 0. There is no efficient algorithm for
PAC learning C from label proportions unless NP = RP.
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An LLP-Learnable Class

th:{1,..., 2N} — {0, 1} : max
h(i)=h()=1 Il — il < K}
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An LLP-Learnable Class

th:{1,...,201 > {0, 1} : max
h(i)=h()=1 Il — il = K}

For k=log(n), VC-dimension is
super-constant, yet there is a poly-
time algorithm.



LLP is Also Easy for Nice
Distributions




Conclusions

| presented the beginnings of a learning theory
for LLP.

LLP is the simplest case of multi-bag learning.

Extensions include to multiclass learning and
regression.

Would also be interesting to develop practical
LLP algorithms.
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