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Elections

• We know who voted.


• We know the result.


• But we don’t know who voted for whom!


• We want to train a model that predicts 
future elections.
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Supervised Learning (PAC)
A class of functions H is PAC learnable if there is 
an efficient algorithm A such that for every target 
function c in H, any distribution D over {0,1}n, and 
for any ε, δ > 0, given 


m ≥ poly(1/ ε , 1/δ, n, size(c)) 


labeled examples drawn i.i.d. from D, returns a 
hypothesis h in H such that 


P[1c(x)≠h(x) ≤  ε ] ≥ 1 − δ.
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Learning from Proportions (LLP)
A class of functions H is PAC learnable from 
label proportions if there is an efficient 
algorithm A such that for every target function c 
in H, any distribution D over {0,1}n, and for any ε, 
δ > 0, given 


m ≥ poly(1/ ε , 1/δ, n, size(c)) 


examples drawn i.i.d. from D and p̂, returns a 
hypothesis h in H such that 


P[|p(c)− p(h)| ≤  ε ] ≥ 1 − δ.
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Label Proportions vs PAC
A class of functions H is PAC learnable if there is an 
efficient algorithm A such that for every target function c in 
H, any distribution D over {0, 1}n, and for any ε, δ > 0, given 
m ≥ poly(1/ ε , 1/δ, n, size(c))  examples drawn i.i.d. from D 
and their labels, returns a hypothesis h in H such that 
P[1c(x)≠h(x) ≤  ε ] ≥ 1 − δ.

A class of functions H is PAC learnable from label 
proportions if there is an efficient algorithm A such that for 
every target function c in H, any distribution D over {0, 1}n, 
and for any ε, δ > 0, given m ≥ poly(1/ ε , 1/δ, n, size(c)) 
examples drawn i.i.d. from D and p̂, returns a hypothesis h 
in H such that P[|p(c)− p(h)| ≤  ε ] ≥ 1 − δ.
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Main Question

What is the complexity of 
Learning from Label 

Proportions? And how does 
LLP learning relate to normal 

PAC learning?
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An Occam’s Razor Bound 
for LLP

For target function c, w.p. at least 1 − δ, for all 
h ∈ H,


 |pc − ph| ≤ |p̂c − p̂h| + Õ( log(1/δ) (VC(H)/m)1/2)
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Results

• LLP ⊊ PAC1


• VC-dimension hardness for LLP1             
(not a complete characterization)


• A nontrivial problem in LLP

1 under standard complexity-theoretic assumptions
11



Results

• LLP ⊊ PAC1


• VC-dimension hardness for LLP1             
(not a complete characterization)


• A nontrivial problem in LLP

1 under standard complexity-theoretic assumptions
12



LLP vs PAC

Theorem: Suppose NP ≠ RP. Then if a 
hypothesis class H is efficiently 
learnable from label proportions, it is 
also efficiently (properly) PAC learnable.
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LLP vs PAC
Theorem: Suppose NP ≠ RP. Then if a hypothesis 
class H is efficiently learnable from label proportions, 
it is also efficiently (properly) PAC learnable.

proof. involves a reduction from PAC to 
LLP.  Idea is to make LLP distribution 
that forces all (and only the) + 
examples to be labeled + by LLP 
learner if its threshold is to be met.
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LLP vs PAC
Theorem: Suppose NP ≠ RP. Then if a hypothesis 
class H is efficiently learnable from label proportions, 
it is also efficiently (properly) PAC learnable.

where k = number of positive examples 
and ε = 1/(2m2) 15



Results

• LLP ⊊ PAC 1


• VC-dimension hardness for LLP1             
(not a complete characterization)


• A nontrivial problem in LLP

1 under standard complexity-theoretic assumptions
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VC-dim for LLP

Theorem: Let C be a hypothesis 
class such that VC(C) ≥ nγ for some 
constant γ > 0. There is no efficient 
algorithm for PAC learning C from 
label proportions unless NP = RP.
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VC-dim for LLP
Theorem: Let C be a hypothesis class s.t. VC(C) ≥ nγ for 
some constant γ > 0. There is no efficient algorithm for 
PAC learning C from label proportions unless NP = RP.

reminder: the VC-dim is the maximum number 
of points a class of functions can shatter.

(        )(   )(   )()
e.g. VC dimension of intervals is 2
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VC-dim for LLP
Theorem: Let C be a hypothesis class s.t. VC(C) ≥ nγ for 
some constant γ > 0. There is no efficient algorithm for 
PAC learning C from label proportions unless NP = RP.

proof idea: can reduce from subset sum to LLP 
learning any class with large VC dimension.


How? choose a set of shattered points, make 
LLP learner solve subset sum to get the “right” 
threshold.
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VC-dim for LLP
Theorem: Let C be a hypothesis class s.t. VC(C) ≥ nγ for 
some constant γ > 0. There is no efficient algorithm for 
PAC learning C from label proportions unless NP = RP.
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An LLP-Learnable Class
{h : {1, . . . , 2n } → {0, 1} : max 
h(i)=h(j)=1 |i − j| ≤ k}

0 0 0 0 0 1 1 1 1 0 0 0

1 2 3 … 2n

≤ k
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An LLP-Learnable Class
{h : {1, . . . , 2n } → {0, 1} : max 
h(i)=h(j)=1 |i − j| ≤ k}

For k=log(n), VC-dimension is 
super-constant, yet there is a poly-
time algorithm.
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LLP is Also Easy for Nice 
Distributions 
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Conclusions
• I presented the beginnings of a learning theory 

for LLP.


• LLP is the simplest case of multi-bag learning.


• Extensions include to multiclass learning and 
regression.


• Would also be interesting to develop practical 
LLP algorithms.
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