Learning Social Networks,
Actively and Passively

SFI Talk

Lev Reyzin
Yahoo! Research
(work done while at Yale University)

talk based on 2 papers, both with
Dana Angluin and James Aspnes

Learning Interaction Networks

» Reconstructing Evolutionary Trees via
Distance Experiments

* Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks
» Actively Learning Social Networks
e Passively Learning Social Networks

Learning Interaction Networks

» Reconstructing Evolutionary Trees via
Distance Experiments

* Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks

e Actively Learning Social Networks
e Passively Learning Social Networks

How Do We Learn Social Networks?

Trends Spreading through a Social
Network

nh

Trends Spreading through a Social
Network

|

Trends Spreading through a Social
Network

|

Trends Spreading through a Social
Network

|

Trends Spreading through a Social
Network

Value Injection Queries (VIQs) an Overview

Model to study learning hidden circuits [AACWV ’06]
— inspired by learning of gene regulatory networks.

Allows for perturbing the circuit anywhere, but
observing only its one output (ie phenotype, vote, $).

In between input/output models and fully observable
models.

We apply VIQs to learning independent cascade
social networks.

What the Learner Sees

O

O

e

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

Activations and Suppressions

20

Activations and Suppressions

Exact Value Injection Queries

The Learning Task

* Two social networks S and S’ are behaviorally
equivalent if for any experiment e, S(e) =

S'(e)

» Given access to a hidden social network S*,
the learning problem is to find a social
network S behaviorally equivalent to S* using
value injection queries.

The Percolation Model

Given a network S and aVIQ

All edges entering or leaving a suppressed node are
automatically “closed.”

Each remaining edge (u,v) is “open” with probability
P(.v) and “closed” with probability (I- p,)

The result of aVIQ is the probability there is a path
from a activated node to the output via open edges

in S

A Lower Bound

A Lower Bound

-’
X N -

~- |

All queries give |-bit answers

/

X
/

&

A Lower Bound

\ |
\
O

~

~- |
-~
- ~

\Q

2920 such graphs, Q(n?) L.b.

An Algorithm: First Some
Definitions

* The depth of a node is its distance to the root

* An Up edge is an edge from a node of larger depth
to a node of smaller depth

* A Level edge is an edge between two nodes of same
depth

* A Down edge is an edge from a node at smaller
depth to a node at higher depth

* A leveled graph of a social network is the graph of
its Up edges

Excitation Paths

* An excitation path for a node nis aVIQ in
which a subset of the free agents form a simple
directed path from n to the output. All agents
not on the path with inputs into the path are
suppressed.

* We also have a shortest excitation path

node n

The Learning Algorithm For
Networks w/o Probability | Edges

e First Find-Up-Edges to learn the leveled graph
of S

* For each level, Find-Level-Edges

* For each level, starting from the bottom, Find-
Down-Edges

Find-Up-Edges

O O O
O O 0O O
O O O

Find-Up-Edges

Find-Up-Edges

Find-Up-Edges

Find-Up-Edges

Find-Up-Edges

p(u,v)

Find-Level-Edges

Find-Level-Edges

Find-Level-Edges

- Find-Down-Edges

Find-Down-Edges

Q=0

Find-Down-Edges

Find-Down-Edges

Find-Down-Edges

Find-Down-Edges

Find-Down-Edges

Find-Down-Edges

* For each node u at current level

> Sort each node v, in C (complete set) by distance
to the root in G — {u}

° Letv, ... v, be the sorted vs

> Let pi, ... pi, be their corresponding shortest paths
to the root in G — {u}
> Forifrom | to k

Do experiment of firing u, leaving pi. free, and
suppressing the rest of the nodes.

For Example

With Ones — a Problem

With Ones — a Problem

With Ones

Algorithm gets more complicated

Level edges and down edges are found in
one subroutine

In looking for down edges from u, need to
avoid not just u, but also all nodes
reachable from u by | edges

In the End

We do | query per each possible edge, giving
an O(n?) algorithm

Matches the Q(n?) lower bound

Finding Influential Nodes

» Suppose instead of learning the social network,
we wanted to find an influential set of nodes
quickly.

* A set of nodes is if, when activated,
activates the output with probability at least p

» NP Hard to Approximate to log n, even if we
know the structure of the network

Set Cover

n sets k elements

e

Can assume n = poly(k)

NP Hard to Approximate to log n

Reduction from Set Cover

‘ P="1

Blue edges have weight
(I- 2 7M(1/k))

n sets k elements

An Approximation Algorithm

* Say the optimal solution has m nodes

» Suppose we wanted to fire the output
with probability (p — €)

* Let | be the set of chosen influential
nodes.

» Observation: at any point in the
algorithm, greedily adding one more node
w to | makes

o n— S(er
*S(CIL-J{U.’}) = ‘5(61) +] ()

1

Analyzing Greedy

» Using a greedy algorithm, we let k be the
number of rounds the algorithm is run

For

1t suffices that

or

k> mlog (2) :

€

Summary of the Active Case
* Applies known model to new domain.

» Matching worst-case upper and lower
bounds for learning social networks.

» But queries too expensive in most
applications...

* Lots of open problems!

What if We Cannot Manipulate the
Network?

2009 Cases of Swine Flu

59

The Constraints

The social network is an unknown graph,
where nodes are agents.

Let p,.) be the a priori probability of an
edge between nodes u and v.

Each observed outbreak induces (or
exposes) a constraint.

Namely the graph is connected on the induced
subset.

Finding the Cheapest Network

o If the prior distribution is independent (and
probabilities are small), the maximum likelihood
social network maximizes

H P(u,w)

u.veV

 This is equivalent to minimizing the sum of the
log-likelihood costs
—lo g (P(u,v))
vaueV

while satisfying the constraints

Finding the Cheapest Network
Consistent with the Constraints

75

LY P

Finding the Cheapest Network
Consistent with the Constraints

75

Finding the Cheapest Network
Consistent with the Constraints

7/

LY P

.
e,
"tsagmunst®

Finding the Cheapest Network
Consistent with the Constraints

7/

“a, 3
Ll -p:.- EEEEENEEmN

The Network Inference Problem

* The Network Inference Problem.
o Given:
a set of verticesV = {v,...,v. }
costs ¢, for each edge e={v,v}
a constraint set S = {§,,...,S }, with Sl. -
> Find: a set E of edges of lowest cost such that each S,
induces a connected subgraph of G=(V,E)
* We consider both the offline and online version
of this problem. We also consider the arbitrary
and uniform cost versions.

» Solved for the case where all constraints can be
satisfied by a tree [Korach & Stern '03] — they
left the general case open

An Offline Lower Bound

» Theorem: If P # NP, the approximation
ratio for the Uniform Cost Network
Inference problem is (2(log n).

* Proof (reduction from Hitting Set)
U ={v,Vp...,V }
- C={C,,C,,....C}with C,CU

> The Hitting Set problem is to minimize |H|,
where HCUst.VC, HNC, =¢

An Offline L.B. continued

» Reduction from Hitting Set
* For a constant k,We make a N.l. instance

—o®
@0 .
X
X
X
X

_ 0@ "

=5

An Offline L.B. continued

» Reduction from Hitting Set
* For a constant k,We make a N.l. instance

00 0 @
@0 O O “— Eachrow
X ® 0 corresponds to
the elements in
nk — ’ ’ ’ ’ the Hitting Set
.0 Tl instance
0 0 ¢
0 0 ¢
_ ee '@ @

=5

An Offline L.B. continued

» Constraints: first, for each row, give all pairwise
constraints:

—o®
®0
X
X
X
X

_ 0@ "

=5

An Offline L.B. continued

» Constraints: first, for each row, give all pairwise

constraints:

 This will force the learner to put down a
clique on each row

An Offline L.B. continued

* Now we have nk rows of cliques

—

¢

An Offline L.B. continued

* For each pair of rows:

An Offline L.B. continued

* For each pair of rows:

An Offline L.B. continued

* For each pair of rows:

* w.l.o.g. for the Hitting Set constraint
° C = {V| V..V }
> we will add the constraint:

An Offline L.B. continued

* For each pair of rows:

(|2345...
XXX

n n

"/

90000---0|--00
\I 2 3 45 ...U..n-l n

* w.l.o.g. for the Hitting Set constraint

° C = {V| V..V }
> we will add the constraint:

An Offline L.B. continued

/I2345...k\ /I2345...k\
1““---‘ wﬁ---Q
90000 000000
\I2345...k/ \I2345...k/
corresponds to adding v, never better

to H

An Offline L.B. continued

/|2345...k\
10000~0

o000 -0
k|2345..k/

corresponds to adding v,
to H

78

Finishing the Lower Bound

* Unless P=NP, optimal Hitting Set
approximation is)(log(n)) [Feige '98].
* The optimal algorithm pays:
k(7 n'
n +OPT
o))

* But the learner pays:

n n"
nk(z) + Q2 log(n)OPT(])

2
* k can be chosen to be arbitrarily large.

Offline Network Inference Algorithm

e Theorem:There is a O(log(n)+log(r))
approximation algorithm to OPT

e Proof:

> Let € sum over all constraints S, the number of
components S. induces in G minus |.

> Now consider the greedy algorithm: while C > 0,

add to E the edge that has the lowest ratio of c_ to
AC.

° This greedy algorithm gives an approximation of
log(Co) = O(log(n)+log(r))

The Online Problem

Constraints S, come in online
Must satisfy each constraint as it comes in.
Can add but not remove edges.

Seemingly good ideas like placing a spanning
tree on each constraint can perform very

badly.

Online Algorithm Against Oblivious
Adversary

O(n?3log?3n)-competitive algorithm

Online Algorithm Against Oblivious
Adversary

O(n?3log%3n)-competitive algorithm

/.

2
clog®” n
P = 1/3

Online Algorithm Against Oblivious
Adversary

O(n?3log%3n)-competitive algorithm
* All constraints S, |S.| 2 n'3log!/3(n) are almost
surely connected

* All constraints S, |S;| < n'/3 log!/3(n) that are
not already covered, we can put a clique on,
and hit at least | edge in OPT

» We used O(n’"3log?3(n)+n?3log?3(n)OPT)
edges in expectation.

* Because OPT = Q(n), we are done.

Other Online Results

@
* The competitive ratio for uniform cost stars
and paths is B(log n).

o for paths, makes use of pg-trees [Booth and Lueker
'76]

» The uniform cost problem has a Q(\/;)-
competitive lower bound

* The arbitrary cost problem has an Q(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

Summary

Lots of other results in this model.

Passive model does not require interfering in
the network.

Interesting techniques, but gaps left.

Would be interesting to extend to models
incorporating incomplete observations.

Extend to weaker adversaries or random
networks.

Thank You!

Questions!

