
SFI Talk

Lev Reyzin
Yahoo! Research

(work done while at Yale University)

talk based on 2 papers, both with
Dana Angluin and James Aspnes

1

 Reconstructing Evolutionary Trees via
Distance Experiments

 Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks
 Actively Learning Social Networks
 Passively Learning Social Networks

2

 Reconstructing Evolutionary Trees via
Distance Experiments

 Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks
 Actively Learning Social Networks
 Passively Learning Social Networks

3

4

5

6

7

8

9

  Model to study learning hidden circuits [AACW ’06]
– inspired by learning of gene regulatory networks.

  Allows for perturbing the circuit anywhere, but
observing only its one output (ie phenotype, vote, $).

  In between input/output models and fully observable
models.

  We apply VIQs to learning independent cascade
social networks.

10

2

4

1

3

5

11

2

4

1

3

5

12

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

13

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

14

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

15

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

16

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

17

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

18

2

4

1

3

5

19

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

20

2

4

1

3

5

21

2

4

1

3

5

0.72

22

 Two social networks S and S’ are behaviorally
equivalent if for any experiment e, S(e) =
S’(e)

 Given access to a hidden social network S*,
the learning problem is to find a social
network S behaviorally equivalent to S* using
value injection queries.

23

Given a network S and a VIQ

  All edges entering or leaving a suppressed node are
automatically “closed.”

  Each remaining edge (u,v) is “open” with probability
p(u,v) and “closed” with probability (1- p(u,v))

  The result of a VIQ is the probability there is a path
from a activated node to the output via open edges
in S

24

. . .

. . .

1
1

1

1 1 1

25

. . .

. . .

All queries give 1-bit answers

1
1

1

1 1 1

26

. . .

. . .

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1

1 1 1

27

• The depth of a node is its distance to the root
• An Up edge is an edge from a node of larger depth

to a node of smaller depth
• A Level edge is an edge between two nodes of same

depth
• A Down edge is an edge from a node at smaller

depth to a node at higher depth
• A leveled graph of a social network is the graph of

its Up edges

28

  An excitation path for a node n is a VIQ in
which a subset of the free agents form a simple
directed path from n to the output. All agents
not on the path with inputs into the path are
suppressed.

  We also have a shortest excitation path

29

?

?

node n
output

  First Find-Up-Edges to learn the leveled graph
of S

  For each level, Find-Level-Edges

  For each level, starting from the bottom, Find-
Down-Edges

30

31

32

33

34

35

36

p(u,v)

37

38

39

40

41

42

43

44

45

46

  For each node u at current level
◦  Sort each node vi in C (complete set) by distance

to the root in G – {u}
◦  Let v1 … vk be the sorted vis
◦  Let pi1 … pik be their corresponding shortest paths

to the root in G – {u}
◦  For i from 1 to k
  Do experiment of firing u, leaving pii free, and

suppressing the rest of the nodes.

47

48

49

50

 Algorithm gets more complicated

 Level edges and down edges are found in
one subroutine

  In looking for down edges from u, need to
avoid not just u, but also all nodes
reachable from u by 1 edges

51

 We do 1 query per each possible edge, giving
an O(n2) algorithm

 Matches the Ω(n2) lower bound

52

  Suppose instead of learning the social network,
we wanted to find an influential set of nodes
quickly.

  A set of nodes is influential if, when activated,
activates the output with probability at least p

  NP Hard to Approximate to log n, even if we
know the structure of the network

53

54

k elements n sets

Can assume n = poly(k)

NP Hard to Approximate to log n

n sets k elements

P = ½
Blue edges have weight
(1- ½ ^(1/k))

55

  Say the optimal solution has m nodes
  Suppose we wanted to fire the output

with probability (p – ε)
 Let I be the set of chosen influential

nodes.
 Observation: at any point in the

algorithm, greedily adding one more node
w to I makes

56

 Using a greedy algorithm, we let k be the
number of rounds the algorithm is run

57

 Applies known model to new domain.

 Matching worst-case upper and lower
bounds for learning social networks.

 But queries too expensive in most
applications…

 Lots of open problems!

58

2009 Cases of Swine Flu

59

 The social network is an unknown graph,
where nodes are agents.

 Let p(u,v) be the a priori probability of an
edge between nodes u and v.

 Each observed outbreak induces (or
exposes) a constraint.
◦ Namely the graph is connected on the induced

subset.

60

  If the prior distribution is independent (and
probabilities are small), the maximum likelihood
social network maximizes

  This is equivalent to minimizing the sum of the
log-likelihood costs

 while satisfying the constraints

61

7

75

9

30 3

10

9

1

5
25

62

7

75

9

30 3

10

9

1

5
25

63

7

75

9

30 3

10

9

1

5
25

64

7

75

9

30 3

10

9

1

5
25

65

  The Network Inference Problem.
◦  Given:
  a set of vertices V = {v1,…,vn}
  costs ce for each edge e={vi,vj}
  a constraint set S = {S1,…,Sr}, with
◦  Find: a set E of edges of lowest cost such that each Si

induces a connected subgraph of G=(V,E)
 We consider both the offline and online version

of this problem. We also consider the arbitrary
and uniform cost versions.

  Solved for the case where all constraints can be
satisfied by a tree [Korach & Stern ’03] – they
left the general case open

66

 Theorem: If P ≠ NP, the approximation
ratio for the Uniform Cost Network
Inference problem is Ω(log n).

 Proof (reduction from Hitting Set)
◦ U = {v1, v2,…,vn}
◦ C = {C1, C2,…,Cj}, with
◦ The Hitting Set problem is to minimize |H|,

where

67

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n 68

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n

Each row
corresponds to
the elements in
the Hitting Set
instance

69

 Constraints: first, for each row, give all pairwise
constraints:

…

…

…

…

…

…

…

nk

n 70

 Constraints: first, for each row, give all pairwise
constraints:

 This will force the learner to put down a
clique on each row

…

71

 Now we have nk rows of cliques

…

…

…

…nk

72

  For each pair of rows:

…

…

73

  For each pair of rows:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

74

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

75

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

76

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

77

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

78

 Unless P=NP, optimal Hitting Set
approximation is Ω(log(n)) [Feige ’98].

 The optimal algorithm pays:

 But the learner pays:

 k can be chosen to be arbitrarily large.
79

 Theorem: There is a O(log(n)+log(r))
approximation algorithm to OPT

 Proof:
◦  Let C sum over all constraints Si, the number of

components Si induces in G minus 1.
◦ Now consider the greedy algorithm: while C > 0,

add to E the edge that has the lowest ratio of ce to
∆C.
◦ This greedy algorithm gives an approximation of

log(C0) = O(log(n)+log(r))
80

 Constraints Si come in online

 Must satisfy each constraint as it comes in.

 Can add but not remove edges.

  Seemingly good ideas like placing a spanning
tree on each constraint can perform very
badly.

81

O(n2/3log2/3n)-competitive algorithm

82

O(n2/3log2/3n)-competitive algorithm

83

O(n2/3log2/3n)-competitive algorithm
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost

surely connected
 All constraints Si, |Si| < n1/3 log1/3(n) that are

not already covered, we can put a clique on,
and hit at least 1 edge in OPT

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT)
edges in expectation.

  Because OPT = Ω(n), we are done.
84

  The competitive ratio for uniform cost stars
and paths is θ(log n).
◦  for paths, makes use of pq-trees [Booth and Lueker

’76]

  The uniform cost problem has a -
competitive lower bound

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

85

€

Ω n()

  Lots of other results in this model.

  Passive model does not require interfering in
the network.

  Interesting techniques, but gaps left.

 Would be interesting to extend to models
incorporating incomplete observations.

  Extend to weaker adversaries or random
networks.

86

Questions?

87

