
SFI Talk

Lev Reyzin
Yahoo! Research

(work done while at Yale University)

talk based on 2 papers, both with
Dana Angluin and James Aspnes

1

 Reconstructing Evolutionary Trees via
Distance Experiments

 Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks
 Actively Learning Social Networks
 Passively Learning Social Networks

2

 Reconstructing Evolutionary Trees via
Distance Experiments

 Learning and Verifying Graphs (ie Genome
Sequences with PCR)

 Learning Large-Alphabet Circuits (ie Gene
Regulatory Networks)

 Learning Bayesian Networks
 Actively Learning Social Networks
 Passively Learning Social Networks

3

4

5

6

7

8

9

  Model to study learning hidden circuits [AACW ’06]
– inspired by learning of gene regulatory networks.

  Allows for perturbing the circuit anywhere, but
observing only its one output (ie phenotype, vote, $).

  In between input/output models and fully observable
models.

  We apply VIQs to learning independent cascade
social networks.

10

2

4

1

3

5

11

2

4

1

3

5

12

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

13

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

14

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

15

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

16

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

17

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

18

2

4

1

3

5

19

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

20

2

4

1

3

5

21

2

4

1

3

5

0.72

22

 Two social networks S and S’ are behaviorally
equivalent if for any experiment e, S(e) =
S’(e)

 Given access to a hidden social network S*,
the learning problem is to find a social
network S behaviorally equivalent to S* using
value injection queries.

23

Given a network S and a VIQ

  All edges entering or leaving a suppressed node are
automatically “closed.”

  Each remaining edge (u,v) is “open” with probability
p(u,v) and “closed” with probability (1- p(u,v))

  The result of a VIQ is the probability there is a path
from a activated node to the output via open edges
in S

24

. . .

. . .

1
1

1

1 1 1

25

. . .

. . .

All queries give 1-bit answers

1
1

1

1 1 1

26

. . .

. . .

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1

1 1 1

27

• The depth of a node is its distance to the root
• An Up edge is an edge from a node of larger depth

to a node of smaller depth
• A Level edge is an edge between two nodes of same

depth
• A Down edge is an edge from a node at smaller

depth to a node at higher depth
• A leveled graph of a social network is the graph of

its Up edges

28

  An excitation path for a node n is a VIQ in
which a subset of the free agents form a simple
directed path from n to the output. All agents
not on the path with inputs into the path are
suppressed.

  We also have a shortest excitation path

29

?

?

node n
output

  First Find-Up-Edges to learn the leveled graph
of S

  For each level, Find-Level-Edges

  For each level, starting from the bottom, Find-
Down-Edges

30

31

32

33

34

35

36

p(u,v)

37

38

39

40

41

42

43

44

45

46

  For each node u at current level
◦  Sort each node vi in C (complete set) by distance

to the root in G – {u}
◦  Let v1 … vk be the sorted vis
◦  Let pi1 … pik be their corresponding shortest paths

to the root in G – {u}
◦  For i from 1 to k
  Do experiment of firing u, leaving pii free, and

suppressing the rest of the nodes.

47

48

49

50

 Algorithm gets more complicated

 Level edges and down edges are found in
one subroutine

  In looking for down edges from u, need to
avoid not just u, but also all nodes
reachable from u by 1 edges

51

 We do 1 query per each possible edge, giving
an O(n2) algorithm

 Matches the Ω(n2) lower bound

52

  Suppose instead of learning the social network,
we wanted to find an influential set of nodes
quickly.

  A set of nodes is influential if, when activated,
activates the output with probability at least p

  NP Hard to Approximate to log n, even if we
know the structure of the network

53

54

k elements n sets

Can assume n = poly(k)

NP Hard to Approximate to log n

n sets k elements

P = ½
Blue edges have weight
(1- ½ ^(1/k))

55

  Say the optimal solution has m nodes
  Suppose we wanted to fire the output

with probability (p – ε)
 Let I be the set of chosen influential

nodes.
 Observation: at any point in the

algorithm, greedily adding one more node
w to I makes

56

 Using a greedy algorithm, we let k be the
number of rounds the algorithm is run

57

 Applies known model to new domain.

 Matching worst-case upper and lower
bounds for learning social networks.

 But queries too expensive in most
applications…

 Lots of open problems!

58

2009 Cases of Swine Flu

59

 The social network is an unknown graph,
where nodes are agents.

 Let p(u,v) be the a priori probability of an
edge between nodes u and v.

 Each observed outbreak induces (or
exposes) a constraint.
◦ Namely the graph is connected on the induced

subset.

60

  If the prior distribution is independent (and
probabilities are small), the maximum likelihood
social network maximizes

  This is equivalent to minimizing the sum of the
log-likelihood costs

 while satisfying the constraints

61

7

75

9

30 3

10

9

1

5
25

62

7

75

9

30 3

10

9

1

5
25

63

7

75

9

30 3

10

9

1

5
25

64

7

75

9

30 3

10

9

1

5
25

65

  The Network Inference Problem.
◦  Given:
  a set of vertices V = {v1,…,vn}
  costs ce for each edge e={vi,vj}
  a constraint set S = {S1,…,Sr}, with
◦  Find: a set E of edges of lowest cost such that each Si

induces a connected subgraph of G=(V,E)
 We consider both the offline and online version

of this problem. We also consider the arbitrary
and uniform cost versions.

  Solved for the case where all constraints can be
satisfied by a tree [Korach & Stern ’03] – they
left the general case open

66

 Theorem: If P ≠ NP, the approximation
ratio for the Uniform Cost Network
Inference problem is Ω(log n).

 Proof (reduction from Hitting Set)
◦ U = {v1, v2,…,vn}
◦ C = {C1, C2,…,Cj}, with
◦ The Hitting Set problem is to minimize |H|,

where

67

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n 68

 Reduction from Hitting Set
  For a constant k, We make a N.I. instance

…

…

…

…

…

…

…

nk

n

Each row
corresponds to
the elements in
the Hitting Set
instance

69

 Constraints: first, for each row, give all pairwise
constraints:

…

…

…

…

…

…

…

nk

n 70

 Constraints: first, for each row, give all pairwise
constraints:

 This will force the learner to put down a
clique on each row

…

71

 Now we have nk rows of cliques

…

…

…

…nk

72

  For each pair of rows:

…

…

73

  For each pair of rows:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

74

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

75

  For each pair of rows:

 w.l.o.g. for the Hitting Set constraint
◦ Ci = {v1,v2,…,vk}
◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

76

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

77

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding v1
to H

never better

78

 Unless P=NP, optimal Hitting Set
approximation is Ω(log(n)) [Feige ’98].

 The optimal algorithm pays:

 But the learner pays:

 k can be chosen to be arbitrarily large.
79

 Theorem: There is a O(log(n)+log(r))
approximation algorithm to OPT

 Proof:
◦  Let C sum over all constraints Si, the number of

components Si induces in G minus 1.
◦ Now consider the greedy algorithm: while C > 0,

add to E the edge that has the lowest ratio of ce to
∆C.
◦ This greedy algorithm gives an approximation of

log(C0) = O(log(n)+log(r))
80

 Constraints Si come in online

 Must satisfy each constraint as it comes in.

 Can add but not remove edges.

  Seemingly good ideas like placing a spanning
tree on each constraint can perform very
badly.

81

O(n2/3log2/3n)-competitive algorithm

82

O(n2/3log2/3n)-competitive algorithm

83

O(n2/3log2/3n)-competitive algorithm
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost

surely connected
 All constraints Si, |Si| < n1/3 log1/3(n) that are

not already covered, we can put a clique on,
and hit at least 1 edge in OPT

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT)
edges in expectation.

  Because OPT = Ω(n), we are done.
84

  The competitive ratio for uniform cost stars
and paths is θ(log n).
◦  for paths, makes use of pq-trees [Booth and Lueker

’76]

  The uniform cost problem has a -
competitive lower bound

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

85

€

Ω n()

  Lots of other results in this model.

  Passive model does not require interfering in
the network.

  Interesting techniques, but gaps left.

 Would be interesting to extend to models
incorporating incomplete observations.

  Extend to weaker adversaries or random
networks.

86

Questions?

87

