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 Reconstructing Evolutionary Trees via 
Distance Experiments 

 Learning and Verifying Graphs (ie Genome 
Sequences with PCR) 

 Learning Large-Alphabet Circuits (ie Gene 
Regulatory Networks) 

 Learning Bayesian Networks 
 Actively Learning Social Networks 
 Passively Learning Social Networks  
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  Model to study learning hidden circuits [AACW ’06] 
– inspired by learning of gene regulatory networks. 

  Allows for perturbing the circuit anywhere, but 
observing only its one output (ie phenotype, vote, $). 

  In between input/output models and fully observable 
models. 

  We apply VIQs to learning independent cascade 
social networks. 
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 Two social networks S and S’ are behaviorally 
equivalent if for any experiment e, S(e) = 
S’(e) 

 Given access to a hidden social network S*, 
the learning problem is to find a social 
network S behaviorally equivalent to S* using 
value injection queries. 
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Given a network S and a VIQ 

  All edges entering or leaving a suppressed node are 
automatically “closed.” 

  Each remaining edge (u,v) is “open” with probability 
p(u,v) and “closed” with probability (1- p(u,v)) 

  The result of a VIQ is the probability there is a path 
from a activated node to the output via open edges 
in S 
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2Ω(n2) such graphs, Ω(n2) l.b. 
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• The depth of a node is its distance to the root 
• An Up edge is an edge from a node of larger depth 

to a node of smaller depth 
• A Level edge is an edge between two nodes of same 

depth 
• A Down edge is an edge from a node at smaller 

depth to a node at higher depth 
• A leveled graph of a social network is the graph of 

its Up edges 
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  An excitation path for a node n is a VIQ in 
which a subset of the free agents form a simple 
directed path from n to the output.  All agents 
not on the path with inputs into the path are 
suppressed. 

  We also have a shortest excitation path 
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  First Find-Up-Edges to learn the leveled graph 
of S 

  For each level, Find-Level-Edges 

  For each level, starting from the bottom, Find-
Down-Edges 
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  For each node u at current level 
◦  Sort each node vi in C (complete set) by distance 

to the root in G – {u} 
◦  Let v1 … vk be the sorted vis 
◦  Let pi1 … pik be their corresponding shortest paths 

to the root in G – {u} 
◦  For i from 1 to k 
  Do experiment of firing u, leaving pii free, and 

suppressing the rest of the nodes. 
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 Algorithm gets more complicated 

 Level edges and down edges are found in 
one subroutine 

  In looking for down edges from u, need to 
avoid not just u, but also all nodes 
reachable from u by 1 edges 
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 We do 1 query per each possible edge, giving 
an O(n2) algorithm 

 Matches the Ω(n2) lower bound 
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  Suppose instead of learning the social network, 
we wanted to find an influential set of nodes 
quickly. 

  A set of nodes is influential if, when activated, 
activates the output with probability at least p 

  NP Hard to Approximate to log n, even if we 
know the structure of the network 
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k elements n sets 

Can assume n = poly(k) 

NP Hard to Approximate to log n 



n sets k elements 

P = ½ 
Blue edges have weight 
(1- ½ ^(1/k)) 

55 



  Say the optimal solution has m nodes 
  Suppose we wanted to fire the output 

with probability  (p – ε) 
 Let I be the set of chosen influential 

nodes. 
 Observation: at any point in the 

algorithm, greedily adding one more node 
w to I makes 
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 Using a greedy algorithm, we let k be the 
number of rounds the algorithm is run 

57 



 Applies known model to new domain. 

 Matching worst-case upper and lower 
bounds for learning social networks. 

 But queries too expensive in most 
applications… 

 Lots of open problems! 
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2009 Cases of Swine Flu 
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 The social network is an unknown graph, 
where nodes are agents. 

 Let p(u,v) be the a priori probability of an 
edge between nodes u and v. 

 Each observed outbreak induces (or 
exposes) a constraint. 
◦ Namely the graph is connected on the induced 

subset. 
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  If the prior distribution is independent (and 
probabilities are small), the maximum likelihood 
social network maximizes 

  This is equivalent to minimizing the sum of the 
log-likelihood costs 

   while satisfying the constraints 
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  The Network Inference Problem. 
◦  Given: 
  a set of vertices V = {v1,…,vn} 
  costs ce for each edge e={vi,vj} 
  a constraint set S = {S1,…,Sr}, with  
◦  Find: a set E of edges of lowest cost such that each Si 

induces a connected subgraph of G=(V,E) 
 We consider both the offline and online version 

of this problem.  We also consider the arbitrary 
and uniform cost versions. 

  Solved for the case where all constraints can be 
satisfied by a tree [Korach & Stern ’03] – they 
left the general  case open 
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 Theorem: If P ≠ NP, the approximation 
ratio for the Uniform Cost Network 
Inference problem is Ω(log n). 

 Proof (reduction from Hitting Set) 
◦ U = {v1, v2,…,vn} 
◦ C = {C1, C2,…,Cj}, with 
◦ The Hitting Set problem is to minimize |H|, 

where  
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 Reduction from Hitting Set 
  For a constant k, We make a N.I. instance 
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Each row 
corresponds to 
the elements in 
the Hitting Set 
instance 
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 Constraints: first, for each row, give all pairwise 
constraints: 
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 Constraints: first, for each row, give all pairwise 
constraints: 

 This will force the learner to put down a 
clique on each row 

… 
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 Now we have nk rows of cliques 
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  For each pair of rows: 

… 

… 
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  For each pair of rows: 
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1   2   3   4   5  … k  … n-1  n 

1   2   3   4   5  … k  … n-1  n 
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  For each pair of rows: 

 w.l.o.g. for the Hitting Set constraint  
◦ Ci = {v1,v2,…,vk} 
◦ we will add the constraint: 
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corresponds to adding v1 
to H 

never better 
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 Unless P=NP, optimal Hitting Set 
approximation is Ω(log(n)) [Feige ’98].   

 The optimal algorithm pays: 

 But the learner pays: 

 k can be chosen to be arbitrarily large. 
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 Theorem: There is a O(log(n)+log(r)) 
approximation algorithm to OPT 

 Proof:  
◦  Let C sum over all constraints Si, the number of 

components Si induces in G minus 1. 
◦ Now consider the greedy algorithm: while C > 0, 

add to E the edge that has the lowest ratio of ce to 
∆C. 
◦ This greedy algorithm gives an approximation of 

log(C0) = O(log(n)+log(r)) 
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 Constraints Si come in online 

 Must satisfy each constraint as it comes in. 

 Can add but not remove edges. 

  Seemingly good ideas like placing a spanning 
tree on each constraint can perform very 
badly. 
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O(n2/3log2/3n)-competitive algorithm 
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O(n2/3log2/3n)-competitive algorithm 
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O(n2/3log2/3n)-competitive algorithm 
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost 

surely connected 
 All constraints Si, |Si| < n1/3 log1/3(n) that are 

not already covered, we can put a clique on, 
and hit at least 1 edge in OPT 

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) 
edges in expectation. 

  Because OPT = Ω(n), we are done. 
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  The competitive ratio for uniform cost stars 
and paths is θ(log n). 
◦  for paths, makes use of pq-trees [Booth and Lueker 

’76] 

  The uniform cost problem has a            -
competitive lower bound 

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm. 
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  Lots of other results in this model. 

  Passive model does not require interfering in 
the network. 

  Interesting techniques, but gaps left. 

 Would be interesting to extend to models 
incorporating incomplete observations. 

  Extend to weaker adversaries or random 
networks. 
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Questions? 
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