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 Reconstructing Evolutionary Trees via 
Distance Experiments 

 Learning and Verifying Graphs (ie Genome 
Sequences with PCR) 

 Learning Large-Alphabet Circuits (ie Gene 
Regulatory Networks) 

 Learning Bayesian Networks 
 Actively Learning Social Networks 
 Passively Learning Social Networks  
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  Model to study learning hidden circuits [AACW ’06] 
– inspired by learning of gene regulatory networks. 

  Allows for perturbing the circuit anywhere, but 
observing only its one output (ie phenotype, vote, $). 

  In between input/output models and fully observable 
models. 

  We apply VIQs to learning independent cascade 
social networks. 
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 Two social networks S and S’ are behaviorally 
equivalent if for any experiment e, S(e) = 
S’(e) 

 Given access to a hidden social network S*, 
the learning problem is to find a social 
network S behaviorally equivalent to S* using 
value injection queries. 
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Given a network S and a VIQ 

  All edges entering or leaving a suppressed node are 
automatically “closed.” 

  Each remaining edge (u,v) is “open” with probability 
p(u,v) and “closed” with probability (1- p(u,v)) 

  The result of a VIQ is the probability there is a path 
from a activated node to the output via open edges 
in S 
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All queries give 1-bit answers 
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2Ω(n2) such graphs, Ω(n2) l.b. 
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• The depth of a node is its distance to the root 
• An Up edge is an edge from a node of larger depth 

to a node of smaller depth 
• A Level edge is an edge between two nodes of same 

depth 
• A Down edge is an edge from a node at smaller 

depth to a node at higher depth 
• A leveled graph of a social network is the graph of 

its Up edges 
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  An excitation path for a node n is a VIQ in 
which a subset of the free agents form a simple 
directed path from n to the output.  All agents 
not on the path with inputs into the path are 
suppressed. 

  We also have a shortest excitation path 
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  First Find-Up-Edges to learn the leveled graph 
of S 

  For each level, Find-Level-Edges 

  For each level, starting from the bottom, Find-
Down-Edges 
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  For each node u at current level 
◦  Sort each node vi in C (complete set) by distance 

to the root in G – {u} 
◦  Let v1 … vk be the sorted vis 
◦  Let pi1 … pik be their corresponding shortest paths 

to the root in G – {u} 
◦  For i from 1 to k 
  Do experiment of firing u, leaving pii free, and 

suppressing the rest of the nodes. 
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 Algorithm gets more complicated 

 Level edges and down edges are found in 
one subroutine 

  In looking for down edges from u, need to 
avoid not just u, but also all nodes 
reachable from u by 1 edges 
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 We do 1 query per each possible edge, giving 
an O(n2) algorithm 

 Matches the Ω(n2) lower bound 
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  Suppose instead of learning the social network, 
we wanted to find an influential set of nodes 
quickly. 

  A set of nodes is influential if, when activated, 
activates the output with probability at least p 

  NP Hard to Approximate to log n, even if we 
know the structure of the network 
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k elements n sets 

Can assume n = poly(k) 

NP Hard to Approximate to log n 



n sets k elements 

P = ½ 
Blue edges have weight 
(1- ½ ^(1/k)) 
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  Say the optimal solution has m nodes 
  Suppose we wanted to fire the output 

with probability  (p – ε) 
 Let I be the set of chosen influential 

nodes. 
 Observation: at any point in the 

algorithm, greedily adding one more node 
w to I makes 
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 Using a greedy algorithm, we let k be the 
number of rounds the algorithm is run 
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 Applies known model to new domain. 

 Matching worst-case upper and lower 
bounds for learning social networks. 

 But queries too expensive in most 
applications… 

 Lots of open problems! 
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2009 Cases of Swine Flu 
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 The social network is an unknown graph, 
where nodes are agents. 

 Let p(u,v) be the a priori probability of an 
edge between nodes u and v. 

 Each observed outbreak induces (or 
exposes) a constraint. 
◦ Namely the graph is connected on the induced 

subset. 
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  If the prior distribution is independent (and 
probabilities are small), the maximum likelihood 
social network maximizes 

  This is equivalent to minimizing the sum of the 
log-likelihood costs 

   while satisfying the constraints 
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  The Network Inference Problem. 
◦  Given: 
  a set of vertices V = {v1,…,vn} 
  costs ce for each edge e={vi,vj} 
  a constraint set S = {S1,…,Sr}, with  
◦  Find: a set E of edges of lowest cost such that each Si 

induces a connected subgraph of G=(V,E) 
 We consider both the offline and online version 

of this problem.  We also consider the arbitrary 
and uniform cost versions. 

  Solved for the case where all constraints can be 
satisfied by a tree [Korach & Stern ’03] – they 
left the general  case open 
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 Theorem: If P ≠ NP, the approximation 
ratio for the Uniform Cost Network 
Inference problem is Ω(log n). 

 Proof (reduction from Hitting Set) 
◦ U = {v1, v2,…,vn} 
◦ C = {C1, C2,…,Cj}, with 
◦ The Hitting Set problem is to minimize |H|, 

where  
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 Reduction from Hitting Set 
  For a constant k, We make a N.I. instance 
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Each row 
corresponds to 
the elements in 
the Hitting Set 
instance 
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 Constraints: first, for each row, give all pairwise 
constraints: 
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 Constraints: first, for each row, give all pairwise 
constraints: 

 This will force the learner to put down a 
clique on each row 

… 
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 Now we have nk rows of cliques 

… 

… 

… 

…nk 
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  For each pair of rows: 

… 

… 
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  For each pair of rows: 

… 

… 

… 

… 

1   2   3   4   5  … k  … n-1  n 

1   2   3   4   5  … k  … n-1  n 
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  For each pair of rows: 

 w.l.o.g. for the Hitting Set constraint  
◦ Ci = {v1,v2,…,vk} 
◦ we will add the constraint: 

… 
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… 

… 

1   2   3   4   5  … k 

1   2   3   4   5  … k 

… 

… 

1   2   3   4   5  … k 

1   2   3   4   5  … k 

corresponds to adding v1 
to H 

never better 
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to H 

never better 
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 Unless P=NP, optimal Hitting Set 
approximation is Ω(log(n)) [Feige ’98].   

 The optimal algorithm pays: 

 But the learner pays: 

 k can be chosen to be arbitrarily large. 
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 Theorem: There is a O(log(n)+log(r)) 
approximation algorithm to OPT 

 Proof:  
◦  Let C sum over all constraints Si, the number of 

components Si induces in G minus 1. 
◦ Now consider the greedy algorithm: while C > 0, 

add to E the edge that has the lowest ratio of ce to 
∆C. 
◦ This greedy algorithm gives an approximation of 

log(C0) = O(log(n)+log(r)) 
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 Constraints Si come in online 

 Must satisfy each constraint as it comes in. 

 Can add but not remove edges. 

  Seemingly good ideas like placing a spanning 
tree on each constraint can perform very 
badly. 
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O(n2/3log2/3n)-competitive algorithm 
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O(n2/3log2/3n)-competitive algorithm 
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O(n2/3log2/3n)-competitive algorithm 
 All constraints Si, |Si| ≥ n1/3log1/3(n) are almost 

surely connected 
 All constraints Si, |Si| < n1/3 log1/3(n) that are 

not already covered, we can put a clique on, 
and hit at least 1 edge in OPT 

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) 
edges in expectation. 

  Because OPT = Ω(n), we are done. 
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  The competitive ratio for uniform cost stars 
and paths is θ(log n). 
◦  for paths, makes use of pq-trees [Booth and Lueker 

’76] 

  The uniform cost problem has a            -
competitive lower bound 

  The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm. 
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  Lots of other results in this model. 

  Passive model does not require interfering in 
the network. 

  Interesting techniques, but gaps left. 

 Would be interesting to extend to models 
incorporating incomplete observations. 

  Extend to weaker adversaries or random 
networks. 
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Questions? 
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