

Learning Social Networks, Actively and Passively

SFI Talk

Lev Reyzin Yahoo! Research (work done while at Yale University)

talk based on 2 papers, both with Dana Angluin and James Aspnes

Learning Interaction Networks

- Reconstructing Evolutionary Trees via Distance Experiments
- Learning and Verifying Graphs (ie Genome Sequences with PCR)
- Learning Large-Alphabet Circuits (ie Gene Regulatory Networks)
- Learning Bayesian Networks
- Actively Learning Social Networks
- Passively Learning Social Networks

Learning Interaction Networks

- Reconstructing Evolutionary Trees via Distance Experiments
- Learning and Verifying Graphs (ie Genome Sequences with PCR)
- Learning Large-Alphabet Circuits (ie Gene Regulatory Networks)
- Learning Bayesian Networks
- Actively Learning Social Networks
- Passively Learning Social Networks

How Do We Learn Social Networks?

Trends Spreading through a Social Network

Trends Spreading through a Social Network

Value Injection Queries (VIQs) an Overview

- Model to study learning hidden circuits [AACW '06]
 inspired by learning of gene regulatory networks.
- Allows for perturbing the circuit anywhere, but observing only its one output (ie phenotype, vote, \$).
- In between input/output models and fully observable models.
- We apply VIQs to learning independent cascade social networks.

What the Learner Sees

The Learning Task

- Two social networks S and S' are behaviorally equivalent if for any experiment e, S(e) = S'(e)
- Given access to a hidden social network S*, the learning problem is to find a social network S behaviorally equivalent to S* using value injection queries.

The Percolation Model

Given a network S and a VIQ

- All edges entering or leaving a suppressed node are automatically "closed."
- Each remaining edge (u,v) is "open" with probability $p_{(u,v)}$ and "closed" with probability (I $p_{(u,v)}$)
- The result of a VIQ is the probability there is a path from a activated node to the output via open edges in S

All queries give I-bit answers

An Algorithm: First Some Definitions

- The depth of a node is its distance to the root
- An Up edge is an edge from a node of larger depth to a node of smaller depth
- A Level edge is an edge between two nodes of same depth
- A Down edge is an edge from a node at smaller depth to a node at higher depth
- A leveled graph of a social network is the graph of its Up edges

Excitation Paths

- An excitation path for a node n is a VIQ in which a subset of the free agents form a simple directed path from n to the output. All agents not on the path with inputs into the path are suppressed.
- We also have a shortest excitation path

The Learning Algorithm For Networks w/o Probability I Edges

- First Find-Up-Edges to learn the leveled graph of S
- For each level, Find-Level-Edges
- For each level, starting from the bottom, Find-Down-Edges

Find-Level-Edges

Find-Level-Edges

Find-Level-Edges

- For each node u at current level
 - $^{\circ}$ Sort each node v_i in C (complete set) by distance to the root in G {u}
 - Let $v_1 \dots v_k$ be the sorted v_i s
 - $^{\circ}$ Let pi_{1} ... pi_{k} be their corresponding shortest paths to the root in G {u}
 - For i from 1 to k
 - Do experiment of firing u, leaving pi_i free, and suppressing the rest of the nodes.

For Example

With Ones – a Problem

With Ones – a Problem

With Ones

- Algorithm gets more complicated
- Level edges and down edges are found in one subroutine

 In looking for down edges from u, need to avoid not just u, but also all nodes reachable from u by I edges

In the End

- We do I query per each possible edge, giving an $O(n^2)$ algorithm
- Matches the $\Omega(n^2)$ lower bound

Finding Influential Nodes

- Suppose instead of learning the social network, we wanted to find an influential set of nodes quickly.
- A set of nodes is influential if, when activated, activates the output with probability at least p
- NP Hard to Approximate to log n, even if we know the structure of the network

Can assume n = poly(k)

NP Hard to Approximate to log n

An Approximation Algorithm

- Say the optimal solution has m nodes
- Suppose we wanted to fire the output with probability $(p \varepsilon)$
- Let I be the set of chosen influential nodes.
- Observation: at any point in the algorithm, greedily adding one more node w to I makes

$$S(e_{I\cup\{w\}}) \ge S(e_I) + \frac{p - S(e_I)}{m}$$

Analyzing Greedy

• Using a greedy algorithm, we let k be the number of rounds the algorithm is run

For

$$p\left(1-\frac{1}{m}\right)^k < \epsilon$$

it suffices that

$$e^{-\frac{k}{m}} < \frac{\epsilon}{p}$$

or

$$k > m \log\left(\frac{p}{\epsilon}\right)$$

Summary of the Active Case

- Applies known model to new domain.
- Matching worst-case upper and lower bounds for learning social networks.
- But queries too expensive in most applications...
- Lots of open problems!

What if We Cannot Manipulate the Network?

2009 Cases of Swine Flu

The Constraints

- The social network is an unknown graph, where nodes are agents.
- Let p_(u,v) be the a priori probability of an edge between nodes u and v.
- Each observed outbreak induces (or exposes) a constraint.
 - Namely the graph is connected on the induced subset.

Finding the Cheapest Network

- If the prior distribution is independent (and probabilities are small), the maximum likelihood social network maximizes $\prod p_{(u,v)}$
- This is equivalent to minimizing the sum of the log-likelihood costs

$$\sum_{v,u\in V} -\log(p_{(u,v)})$$

 $u.v \in V$

while satisfying the constraints

The Network Inference Problem

- The Network Inference Problem.
 - Given:
 - a set of vertices $V = \{v_1, \dots, v_n\}$
 - costs c_e for each edge e={v_i,v_j}
 - a constraint set $S = \{S_1, \dots, S_r\}$, with $S_i \subseteq V$
 - Find: a set E of edges of lowest cost such that each S_i induces a connected subgraph of G=(V,E)
- We consider both the offline and online version of this problem. We also consider the arbitrary and uniform cost versions.
- Solved for the case where all constraints can be satisfied by a tree [Korach & Stern '03] – they left the general case open

An Offline Lower Bound

- Theorem: If P ≠ NP, the approximation ratio for the Uniform Cost Network Inference problem is Ω(log n).
- Proof (reduction from Hitting Set)

$$\circ \mathsf{U} = \{\mathsf{v}_1, \mathsf{v}_2, \dots, \mathsf{v}_n\}$$

•
$$C = \{C_1, C_2, \dots, C_j\}$$
, with $C_i \subseteq U$

• The Hitting Set problem is to minimize |H|, where $H \subseteq U$ s.t. $\forall C_i H \cap C_i \neq \phi$

Reduction from Hitting Set
For a constant k,We make a N.I. instance

Reduction from Hitting Set For a constant k,We make a N.I. instance

Constraints: first, for each row, give all pairwise constraints:

Constraints: first, for each row, give all pairwise constraints:

This will force the learner to put down a clique on each row

• Now we have n^k rows of cliques

• For each pair of rows:

• For each pair of rows:

• For each pair of rows:

- w.l.o.g. for the Hitting Set constraint
 - $C_i = \{v_1, v_2, ..., v_k\}$
 - we will add the constraint:

• For each pair of rows:

• w.l.o.g. for the Hitting Set constraint

- $C_i = \{v_1, v_2, ..., v_k\}$
- we will add the constraint:

corresponds to adding v₁ to H 1 2 3 4 5 ... k 1 2 3 4 5 ... k

never better

corresponds to adding v₁ to H

Finishing the Lower Bound

 Unless P=NP, optimal Hitting Set approximation is Ω(log(n)) [Feige '98].

• The optimal algorithm pays:

$$n^k \binom{n}{2} + \operatorname{OPT} \binom{n^k}{2}$$

• But the learner pays:

$$n^k \binom{n}{2} + \Omega \left(\log(n) \operatorname{OPT} \binom{n^k}{2} \right)$$

• k can be chosen to be arbitrarily large.

Offline Network Inference Algorithm

- <u>Theorem</u>: There is a O(log(n)+log(r)) approximation algorithm to OPT
- <u>Proof</u>:
 - Let C sum over all constraints S_i, the number of components S_i induces in G minus I.
 - Now consider the greedy algorithm: while C > 0, add to E the edge that has the lowest ratio of c_e to ΔC .
 - This greedy algorithm gives an approximation of log(C₀) = O(log(n)+log(r))

The Online Problem

- Constraints S_i come in online
- Must satisfy each constraint as it comes in.
- Can add but not remove edges.
- Seemingly good ideas like placing a spanning tree on each constraint can perform very badly.

Online Algorithm Against Oblivious Adversary

 $O(n^{2/3}log^{2/3}n)$ -competitive algorithm

Online Algorithm Against Oblivious Adversary

 $O(n^{2/3}log^{2/3}n)$ -competitive algorithm

Online Algorithm Against Oblivious Adversary

$O(n^{2/3}log^{2/3}n)$ -competitive algorithm

- All constraints S_i , $|S_i| \ge n^{1/3} \log^{1/3}(n)$ are almost surely connected
- All constraints S_i , $|S_i| < n^{1/3} \log^{1/3}(n)$ that are not already covered, we can put a clique on, and hit at least 1 edge in OPT
- We used O(n^{5/3}log^{2/3}(n)+n^{2/3}log^{2/3}(n)OPT) edges in expectation.
- Because OPT = $\Omega(n)$, we are done.

Other Online Results

- The competitive ratio for uniform cost stars and paths is $\theta(\log n)$.
 - for paths, makes use of pq-trees [Booth and Lueker '76]
- The uniform cost problem has a $\Omega(\sqrt{n})$ competitive lower bound
- The arbitrary cost problem has an Ω(n)competitive lower bound and O(n log n)competitive algorithm.

Summary

- Lots of other results in this model.
- Passive model does not require interfering in the network.
- Interesting techniques, but gaps left.
- Would be interesting to extend to models incorporating incomplete observations.
- Extend to weaker adversaries or random networks.

Thank You!

Questions?