Sampling Strategies for Feature-Efficient and Active Learning

Lev Reyzin UIC, Math Department

1

Feature-Efficient Prediction

with Yi Huang and Brian Powers

Feature-Efficient Prediction Examples

Medical testing

Want to predict what patients are sick with, but tests might be expensive or dangerous.

Displaying internet results

Want to give users the best results you can, but if you don't give results within 300 milliseconds, users will leave.

Model

- Goal is to do supervised learning, using a limited number of features in test-time.
 - Given a budget on total cost: on each example, the learner must look at no more features than allowed by the budget.
 - Each feature has an associated cost.
 - Budget only limited in test data, not training.

Predictors that do this are feature-efficient.

Lots of work on this problem

Sequential analysis: when to stop sequential clinical trials. [Wald '47] and [Chernoff '72]

- PAC learning with incomplete features. [Ben-David-Dichterman '93] and [Greiner et al. '02]
- Robust prediction with missing features. [Globerson-Roweis '06]
- Learning linear functions by few features [Cesa-Bianchi et al. '10]
- Incorporating feature costs in CART impurity [Xu et al. '12]
- MDPs for feature selection [He et al. '13]

A Sampling Idea [R'11]

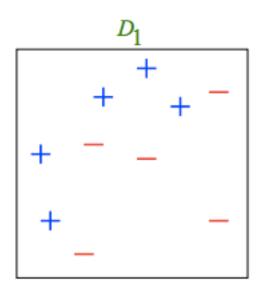
An ensemble is usually a weighted vote of many simple rules.

The simple rules are usually feature-efficient.

Take a vote of only a few of the rules.

AdaBoost in Pictures (Slides from Schapire)

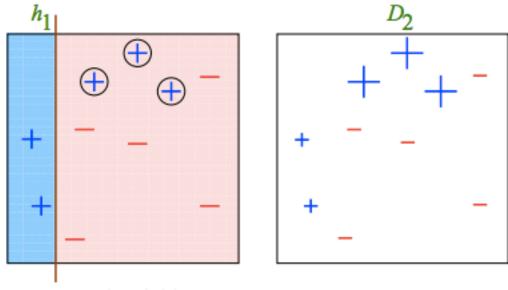
Toy Example



weak classifiers = vertical or horizontal half-planes

AdaBoost in Pictures (Slides from Schapire)

Round 1

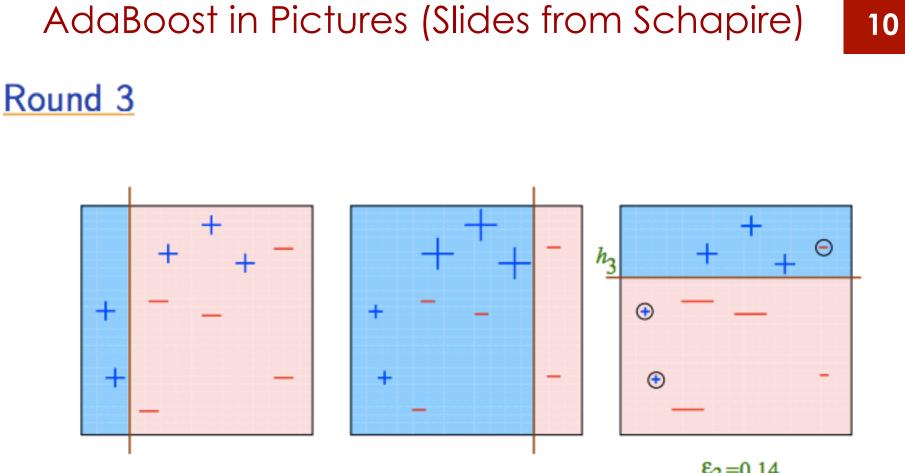


 $\epsilon_1 = 0.30$ $\alpha_1 = 0.42$

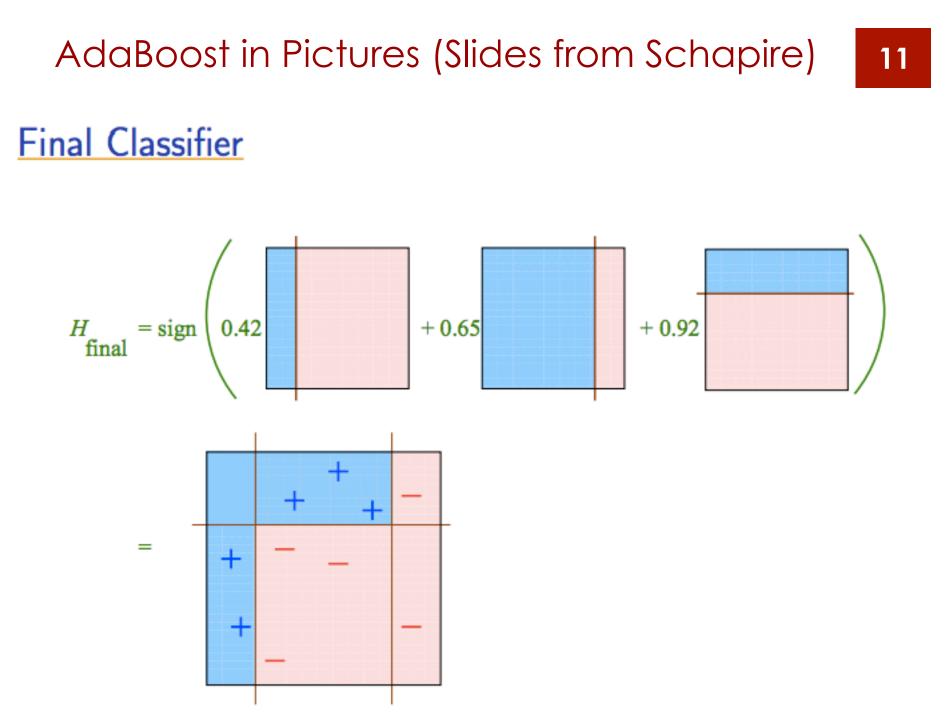
AdaBoost in Pictures (Slides from Schapire) Round 2 h₂ D_2 ++ + -+ ε₂=0.21

9

α₂=0.65



 $\epsilon_3 = 0.14$ $\alpha_3 = 0.92$



AdaBoostRS [R '11]

Training: train AdaBoost (or any ensemble).

Prediction:

1. Sample the weak learners depending on their voting weights and feature costs.

$$p(i) = rac{lpha_i}{c(h_i)\sum_{i=1}^T \left(lpha_t/c(h_t)
ight)}$$

2. Take a importance-weighted vote of the sampled weak learners.

Intuition:

If ensemble has strong preference, sampling will converge fast. If ensemble is split, who cares? (Thm resembles margin bound [Schapire et al. '98])

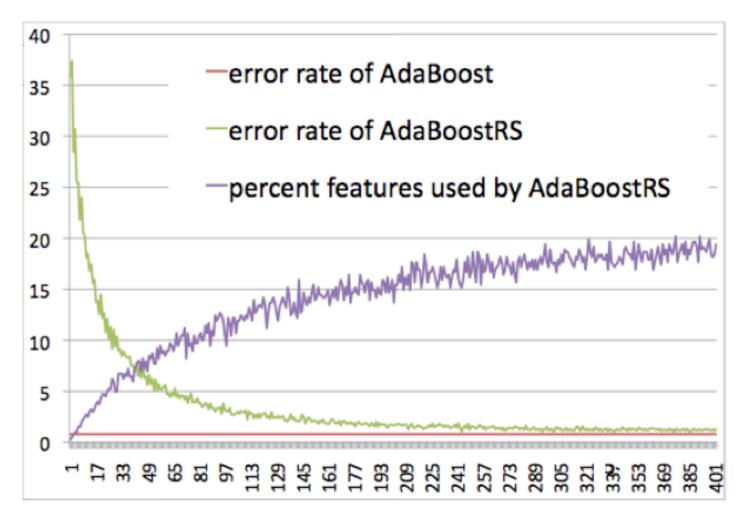
Bound:

AdaBoost:

$$oldsymbol{P}_{D}[yf(x) \leq 0] \leq oldsymbol{P}_{S}[yf(x) \leq heta] + ilde{O}\left(\sqrt{rac{d}{m heta^{2}}}
ight)$$

AdaBoostRS: $P_D[yf(x) \le 0] \le P_S[yf(x) \le \theta] + \tilde{O}\left(\sqrt{\frac{d}{m\theta^2}}\right) + e^{-N\theta^2/2}$

Experiments with AdaBoostRS



On ocr17 dataset. x-axis is number of samples taken.

Room for Improvement

Can we improve by moving the optimization into training?

Turns out: yes, by a lot! [Huang-Powers-R '14]

Naïve idea: train AdaBoost until budget runs out

Improvement: choose weak learners more wisely

AdaBoost (S) where: $S \subset X imes \{-1, +1\}$

1: given:
$$(x_1, y_1), ..., (x_m, y_m) \in S$$

2: initialize $D_1(i) = \frac{1}{m}$
3: for $t = 1, ..., T$ do
4: train base learner using distribution D_t .
5: get $h_t \in \mathcal{H} : X \rightarrow \{-1, +1\}$.

6: choose
$$\alpha_t = \frac{1}{2} \ln \frac{1+\gamma_t}{1-\gamma_t}$$
, where $\gamma_t = \sum_i D_t(i) y_i h_t(x_i)$.

7: update
$$D_{t+1}(i) = D_t(i) \exp(\alpha_t y_i h_t(x_i))/Z_t$$
,

8: end for

9: output the final classifier $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

AdaBoostBT(S,B,C) where: $S \subset X \times \{-1,+1\}, B > 0, C : [n] \rightarrow \mathbb{R}^+$

1: given:
$$(x_1, y_1), ..., (x_m, y_m) \in S$$

2: initialize
$$D_1(i) = \frac{1}{m}, B_1 = B$$

3: for
$$t = 1, ..., T$$
 do

4: train base learner using distribution
$$D_t$$
.

5: get
$$h_t \in \mathcal{H} : X \rightarrow \{-1, +1\}$$

6: **if** the total cost of the unpaid features of h_t exceeds B_t **then**

7: set
$$T = t - 1$$
 and end for

- 8: else set B_{t+1} as B_t minus the total cost of the unpaid features of h_t , marking them as paid
- 9: choose $\alpha_t = \frac{1}{2} \ln \frac{1+\gamma_t}{1-\gamma_t}$, where $\gamma_t = \sum_i D_t(i) y_i h_t(x_i)$.
- 10: update $D_{t+1}(i) = D_t(i) \exp(\alpha_t y_i h_t(x_i))/Z_t$,
- 11: end for
- 12: output the final classifier $H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$

Training error of AdaBoost is bounded by [Freund-Schapire '97]

$$\hat{\Pr}[H(x) \neq y] \leq \prod_{t=1}^{T} \sqrt{1-\gamma_t^2}$$

With budgets, we need to consider two effects:
high edges make individual terms smaller
low costs allow for more terms in the product

Two Optimizations [Huang-Powers-R '14]

<u>First idea</u>: assume all future rounds will behave like current. Leads to optimization

So $T = \frac{B}{c(h)}$. Then the selection becomes

$$h_t = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(1 - \gamma_t(h)^2\right)^{\frac{1}{c(h)}}.$$
 (1)

<u>Second idea</u>: cost of future rounds is average cost so far

The resulting selection rule is

$$h_t = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left(1 - \gamma_t(h)^2\right)^{\frac{1}{(B-B_t)+c(h)}}.$$

Idea: Using average cost should produce a smoother optimization.

2

SpeedBoost [Grubb-Bagnell '12]

SpeedBoost [Grubb-Bagnell '12] produces a feature-efficient ensemble in another way.

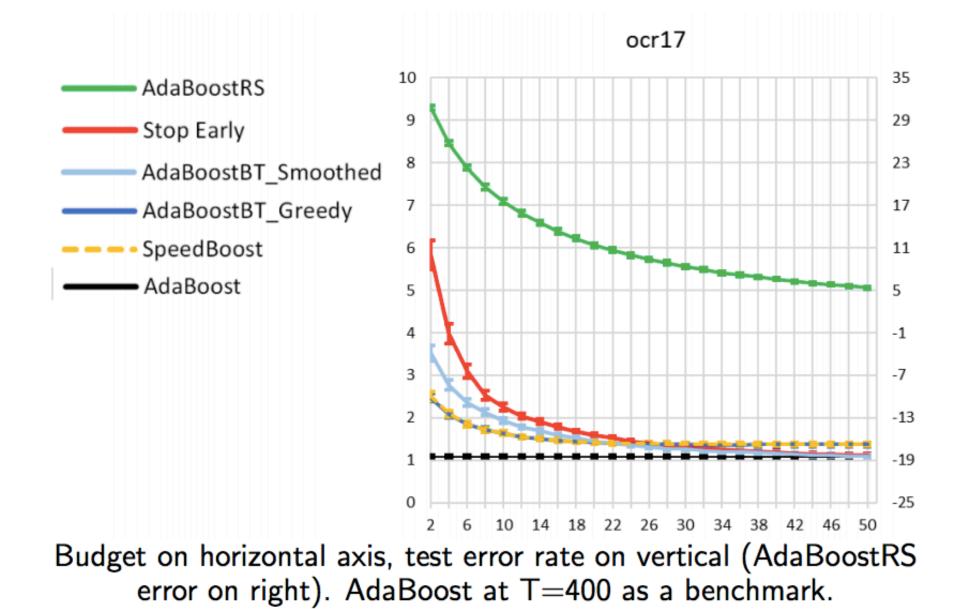
An objective R is chosen (e.g. a loss function).

While the budget allows:

A Weak learner h and weight α are chosen to maximize

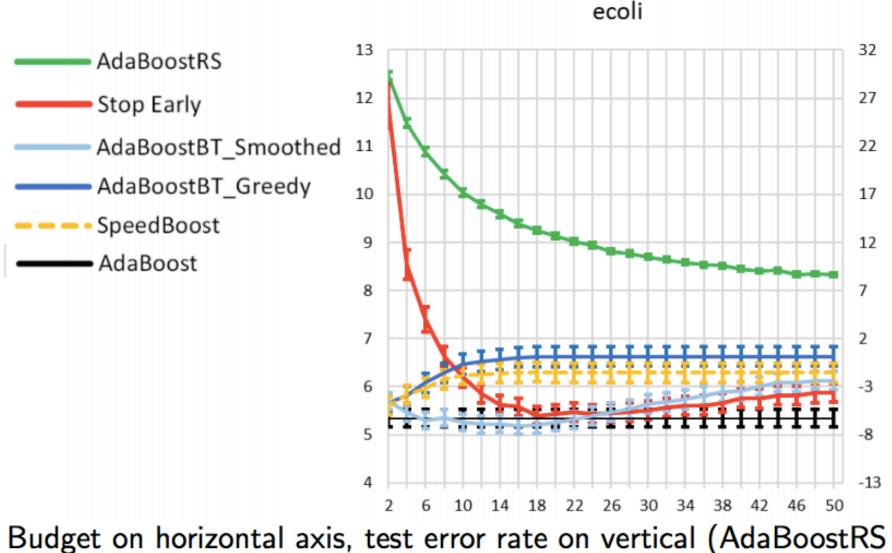
$$\frac{R(f_{i-1})-R(f_{i-1}+\alpha h)}{c(h)}.$$

Experiments with costs ~ U(0,2)

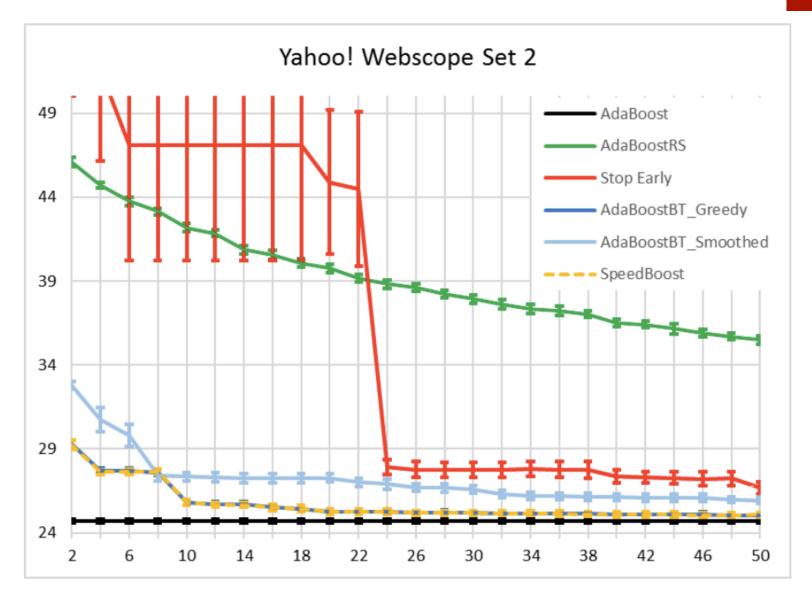


Experiments with costs ~ U(0,2)

23



error on right). AdaBoost at T=400 as a benchmark.



- We gave a simple, generic way of choosing weak learners for budgeted learning.
 - Speedboost basically turns out to be a special case.
- Perhaps, better yet, would be to dynamically choose a tradeoff function as boosting continues.
 - We don't know how to do this yet.
- Need to compare to the wide variety of other techniques (MDPs [He et al. '13], decision trees with impurity [Xu et al. '12], etc.)

Active Learning

with Angi Liu and Brian Ziebart

Pool-Based Active Learning

- A pool based active learning algorithm sequentially chooses which labels to solicit from a pool of examples. [Lewis-Gale '94]
 - Usually constructs estimate of conditional label distribution P(y | x) from labeled dataset.
 - Uses own estimate to select next datapoint label.

(I'll focus on logloss, but ideas are more general)

Uncertainty Sampling

- Many active learning strategies employ uncertainty sampling – selecting examples about which the algorithm is least certain.
- Other strategies assess how a label:
 - is expected to change model [Settles-Craven '08]
 - reduces an upper bound on the generalization error in expectation [Mackay '92]
 - represents the input patterns of remaining unlabeled data [Settles '12]

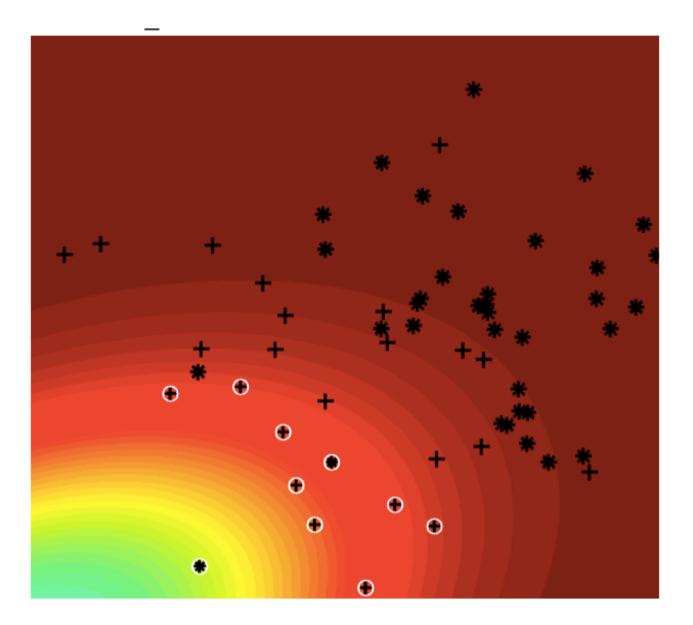
A Problem

Current active learning algorithms often perform poorly in practice [Attenberg-Provost '11].

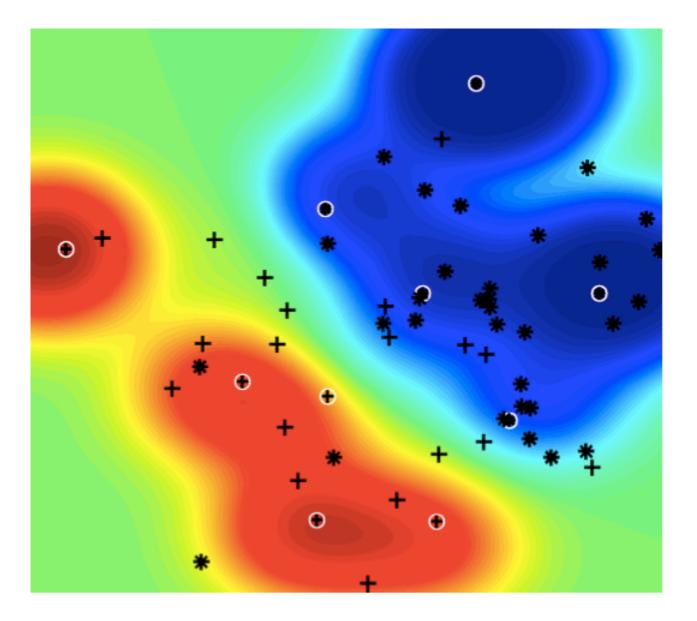
Why?

- In order to be take advantage of active learning, a biased label solicitation strategy should be used.
- Most current active learning strategies are overconfident, given this bias.

Typical Active Learner Behavior



Desired Behavior



Some Attempts to Fix This

Seeding the active learner with a small random set [Dligach-Palmer '11].

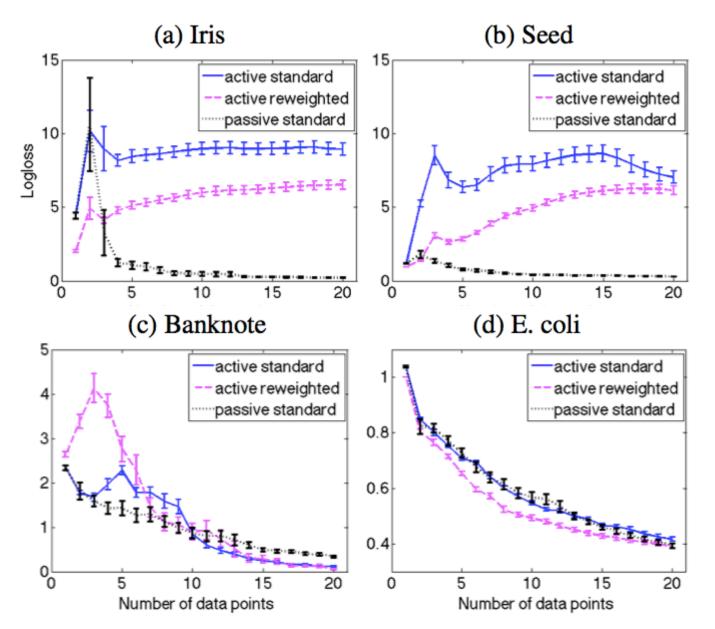
Restricting the active learner to a small set of examples [Schein-Ungar '07].

Etc.

However, these modifications treat the symptoms of optimistic modeling and biased sampling and restrict the active learner, undermining its benefit. **Key idea**: Active learning <u>always</u> leads to <u>sample</u> <u>selection bias</u> exists. Here, known as <u>covariate shift</u> --P(Y | X) is shared in source and target distributions.

Tackling covariate shift is difficult. A common approach is importance re-weighting of source samples x according to $P_{trg}(x)/P_{src}(x)$ and minimizing a reweighted version of the loss [Shimodaria '00]. This converges slowly [Cortes-Mansour-Mohri '10] and the variance of estimates is too high to be useful.

Logistic Regression Models



Approach

We use the recently developed RBA (robust biasaware prediction) framework for tackling covariate shift [Liu-Ziebart '14].

RBA solves a game against a constrained adversary that chooses an evaluation distribution: logarithmic loss

 $\min_{\hat{P}(y|x)} \max_{\check{P}(y|x)\in\tilde{\Xi}} \mathbb{E}_{P_{\mathcal{D}}(x)\check{P}(y|x)} [-\log \hat{P}(Y|X)]$

The set Ξ constrains the adversary

Robust Prediction Strategy

- The RBA predictor can be obtained by solving the dual of a conditional max entropy estimation problem. [Liu-Ziebart '14]
- Can be shown to upper bound the the generalization loss, under some assumptions. [Grunwald-Dawid '04]
- P_{src}(x) needs to be estimated we use kernel density estimation with Gaussian kernels for P_{src}(x).
- The RBA predictor turns out to less certain where the labeled data underrepresents the full data distribution.

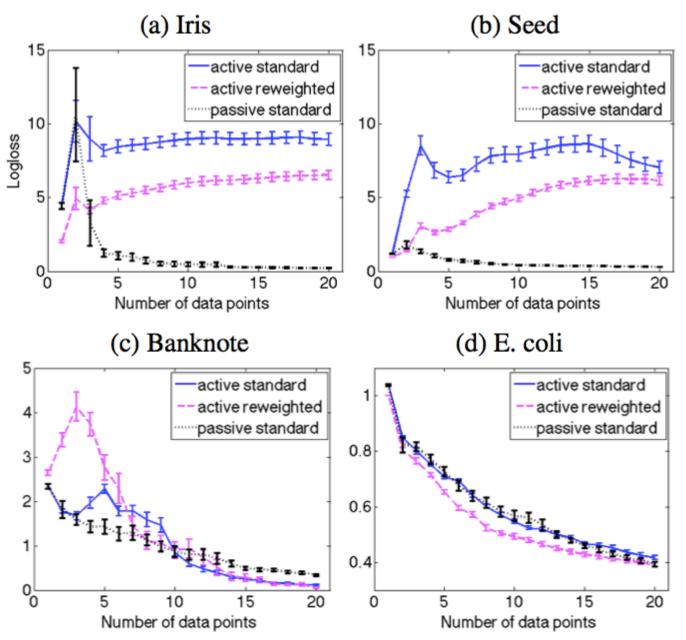
Sampling Strategies

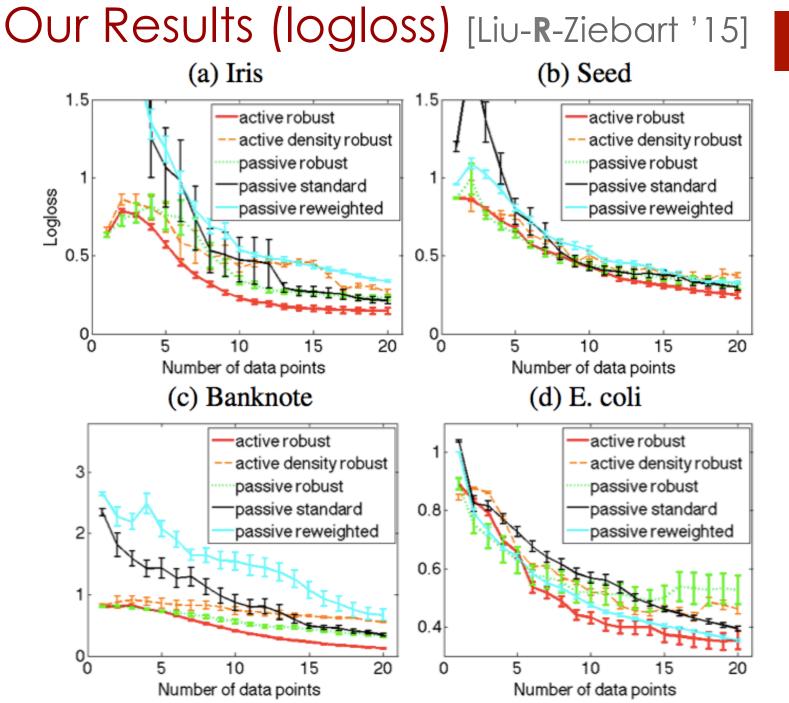
active robust – select point with largest value conditioned entropy

active random – select point at random

active density – select point with highest density ratio of $P_D(x)/P_L(x)$

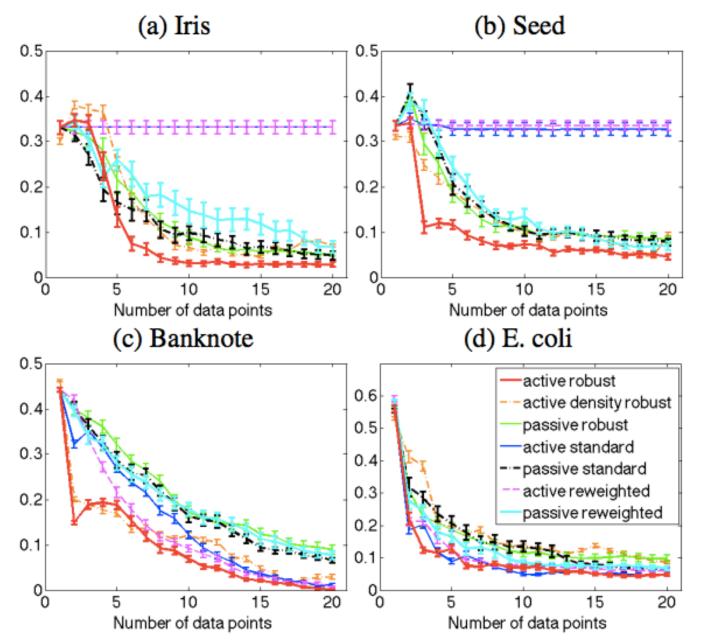
Standard Logistic Regression Models



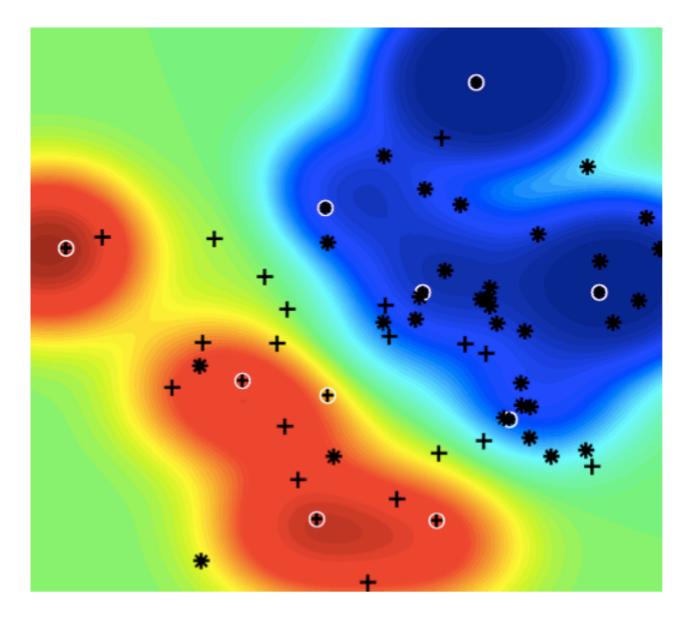


Our Results (error) [Liu-R-Ziebart '15]

40



Predictions



Discussion

Showed how to make any ensemble algorithm "feature efficient".

Gave an a principled active learning algorithm with impressive empirical performance.

Pessimistic active learning applied directly to classification error.

The End

Thank you! Any Questions?