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Which Pairs React?
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An Experiment

or
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How to Mechanize this Process?
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How Do We Learn Social Networks?

5



Learning Protein Networks
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Testing Circuit Connectivity
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Interaction Networks are Everywhere

Interaction Networks: finite populations 

of elements whose state may change as 

a result of interacting with other 

elements according to specific rules.
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Active Learning

 In active learning, the learning algorithm 
has some choice in the data it learns from.

 An oracle responds to the learner’s queries
(questions or experiments) with 
information.

 Many problems in discovering 
interaction networks can be modeled as 
active learning problems and analyzed 
from a machine learning viewpoint.
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Learning Evolutionary Trees
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Test Genetic Distance
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The Evolutionary Tree
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For Degree Restricted Trees

 degree d trees can be learned using 

O(dn logdn) queries [Hein ’89].

◦ This is also a lower bound [King et al. ’03]

 The Longest Path algorithm [Culberson 

& Rudnicki ’89] is often used for tree 

reconstruction and is widely cited.

◦ We give the first correct analysis of Longest 

Path and  show it uses                      queries. dn 2/3
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Back to the Chemicals
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Edge Detecting Queries
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Edge Detecting Queries

Result = 0
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Edge Detecting Queries

Result = 1
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Edge Counting Queries

Result = 2
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Multiplex PCR
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Edge Detecting vs Counting Queries
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Edge Counting Query:

G = (V,E),  learner is given V and must discover E

arbitrary graphs:

[Angluin and Chen ’04]

hidden matching:

[Alon et al. ’04]

Hamiltonian Cycle:

[Grebinski and Kucherov ’98]

trees, degree bounded graphs:

[Grebinski Kucherov ’00]

optimal algorithm:

[Choi and Kim ’08]

k-degenerate graphs + survey:

[Bouvel et al. ’05]
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Results for Poly-time Algorithms

partition graph tree

ED Θ(n2) Θ(|E| lg n) Θ(n2) Θ(n lg n)

EC O(nlogn)

Ω(n)

O(|E| lg n)*

Θ(dn) Θ(n2/lg n)

Θ(n)

SP Θ(nk) Θ(n2) Θ(n2)*

Θ(dn lgd n)

finding connected 

components arbitrary graphs
when the target is 

a tree

k = number of components, *= some contribution 27



Verification with EC Queries

=?

G H

Have EC query 

access to this graph

Given this graph
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Verification with EC Queries

=?

G H

motivation: check for errors in learning
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Verification with EC Queries

=?

no harder than learning

G H
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Verification with EC Queries

Theorem: If G  H then with prob. ≥ ¼ 

ECG(S)  ECH(S) for a random subset S
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Verification with EC Queries

Theorem: If G  H then with prob. ≥ ¼ 

ECG(S)  ECH(S) for a random subset S

To prove this theorem, we will first need to 

prove the following lemma:

Lemma: A random subset of vertices of a 

non-empty graph induces an odd

number of edges w.p. at least 1/4.
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Verification with EC Queries

Lemma: A random subset of 

vertices of a non-empty graph 

induces an odd number of edges 

with probability at least 1/4.
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Verification with EC Queries

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

2 cases

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

even case

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

1
1

even case

flip

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.

37



Verification with EC Queries

1
1

0
0

even case

flip no flip

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

odd case

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

1
0

0
1

odd case

flip no flip

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

1
0

0
1

odd case

flip no flip

 Proof of Lemma: Order the vertices 
{v1… vn} so (vn-1,vn) 2 E. Choose in 

order with Pr. ½.
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Verification with EC Queries

 Theorem: If G  H then with prob. ≥ ¼ 
ECG(S)  ECH(S) for a random subset S

 proof:
◦ If  G  H, then GH

◦ If ECGH(S) is odd, then ECG(S) ≠ ECH(S) 

◦ If GH, and S is chosen uniformly at 
random, then with probability ≥ ¼, ECGH(S) 
has an odd number of edges.
 by the lemma

◦ So if G  H a random query  (which we 
perform on G and simulate on H) will expose 
the difference with probability ≥ 1/4 
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Verification with EC Queries

 Can boost the probability by repeating 
the random queries
◦ Any graph can be verified by a 

randomized algorithm with error ε using 
O(log(1/ε)) EC queries.

 Has a relationship to matrix 
fingerprinting [Freivalds ’77]:
◦ For a large class of matrices, we can 

fingerprint with less randomness.
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The Value Injection Query Model

 [Angluin et al. ’06]

 Experiments on a hidden 
Circuit. 
◦ a gate output may be fixed

◦ a gate may be left free

 Query
◦ given an experiment, we

can observe its output

 Example:

? ? ? ? ?

output =

A B C D E

1 0





01

A

CD

B

E

Hidden From the Learner

1

01

1

11
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Large Alphabet Circuit Results

 Theorem: An algorithm for learning log depth circuits
polynomial in the number of wires and alphabet size would 
imply fixed parameter tractability for all problems in W[1]

 Theorem: There exists an algorithm that learns the class of 
circuits having n wires, alphabet size s, fan-in bound k, and 
shortcut width bounded by b, using nsO(k+b) value injection 
queries and time polynomial in the number of queries.

 Theorem: There exists a polynomial time algorithm that 
learns up to ε-equivalence any analog circuit of n wires, 
depth log(n), constant fan-in, Lipshitz gate functions, and 
shortcut width bounded by a constant.
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Trends Spreading through a 

Social Network
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Trends Spreading through a 

Social Network
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Trends Spreading through a 

Social Network
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What the Learner Sees
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Activations and Suppressions
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Exact Value Injection Queries
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The Learning Task

 Two social networks S and S’ are 
behaviorally equivalent if for any 
experiment e, S(e) = S’(e)

 Given access to a hidden social network 
S*, the learning problem is to find a 
social network S behaviorally equivalent 
to S* using value injection queries.
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The Percolation Model

Given a network S and a VIQ

 All edges entering or leaving a suppressed 
node are automatically “closed.”

 Each remaining edge (u,v) is “open” with 
probability p(u,v) and “closed” with probability (1-
p(u,v))

 The result of a VIQ is the probability there is a 
path from a activated node to the output via 
open edges in S
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A Lower Bound
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A Lower Bound

.  .  . 

.  .  . 

All queries give 1-bit answers
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A Lower Bound

.  .  . 

.  .  . 

2Ω(n2) such graphs, Ω(n2) l.b.
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An Algorithm: First Some 

Definitions

• The depth of a node is its distance to the root

• An Up edge is an edge from a node of larger 

depth to a node of smaller depth

• A Level edge is an edge between two nodes of 

same depth

• A Down edge is an edge from a node at smaller 

depth to a node at higher depth

• A leveled graph of a social network is the graph 

of its Up edges
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Excitation Paths

 An excitation path for a node n is a VIQ in 

which a subset of the free agents form a 

simple directed path from n to the output.  

All agents not on the path with inputs into 

the path are suppressed.

 We also have a shortest excitation path

71
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The Learning Algorithm

For Networks Without 1 Edges

 First Find-Up-Edges to learn the leveled 

graph of S

 For each level, Find-Level-Edges

 For each level, starting from the bottom, 

Find-Down-Edges
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Find-Up-Edges
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Find-Up-Edges
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Find-Up-Edges
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Find-Up-Edges
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Find-Up-Edges
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Find-Up-Edges
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Find-Level-Edges
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Find-Level-Edges
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Find-Level-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges
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Find-Down-Edges

 For each node u at current level

◦ Sort each node vi in C (complete set) by 

distance to the root in G – {u}

◦ Let v1 … vk be the sorted vis

◦ Let pi1 … pik be their corresponding shortest 

paths to the root in G – {u}

◦ For i from 1 to k

 Do experiment of firing u, leaving pii free, and 

suppressing the rest of the nodes.
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For Example
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With Ones – a Problem
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With Ones – a Problem
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With Ones

 Algorithm gets more complicated

 Level edges and down edges are 

found in one subroutine

 In looking for down edges from u, 

need to avoid not just u, but also all 

nodes reachable from u by 1 edges
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In the End

 We do 1 query per each possible edge, 

giving an O(n2) algorithm

 Matches the Ω(n2) lower bound
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Finding Influential Nodes

 Suppose instead of learning the social 
network, we wanted to find the smallest 
influential set of nodes quickly.

 A set of nodes is influential if, when activated, 
activates the output with probability at least p

 NP Hard to Approximate to o(log n), even if 
we know the structure of the network
◦ we show this by a reduction from Set Cover
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An Approximation Algorithm

 Say the optimal solution has m nodes

 Suppose we wanted to fire the output 
with probability  (p – ε)

 Let I be the set of chosen influential 

nodes.

 Observation: at any point in the 

algorithm, greedily adding one more 

node w to I makes
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Analyzing Greedy

 Using a greedy algorithm, we let k be 

the number of rounds the algorithm is 

run
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What if We Cannot Manipulate 

the Network?

2009 Cases of Swine Flu
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The Constraints

 The social network is an unknown graph, 
where nodes are agents.

 Let p(u,v) be the a priori probability of an 
edge between nodes u and v.

 Each observed outbreak induces (or 
exposes) a constraint.
◦ Namely the graph is connected on the 

induced subset.
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Finding the Cheapest Network

 If the prior distribution is independent 

(and probabilities are small), the 

maximum likelihood social network 

maximizes

 This is equivalent to minimizing the 

sum of the log-likelihood costs

while satisfying the constraints
101



Finding the Cheapest Network 

Consistent with the Constraints
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Finding the Cheapest Network 
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The Network Inference Problem

 The Network Inference Problem.
◦ Given:
 a set of vertices V = {v1,…,vn}

 costs ce for each edge e={vi,vj}

 a constraint set S = {S1,…,Sr}, with

◦ Find: a set E of edges of lowest cost such that 
each Si induces a connected subgraph of G=(V,E)

 We consider both the offline and online
version of this problem.  We also consider 
the arbitrary and uniform cost versions.

 Solved for the case where all constraints can 
be satisfied by a tree [Korach & Stern ’03] –
they left the general  case open

VSi 
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An Offline Lower Bound

 Theorem: If P ≠ NP, the approximation 

ratio for the Uniform Cost Network 

Inference problem is Ω(log n).

 Proof (reduction from Hitting Set)

◦ U = {v1, v2,…,vn}

◦ C = {C1, C2,…,Cj}, with

◦ The Hitting Set problem is to minimize |H|, 

where 

UCi 

 ii CHCUH   s.t. 
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An Offline L.B. continued

 Reduction from Hitting Set

 For a constant k, We make a N.I. instance

… … … …

…

…

…

nk
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An Offline L.B. continued

 Reduction from Hitting Set

 For a constant k, We make a N.I. instance

… … … …

…

…

…

nk

n

Each row 

corresponds to 

the elements in 

the Hitting Set 

instance
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An Offline L.B. continued

 Constraints: first, for each row, give all 

pairwise constraints:

… … … …

…

…

…

nk

n 109



An Offline L.B. continued

 Constraints: first, for each row, give all 

pairwise constraints:

 This will force the learner to put down a 

clique on each row

…
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An Offline L.B. continued

 Now we have nk rows of cliques

…

…

…

…
nk
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An Offline L.B. continued

 For each pair of rows:

…

…
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An Offline L.B. continued

 For each pair of rows:

…

…

…

…

1   2   3   4   5  … k  … n-1  n

1   2   3   4   5  … k  … n-1  n
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An Offline L.B. continued

 For each pair of rows:

 w.l.o.g. for the Hitting Set constraint 

◦ Ci = {v1,v2,…,vk}

◦ we will add the constraint:

…

…

…

…

1   2   3   4   5  … k  … n-1  n

1   2   3   4   5  … k  … n-1  n
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An Offline L.B. continued

 For each pair of rows:

 w.l.o.g. for the Hitting Set constraint 

◦ Ci = {v1,v2,…,vk}

◦ we will add the constraint:
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…

…
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An Offline L.B. continued

…

…

1   2   3   4   5  … k

1   2   3   4   5  … k

…

…

1   2   3   4   5  … k

1   2   3   4   5  … k

corresponds to adding 

v1 to H

never better
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An Offline L.B. continued

…

…
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…

…

1   2   3   4   5  … k

1   2   3   4   5  … k

corresponds to adding 

v1 to H

never better
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Finishing the Lower Bound

 Unless P=NP, optimal Hitting Set 

approximation is Ω(log(n)) [Feige ’98].  

 The optimal algorithm pays:

 But the learner pays:

 k can be chosen to be arbitrarily large.
























2
OPT

2

k

k nn
n






































2
OPT)log(

2

k

k n
n

n
n

118



Offline Network Inference Algorithm

 Theorem: There is a O(log(n)+log(r)) 

approximation algorithm to OPT

 Proof: 

◦ Let C sum over all constraints Si, the number 

of components Si induces in G minus 1.

◦ Now consider the greedy algorithm: while C > 

0, add to E the edge that has the lowest ratio 

of ce to ∆C.

◦ This greedy algorithm gives an approximation 

of log(C0) = O(log(n)+log(r))
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The Online Problem

 Constraints Si come in online

 Must satisfy each constraint as it comes 
in.

 Can add but not remove edges.

 Seemingly good ideas like placing an 
MST on each constraint can perform 
very badly.
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Online Algorithm Against 

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm
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Online Algorithm Against 

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm

3/1

3/2log

n

nc
p 
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Online Algorithm Against 

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm

 All constraints Si, |Si| ≥ n1/3log1/3(n) are 

almost surely connected

 All constraints Si, |Si| < n1/3 log1/3(n) that 

are not already covered, we can put a 

clique on, and hit at least 1 edge in OPT

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT) 

edges in expectation.

 Because OPT = Ω(n), we are done.
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Other Online Results

 The competitive ratio for uniform cost stars
and paths is θ(log n).
◦ for paths, makes use of pq-trees [Booth and 

Lueker ’76]

 The uniform cost problem has a 
-competitive lower bound

 The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

124

 n



Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
125



Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

126



Learning FSA with Label Queries
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Learning FSA with Label Queries
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Learning FSA with Label Queries
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Learning FSA with Label Queries

a

b

b

bb

a

start

1

1,0

1
,0

1

0

MQ(“10011”) = (Accept,b)
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Summary

 We explored learning Interaction 
Networks in many contexts

 Applications include evolutionary tree 
reconstruction, learning DNA structure, 
gene regulatory networks, social 
networks, viral spread of diseases, and 
language learning.

 Similarity in techniques – and opportunity 
to apply results to new domains.

 Clearly, many more problems can be 
solved from this perspective.
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Thank You!

Questions?
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