
Active Learning of Interaction

Networks

Lev Reyzin

thesis defense

Committee

Dana Angluin (advisor)

James Aspnes

Robert Schapire (Princeton)

Daniel Spielman

1

Which Pairs React?

2

An Experiment

or

3

How to Mechanize this Process?

4

How Do We Learn Social Networks?

5

Learning Protein Networks

6

Testing Circuit Connectivity

7

Interaction Networks are Everywhere

Interaction Networks: finite populations

of elements whose state may change as

a result of interacting with other

elements according to specific rules.

8

Active Learning

 In active learning, the learning algorithm
has some choice in the data it learns from.

 An oracle responds to the learner’s queries
(questions or experiments) with
information.

 Many problems in discovering
interaction networks can be modeled as
active learning problems and analyzed
from a machine learning viewpoint.

9

Papers Covered in this Thesis

 Lev Reyzin and Nikhil Srivastava

On the Longest Path Algorithm for Reconstructing Trees from Distance Matrices

In Information Processing Letters 2007

 Lev Reyzin and Nikhil Srivastava

Learning and Verifying Graphs Using Queries with a Focus on Edge Counting

In ALT 2007

 Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin

Learning Large-Alphabet and Analog Circuits with Value Injection Queries

In COLT 2007 and Machine Learning Journal 2008 Special Issue

 Dana Angluin, James Aspnes, and Lev Reyzin

Optimally Learning Social Networks with Activations and Suppressions

In ALT 2008 and to appear in Theoretical Computer Science Special Issue

 Dana Angluin, James Aspnes, and Lev Reyzin

Network Construction with Subgraph Connectivity Constraints

Under submission to SODA 2010

 Dana Angluin, Leonor Becerra-Bonache, Adrian Horia Dediu, and Lev Reyzin

Learning Finite Automata Using Label Queries

To appear in ALT 2009
10

Papers Covered in this Thesis

 Lev Reyzin and Nikhil Srivastava

On the Longest Path Algorithm for Reconstructing Trees from Distance Matrices

In Information Processing Letters 2007

 Lev Reyzin and Nikhil Srivastava

Learning and Verifying Graphs Using Queries with a Focus on Edge Counting

In ALT 2007

 Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin

Learning Large-Alphabet and Analog Circuits with Value Injection Queries

In COLT 2007 and Machine Learning Journal 2008 Special Issue

 Dana Angluin, James Aspnes, and Lev Reyzin

Optimally Learning Social Networks with Activations and Suppressions

In ALT 2008 and to appear in Theoretical Computer Science Special Issue

 Dana Angluin, James Aspnes, and Lev Reyzin

Network Construction with Subgraph Connectivity Constraints

Under submission to SODA 2010

 Dana Angluin, Leonor Becerra-Bonache, Adrian Horia Dediu, and Lev Reyzin

Learning Finite Automata Using Label Queries

To appear in ALT 2009

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
11

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
12

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
13

Learning Evolutionary Trees

14

Test Genetic Distance

15

The Evolutionary Tree

16

For Degree Restricted Trees

 degree d trees can be learned using

O(dn logdn) queries [Hein ’89].

◦ This is also a lower bound [King et al. ’03]

 The Longest Path algorithm [Culberson

& Rudnicki ’89] is often used for tree

reconstruction and is widely cited.

◦ We give the first correct analysis of Longest

Path and show it uses queries. dn 2/3

17

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
18

Back to the Chemicals

19

Edge Detecting Queries

20

Edge Detecting Queries

Result = 0

21

Edge Detecting Queries

Result = 1

22

Edge Counting Queries

Result = 2

23

Multiplex PCR

24

Edge Detecting vs Counting Queries

otherwise

Se
(S)

VS

0

 if1
 ED

Edge Detecting Query:

S(S)

VS

in edges ofnumber EC

Edge Counting Query:

G = (V,E), learner is given V and must discover E

25

Edge Detecting vs Counting Queries

otherwise

Se
(S)

VS

0

 if1
 ED

Edge Detecting Query:

S(S)

VS

in edges ofnumber EC

Edge Counting Query:

G = (V,E), learner is given V and must discover E

arbitrary graphs:

[Angluin and Chen ’04]

hidden matching:

[Alon et al. ’04]

Hamiltonian Cycle:

[Grebinski and Kucherov ’98]

trees, degree bounded graphs:

[Grebinski Kucherov ’00]

optimal algorithm:

[Choi and Kim ’08]

k-degenerate graphs + survey:

[Bouvel et al. ’05]
26

Results for Poly-time Algorithms

partition graph tree

ED Θ(n2) Θ(|E| lg n) Θ(n2) Θ(n lg n)

EC O(nlogn)

Ω(n)

O(|E| lg n)*

Θ(dn) Θ(n2/lg n)

Θ(n)

SP Θ(nk) Θ(n2) Θ(n2)*

Θ(dn lgd n)

finding connected

components arbitrary graphs
when the target is

a tree

k = number of components, *= some contribution 27

Verification with EC Queries

=?

G H

Have EC query

access to this graph

Given this graph

28

Verification with EC Queries

=?

G H

motivation: check for errors in learning

29

Verification with EC Queries

=?

no harder than learning

G H

30

Verification with EC Queries

Theorem: If G H then with prob. ≥ ¼

ECG(S) ECH(S) for a random subset S

31

Verification with EC Queries

Theorem: If G H then with prob. ≥ ¼

ECG(S) ECH(S) for a random subset S

To prove this theorem, we will first need to

prove the following lemma:

Lemma: A random subset of vertices of a

non-empty graph induces an odd

number of edges w.p. at least 1/4.

32

Verification with EC Queries

Lemma: A random subset of

vertices of a non-empty graph

induces an odd number of edges

with probability at least 1/4.

33

Verification with EC Queries

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

34

Verification with EC Queries

2 cases

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

35

Verification with EC Queries

even case

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

36

Verification with EC Queries

1
1

even case

flip

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

37

Verification with EC Queries

1
1

0
0

even case

flip no flip

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

38

Verification with EC Queries

odd case

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

39

Verification with EC Queries

1
0

0
1

odd case

flip no flip

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

40

Verification with EC Queries

1
0

0
1

odd case

flip no flip

 Proof of Lemma: Order the vertices
{v1… vn} so (vn-1,vn) 2 E. Choose in

order with Pr. ½.

41

Verification with EC Queries

 Theorem: If G H then with prob. ≥ ¼
ECG(S) ECH(S) for a random subset S

 proof:
◦ If G H, then GH

◦ If ECGH(S) is odd, then ECG(S) ≠ ECH(S)

◦ If GH, and S is chosen uniformly at
random, then with probability ≥ ¼, ECGH(S)
has an odd number of edges.
 by the lemma

◦ So if G H a random query (which we
perform on G and simulate on H) will expose
the difference with probability ≥ 1/4

42

Verification with EC Queries

 Can boost the probability by repeating
the random queries
◦ Any graph can be verified by a

randomized algorithm with error ε using
O(log(1/ε)) EC queries.

 Has a relationship to matrix
fingerprinting [Freivalds ’77]:
◦ For a large class of matrices, we can

fingerprint with less randomness.

43

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
44

The Value Injection Query Model

 [Angluin et al. ’06]

 Experiments on a hidden
Circuit.
◦ a gate output may be fixed

◦ a gate may be left free

 Query
◦ given an experiment, we

can observe its output

 Example:

? ? ? ? ?

output =

A B C D E

1 0

01

A

CD

B

E

Hidden From the Learner

1

01

1

11

45

Large Alphabet Circuit Results

 Theorem: An algorithm for learning log depth circuits
polynomial in the number of wires and alphabet size would
imply fixed parameter tractability for all problems in W[1]

 Theorem: There exists an algorithm that learns the class of
circuits having n wires, alphabet size s, fan-in bound k, and
shortcut width bounded by b, using nsO(k+b) value injection
queries and time polynomial in the number of queries.

 Theorem: There exists a polynomial time algorithm that
learns up to ε-equivalence any analog circuit of n wires,
depth log(n), constant fan-in, Lipshitz gate functions, and
shortcut width bounded by a constant.

46

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
47

Trends Spreading through a

Social Network

48

Trends Spreading through a

Social Network

49

Trends Spreading through a

Social Network

50

Trends Spreading through a

Social Network

51

Trends Spreading through a

Social Network

52

What the Learner Sees

2

4

1

3

5

53

Activations and Suppressions

2

4

1

3

5

54

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

55

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

56

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

57

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

58

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

59

Activations and Suppressions

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

60

2

4

1

3

5

Activations and Suppressions

61

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

Activations and Suppressions

62

2

4

1

3

5

Activations and Suppressions

63

Exact Value Injection Queries

2

4

1

3

5

0.72

64

The Learning Task

 Two social networks S and S’ are
behaviorally equivalent if for any
experiment e, S(e) = S’(e)

 Given access to a hidden social network
S*, the learning problem is to find a
social network S behaviorally equivalent
to S* using value injection queries.

65

The Percolation Model

Given a network S and a VIQ

 All edges entering or leaving a suppressed
node are automatically “closed.”

 Each remaining edge (u,v) is “open” with
probability p(u,v) and “closed” with probability (1-
p(u,v))

 The result of a VIQ is the probability there is a
path from a activated node to the output via
open edges in S

66

A Lower Bound

. . .

. . .

1
1

1

111

67

A Lower Bound

. . .

. . .

All queries give 1-bit answers

1
1

1

111

68

A Lower Bound

. . .

. . .

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1

111

69

An Algorithm: First Some

Definitions

• The depth of a node is its distance to the root

• An Up edge is an edge from a node of larger

depth to a node of smaller depth

• A Level edge is an edge between two nodes of

same depth

• A Down edge is an edge from a node at smaller

depth to a node at higher depth

• A leveled graph of a social network is the graph

of its Up edges

70

Excitation Paths

 An excitation path for a node n is a VIQ in

which a subset of the free agents form a

simple directed path from n to the output.

All agents not on the path with inputs into

the path are suppressed.

 We also have a shortest excitation path

71

?

?

node n
output

The Learning Algorithm

For Networks Without 1 Edges

 First Find-Up-Edges to learn the leveled

graph of S

 For each level, Find-Level-Edges

 For each level, starting from the bottom,

Find-Down-Edges

72

Find-Up-Edges

73

Find-Up-Edges

74

Find-Up-Edges

75

Find-Up-Edges

76

Find-Up-Edges

77

Find-Up-Edges

78

p(u,v)

Find-Level-Edges

79

Find-Level-Edges

80

Find-Level-Edges

81

Find-Down-Edges

82

Find-Down-Edges

83

Find-Down-Edges

84

Find-Down-Edges

85

Find-Down-Edges

86

Find-Down-Edges

87

Find-Down-Edges

88

Find-Down-Edges

 For each node u at current level

◦ Sort each node vi in C (complete set) by

distance to the root in G – {u}

◦ Let v1 … vk be the sorted vis

◦ Let pi1 … pik be their corresponding shortest

paths to the root in G – {u}

◦ For i from 1 to k

 Do experiment of firing u, leaving pii free, and

suppressing the rest of the nodes.

89

For Example

90

With Ones – a Problem

91

With Ones – a Problem

92

With Ones

 Algorithm gets more complicated

 Level edges and down edges are

found in one subroutine

 In looking for down edges from u,

need to avoid not just u, but also all

nodes reachable from u by 1 edges

93

In the End

 We do 1 query per each possible edge,

giving an O(n2) algorithm

 Matches the Ω(n2) lower bound

94

Finding Influential Nodes

 Suppose instead of learning the social
network, we wanted to find the smallest
influential set of nodes quickly.

 A set of nodes is influential if, when activated,
activates the output with probability at least p

 NP Hard to Approximate to o(log n), even if
we know the structure of the network
◦ we show this by a reduction from Set Cover

95

An Approximation Algorithm

 Say the optimal solution has m nodes

 Suppose we wanted to fire the output
with probability (p – ε)

 Let I be the set of chosen influential

nodes.

 Observation: at any point in the

algorithm, greedily adding one more

node w to I makes

96

Analyzing Greedy

 Using a greedy algorithm, we let k be

the number of rounds the algorithm is

run

97

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
98

What if We Cannot Manipulate

the Network?

2009 Cases of Swine Flu

99

The Constraints

 The social network is an unknown graph,
where nodes are agents.

 Let p(u,v) be the a priori probability of an
edge between nodes u and v.

 Each observed outbreak induces (or
exposes) a constraint.
◦ Namely the graph is connected on the

induced subset.

100

Finding the Cheapest Network

 If the prior distribution is independent

(and probabilities are small), the

maximum likelihood social network

maximizes

 This is equivalent to minimizing the

sum of the log-likelihood costs

while satisfying the constraints
101

Finding the Cheapest Network

Consistent with the Constraints
7

75

9

303

10

9

1

5
25

102

Finding the Cheapest Network

Consistent with the Constraints
7

75

9

303

10

9

1

5
25

103

Finding the Cheapest Network

Consistent with the Constraints
7

75

9

303

10

9

1

5
25

104

The Network Inference Problem

 The Network Inference Problem.
◦ Given:
 a set of vertices V = {v1,…,vn}

 costs ce for each edge e={vi,vj}

 a constraint set S = {S1,…,Sr}, with

◦ Find: a set E of edges of lowest cost such that
each Si induces a connected subgraph of G=(V,E)

 We consider both the offline and online
version of this problem. We also consider
the arbitrary and uniform cost versions.

 Solved for the case where all constraints can
be satisfied by a tree [Korach & Stern ’03] –
they left the general case open

VSi

105

An Offline Lower Bound

 Theorem: If P ≠ NP, the approximation

ratio for the Uniform Cost Network

Inference problem is Ω(log n).

 Proof (reduction from Hitting Set)

◦ U = {v1, v2,…,vn}

◦ C = {C1, C2,…,Cj}, with

◦ The Hitting Set problem is to minimize |H|,

where

UCi

 ii CHCUH s.t.

106

An Offline L.B. continued

 Reduction from Hitting Set

 For a constant k, We make a N.I. instance

… … … …

…

…

…

nk

n 107

An Offline L.B. continued

 Reduction from Hitting Set

 For a constant k, We make a N.I. instance

… … … …

…

…

…

nk

n

Each row

corresponds to

the elements in

the Hitting Set

instance

108

An Offline L.B. continued

 Constraints: first, for each row, give all

pairwise constraints:

… … … …

…

…

…

nk

n 109

An Offline L.B. continued

 Constraints: first, for each row, give all

pairwise constraints:

 This will force the learner to put down a

clique on each row

…

110

An Offline L.B. continued

 Now we have nk rows of cliques

…

…

…

…
nk

111

An Offline L.B. continued

 For each pair of rows:

…

…

112

An Offline L.B. continued

 For each pair of rows:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

113

An Offline L.B. continued

 For each pair of rows:

 w.l.o.g. for the Hitting Set constraint

◦ Ci = {v1,v2,…,vk}

◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

114

An Offline L.B. continued

 For each pair of rows:

 w.l.o.g. for the Hitting Set constraint

◦ Ci = {v1,v2,…,vk}

◦ we will add the constraint:

…

…

…

…

1 2 3 4 5 … k … n-1 n

1 2 3 4 5 … k … n-1 n

115

An Offline L.B. continued

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding

v1 to H

never better

116

An Offline L.B. continued

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

…

…

1 2 3 4 5 … k

1 2 3 4 5 … k

corresponds to adding

v1 to H

never better

117

Finishing the Lower Bound

 Unless P=NP, optimal Hitting Set

approximation is Ω(log(n)) [Feige ’98].

 The optimal algorithm pays:

 But the learner pays:

 k can be chosen to be arbitrarily large.

2
OPT

2

k

k nn
n

2
OPT)log(

2

k

k n
n

n
n

118

Offline Network Inference Algorithm

 Theorem: There is a O(log(n)+log(r))

approximation algorithm to OPT

 Proof:

◦ Let C sum over all constraints Si, the number

of components Si induces in G minus 1.

◦ Now consider the greedy algorithm: while C >

0, add to E the edge that has the lowest ratio

of ce to ∆C.

◦ This greedy algorithm gives an approximation

of log(C0) = O(log(n)+log(r))

119

The Online Problem

 Constraints Si come in online

 Must satisfy each constraint as it comes
in.

 Can add but not remove edges.

 Seemingly good ideas like placing an
MST on each constraint can perform
very badly.

120

Online Algorithm Against

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm

121

Online Algorithm Against

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm

3/1

3/2log

n

nc
p

122

Online Algorithm Against

Oblivious Adversary

O(n2/3log2/3n)-competitive algorithm

 All constraints Si, |Si| ≥ n1/3log1/3(n) are

almost surely connected

 All constraints Si, |Si| < n1/3 log1/3(n) that

are not already covered, we can put a

clique on, and hit at least 1 edge in OPT

 We used O(n5/3log2/3(n)+n2/3log2/3(n)OPT)

edges in expectation.

 Because OPT = Ω(n), we are done.

123

Other Online Results

 The competitive ratio for uniform cost stars
and paths is θ(log n).
◦ for paths, makes use of pq-trees [Booth and

Lueker ’76]

 The uniform cost problem has a
-competitive lower bound

 The arbitrary cost problem has an Ω(n)-
competitive lower bound and O(n log n)-
competitive algorithm.

124

 n

Papers Covered in this Thesis

Learning Evolutionary Trees

Learning Graphs (for DNA sequencing)

Learning Circuits (Gene Regulatory Networks)

Actively Learning Social Networks

Passively Inferring Social Networks

Learning Finite State Automata
125

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

126

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

127

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

128

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

129

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

130

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

131

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = ?

132

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

MQ(“10011”) = Accept

133

Learning FSA with Label Queries

start

1

1,0

1
,0

1

0

134

Learning FSA with Label Queries

a

b

b

bb

a

start

1

1,0

1
,0

1

0

MQ(“10011”) = (Accept,b)

135

Summary

 We explored learning Interaction
Networks in many contexts

 Applications include evolutionary tree
reconstruction, learning DNA structure,
gene regulatory networks, social
networks, viral spread of diseases, and
language learning.

 Similarity in techniques – and opportunity
to apply results to new domains.

 Clearly, many more problems can be
solved from this perspective.

136

Thank You!

Questions?

137

