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Methods?
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The Papers*� Schapire, R. E. (2002). The boosting approach to machine 
learning: An overview. Nonlinear Estimation and Classification. 
Springer. (Covers much of his work with Yoav Freund)� Schapire, R. E., Freund, Y., Bartlett, P., & Lee, W. S. (1998).
Boosting the margin: A new explanation for the effe ctiveness 
of voting methods. The Annals of Statistics, 26, 1651–1686.� Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 
26, 801–849.� Lev Reyzin and Robert E. Schapire. How Boosting the Margin 
Can Also Boost Classifier Complexity. In Proceedings of the 
23rd Conference on Machine Learning (ICML), June 2006

* Some material on these slides is taken directly from the papers above and from
http://www.cs.princeton.edu/courses/archive/spring03/cs511/
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The Learning Task

� Given training examples and their labels

� Predict the label of new test examples 
chosen from the same distribution as the 
training data
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Some Definitions

Training Data: labeled examples given to a learner
Test Data: examples whose label a learner must predict
Training Error: the prediction error of the final hypothesis 

on the training data
Generalization Error: the true prediction error of the final 

hypothesis on new data.
Test Error: the prediction error of the final hypothesis on 

the test data (an estimate of the generalization error)
Hypothesis: the prediction rule a learner forms based on 

training data to predict on new data
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An Example of the Task

Training data:
(1,1,0,0,1) -> 1 (0,0,0,0,1) -> 0
(1,0,0,1,1) -> 0 (0,0,1,0,0) -> 0
(0,1,0,0,1) -> 1 (0,1,1,1,1) -> 1

...
Test data:

(1,1,1,1,1) (0,1,1,1,0)
(1,0,0,0,0) (0,0,1,1,1)
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Overfitting
Training Data

(1,1,0,0,1) -> 1         (0,0,0,0,1) -> 0
(1,0,0,1,1) -> 0 (0,0,1,0,0) -> 0
(0,1,0,0,1) -> 1 (0,1,1,1,1) -> 1

Rule 1:

(x1x2-x3-x4x5) v (-x1x2-x3-x4x5) v (-x1x2x3x4x5)
Rule 2:

(x2)

Occam's Razor says we should pick rule 2
Rule 2 comes from a smaller hypothesis space

Rule 1 overfits the training data
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The Idea of Boosting� Combine many “moderately inaccurate” base 
classifiers (do better than chance) into a 
combined predictor (that predicts arbitrarily well)� Generate a new base classifier in each round� Constantly focus on the hardest examples� The final predictor is the weighted vote of the 
base classifiers
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The Main Characters� x = a training example� y = its label� T = the number of rounds of boosting� t = the current round of boosting� m = the number of training examples� D = the weight distribution on training examples� h = the hypothesis� є = the error of the hypothesis� α = the voting weight of the hypothesis� d = the vc dimension of the base learner
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AdaBoost (Freund, Schapire)

More Formally…
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An Example
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An Example
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We classified our training data correctly!
But wait – what did we accomplish?
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Relating to Generalization Error

(Freund and Schapire)
whp, the generalization error is less than :

empirical probability of
getting a training example
wrong

hiding log factors



15

≤

Bounding the Empirical Training Error

Theorem:

Lemma:

)
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Bounding Training Error (continued)
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Choosing Alpha

so if we choose alpha so that Zt is minimized, we get AdaBoost



18

Training Error Drops Exponentially

we define gamma to be the “edge,” or how much better than 
random a weak learner is performing:

then our choice of alpha gives:

therefore the training error falls exponentially in T:≤ ≤
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Back to the Bound

whp, the generalization error is less than :
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We Would Expect Overfitting
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However…

Training
error

Test
error

[Drucker & Cortes; Breiman; Quinlan, …]
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The Margin� The margin of a classifier on an example:�margin =  (weighted fraction of base classifiers voting 
for correct label) – (weighted fraction voting for 
incorrect label)�magnitude represents the confidence of the vote� positive if the vote gives the correct classification.  
Otherwise it’s negative.�margin on example i = yif(xi)� Margins are measured over training examples
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A Margin Bound
� A later bound relied on the margins the 

classifier achieved on the training 
examples and not on the number of 
rounds of boosting. [Schapire et. al. ’98]

the generalization error is at most:

for any value 
of theta

number of training
examples

the VC dimension
of the base classifier

Fraction training 
examples
with margin below 
theta
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Proof (sketch) of Margin Bound

We define CN to be the set of unweighted averages over N elements from H

We define the convex hull C to be the set of mappings that can be generated by
taking a weighted average if classifiers from H

We use P(x,y)-D[A] to denote the probability of the event A when the example 
(x,y) is chosen according to D (the distribution from which examples are 
generated). This is abbreviated PD[A]

We use P(x,y)-S[A] to denote the probability with respect to choosing an 
example uniformly at random from the training set. This is abbreviated PS[A]



25

Proof of Margin Bound (part 2)

Since for any from events A and B

We have

We let f be a majority vote classifier from C.

By choosing N elements independently at random according to this
distribution, we can generate an element of CN.

A function g in CN distributed according to Q is selected by choosing h1,…,hN
at random according to coefficients ah.

since this holds 
for any g, we can 
take exp val of 
rhs wrt Q and get
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Proof of Margin Bound (part 3)

from the previous slide, we have

we now bound both terms on the rhs separately.

Since                              , the probability in the expectation is that the avg over 
N draws is larger than its expected value by more than Ө/2.  A Chernoff
bound yields:

For the first term we use the union bound (and a Chernoff bound).  The 
probability over choices of S that there is a g and Ө for which

is at most
Chernoff bound

bound on the number of such choices
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Proof of Margin Bound (part 4)
so if we set

we take expectation wrt Q, we get that with probability

To finish the argument, we relate the fraction of the training set for which 
yg(x) ≤ Ө/2 to the probability that yf(x) ≤ Ө.  We do this by the technique from 
the beginning.
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Proof of Margin Bound (part 5)
from the previous slide we have:

Again, using Chernoff bounds, we have:

If we set                                 and if we combine the equations above (and 
before), we get that for all Ө > 0 and N ≥ 1 with probability at least 

setting                                         gives
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AdaBoost’s Minimum Margins

AdaBoost Minimum Margins
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The Margins Explanation

� AdaBoost pushes the cumulative margins 
distribution towards higher margins.

� All things being equal, higher margins
mean lower generalization error.

for any value 
of theta

number of training
examples

the VC dimension
of the base classifier

Fraction training 
examples with margin 
below theta
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arc-gv [Breiman ’98]

� motivated by the margins explanation�arc-gv’s minimum margin provably converges 
to the optimal�one line difference from AdaBoost

� Breiman’s reasoning: higher minimum 
margin would imply lower test error

the minimum margin 
on any example of 
the combined vote 
thus far



32

The Experiments� Data: Breast cancer, ionosphere, and splice� From UCI� Same natural datasets as Breiman used� Data: ocr 17, ocr 49� Random subsets from NIST� Scaled to 14x14 points� Binary classification� Use 16-leaf CART trees as base classifiers
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Data: the Margins

Cumulative margins: 500 rounds of boosting on the “breast cancer”
dataset using pruned CART trees as weak learners.
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The Minimum Margins
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Minimum margins of AdaBoost and arc-gv with pruned 
CART trees as base classifiers
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Data: the Errors
Test errors of AdaBoost and arc-gv with pruned CART 

trees as base classifiers
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Doubting the Margins Explanation� arc-gv has uniformly higher margins than 
AdaBoost with pruned CART trees.� the margins explanation predicts that arc-gv
should perform better, but instead arc-gv
performs worse.� Breiman’s experiment put the margins theory 
into serious doubt
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� Margin bound depends on the entire 

distribution – not just minimum margin.�But arc-gv’s margins were uniformly bigger!� arc-gv may generate bigger, more complex 
CART trees.�But they were pruned to 16 leaves.

Reconciling with Margins Theory?
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Another Look at the Margins Bound

� Maybe tree size is too crude a measure of 
complexity� Idea: use tree depth as complexity measure 
[Mason et. al. ’02]
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Measuring Tree Depth

Average Tree Depths
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Counting Trees

� We can upper bound the VC-dimension of a 
finite space of base classifiers H by lg |H|. 

� Measuring complexity is essentially a 
matter of counting how many trees there 
are of bounded depth.
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Trees of Bounded Depth
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Tree Depth vs Number of Rounds
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Another Measure of Tree Complexity� Idea: difference between training and test error tends 
to be bigger for higher complexity classifiers.

differences of test and training errors per generated tree averaged over all 
CART trees in 500 rounds of boosting (over 10 trials)

0

2

4

6

8

10

12

cancer ionosphere ocr 17 ocr 49 splice

pe
rc

en
t d

iff
er

en
ce

 b
et

w
ee

n 
te

st
 a

nd
 

tra
in

in
g 

er
ro

rs

AdaBoost

arc-gv



44

The margins explanation basically says that 
when all other factors are equal, higher margins 
result in lower error.

Given that arc-gv tends to choose trees of higher 
complexity, its higher test error no longer 
qualitatively contradicts the margin theory.

What if we control complexity?

Let’s try decision stumps as base classifiers
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Controlling Classifier Complexity: 
Decision Stumps
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Decision Stumps
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The minimum margin is bigger for arc-gv, but the 
overall margins distribution is higher for AdaBoost
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Discussion� Breiman’s results may not actually contradict the 
margins theory.� Margins are important, but not always at the 
expense of other factors.� Slightly different boosting algorithms can cause 
radically different behavior in their generated 
base classifiers.
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Open Questions� So far, unable to find weak learner of constant 
complexity with uniformly greater margins 
distribution for arc-gv than AdaBoost.  Does one 
exist?� Can we design better boosting algorithms –
maximizing average margin?� Can we prove better (margin) bounds? 


