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• Angluin, Chen. Learning a Hidden Graph Using O(log 
n) Queries Per Edge. (COLT ’04)

• Bouvel, Grebinski, Kucherov. Combinatorial Search on 
Graphs Motivated by Bioinformatics Applications: A 
Brief Survey (WG ’05)

• Reyzin, Srivastava. A Survey of Graph Learning with 
Queries (Manuscript ’06)

• Hein. An Optimal Algorithm to Reconstruct Trees  
from Additive Distance Data. (Journal of Math Bio ’89)



Hidden Graphs

Oracle at Delphi



Queries
Edge

query pair of vertices

in graph to detect

presence of edge

(social networks)

Edge Detection

query set of vertices in

graph for presence of

edges

(chemical reactions)

Edge Counting

query set of vertices in 

graph for number of edges

(DNA sequencing)

Shortest Path

query two vertices in 

graph for shortest path

length between them

(evolutionary trees)
Connectedness

query pair of vertices in 

graph to discover if they’re

in same component

(electrical networks)



Edge Queries

Edge Query: query pair of vertices in graph to 

detect presence of edge
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Edge Detection Queries

Edge Detection Query: query a set of vertices in graph

for presence of an edge
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Edge Counting Queries

Edge Counting Query: query a set of vertices in a graph for

number of edges in subgraph induced by the vertices



Shortest Path Queries

Shortest Path: query two vertices in graph for shortest

path length between them



Connectedness Queries

Connectedness Queries: query pair of vertices in graph to

discover if they’re in same component



Relative Power of Queries

lower bounds

upper bounds



Target Classes of Graphs

general graphs trees partitions



Results Summary

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query,

SP = Shortest Path Query, C = Connectedness Query

n = number of nodes, |E| = number of edges,
k = number of connected components, d = maximum degree

references omitted



Learning Partitions with ED

• Upper bound: O(n2) – trivial. query all pairs 

of vertices.

• Lower bound: Ω(n2)

Kn/2 Kn/2 Kn/2 Kn/2

vs

Distinguishing

requires Ω(n2) by adversarial argument



Results Summary

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query,

SP = Shortest Path Query, C = Connectedness Query

n = number of nodes, |E| = number of edges,
k = number of connected components, d = maximum degree

references omitted



Learning Partitions with C

• Upper bound: O(nk)

algorithm

- Step 1: Place v1 in its own component

- Step i > 1: Query C(vi,vw) for items vw from 

each existing component; if a “yes” is 

encountered, place vi in the corresponding 

component and continue to step i+1. 

Otherwise place vi in its own component.



An Example

partitions
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Learning Partitions with C

• Upper bound: O(nk)

– correctness: trivial

– running time: For complexity, note that there 

at most k components at any step (since there 

are at most k components at phase n and 

components are never destroyed); hence n 

vertices take at most nk queries.



Back to Our Table

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query,

SP = Shortest Path Query, C = Connectedness Query

n = number of nodes, |E| = number of edges,
k = number of connected components, d = maximum degree

references omitted



Learning Partitions with EC

• Lower bound: Ω(n)

information theoretic argument:

– The number of partitions of an element set is 

given by the Bell number Bn.

– lg(Bn) = n lg n (de Bruijn ’81)

– each EC query gives lg(C(n,2)) = lg n bits.

– we need Ω((n lg n) / (lg n)) = Ω(n)



An Algorithm for the Upper Bound

• Upper bound: O(n log n)

– Phase 1: set C = {c1} with c1=1

– Phase i : let v = (vi+1) query EC(C+v)

• if EC(C+v)=EC(C) add a new component c=v to C

• else split C into roughly equal halves C1 and C2

and query EC(C1+v),EC(C2+v). Recurse until 

EC({cj}+v) > EC(cj) for a single component cj.  Call 

cj a live component.  Repeat recursively on C/cj

until all live components are found.  Merge them 

and v into 1 component in C.



An Example

partitions
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Proof Sketch

• Correctness of the algorithm is simple by 

induction on the phase. C contains the 

components of G[1 . . . i] at end of phase i

• Running time is bounded by O(n lg n) because 

we do O(lg n) queries to find each live 

component.  But each time we find a live 

component, the number of components in our 

set decreases by 1.  Since we can have at most 

n partitions, the total running time is bounded by 

O(n lg n)



Back to Our Table

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query,

SP = Shortest Path Query, C = Connectedness Query

n = number of nodes, |E| = number of edges,
k = number of connected components, d = maximum degree

references omitted



Learning Graphs with ED 
(Angluin, Chen COLT ’04)

• Upper bound: O(|E| log n)

– Lemma 1: if S1 and S2 are two non-empty 

independent sets of vertices in G.  We can 

find s edges between S1 and S2 in O(s log n)

Case 1: Case 2:



Learning Graphs w/ ED - continued
(Angluin, Chen COLT ’04)

• Upper bound: O(|E| log n)

– Fact: A graph with m edges can be O(m)1/2 colored
• we can collapse pairs of vertices not joined by an edge, until 

we get a clique of m edges.  It can be O(t)-colored and has 
O(t2) vertices.

– Lemma 2: if S1 and S2 (|S1| < |S2| are two non-empty 
sets of vertices in G (w/ s1 and s2 edges respectively).  
We can find s edges between S1 and S2 in 
O(s*log|S2|+s1+s2)

• we color both S1 and S2 with (s1)
1/2 and (s2)

1/2 colors

• for each pair of color classes in S1 and S2, we query the union

• recurse



Learning Graphs w/ ED - continued
(Angluin, Chen COLT ’04)

• Upper bound: O(|E| log n)

– The Algorithm:

• 1) If |V| = 2, mark pair of vertices as edge andreturn

• 2) Divide V into halves S1 and S2.  Ask ED(S1) and 

ED(S1)

• 3) Recursively solve the problem for Si if ED(Si)=1

• 4) Using lemma 2, find edges between S1 and S2



Back to Our Table

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query,

SP = Shortest Path Query, C = Connectedness Query

n = number of nodes, |E| = number of edges,
k = number of connected components, d = maximum degree

references omitted



Learning Trees with SP Queries

(Hein, ’89)

• Upper bound: O(d n log n)

– Proof intuition:
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Open Problems and Future Work

Close the gap for partition with EC queries

Consider other queries: traceroute queries, 
beacon queries,…

Graph Verification.  Given a result from a 
certain class, how hard is it to verify.  Very 
interesting: verifying general graphs with 
EC queries.



Beacon and Traceroute Queries
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Verification



Thank You

Questions?


