Learning Graphs with Queries

Lev Reyzin
Clique talk
Fall 2006

Some Papers

- Angluin, Chen. Learning a Hidden Graph Using O (log n) Queries Per Edge. (COLT '04)
- Bouvel, Grebinski, Kucherov. Combinatorial Search on Graphs Motivated by Bioinformatics Applications: A Brief Survey (WG '05)
- Reyzin, Srivastava. A Survey of Graph Learning with Queries (Manuscript '06)
- Hein. An Optimal Algorithm to Reconstruct Trees from Additive Distance Data. (Journal of Math Bio '89)

Hidden Graphs

Queries

Edge query pair of vertices in graph to detect presence of edge (social networks)

Edge Detection query set of vertices in graph for presence of edges
(chemical reactions)

Edge Counting query set of vertices in graph for number of edges (DNA sequencing)

Connectedness Shortest Path query two vertices in graph for shortest path length between them (evolutionary trees)
query pair of vertices in graph to discover if they're in same component (electrical networks)

Edge Queries

Edge Query: query pair of vertices in graph to detect presence of edge

Edge Detection Queries

Edge Detection Query: query a set of vertices in graph for presence of an edge

Edge Counting Queries

Edge Counting Query: query a set of vertices in a graph for number of edges in subgraph induced by the vertices

Shortest Path Queries

Shortest Path: query two vertices in graph for shortest path length between them

Connectedness Queries

Connectedness Queries: query pair of vertices in graph to discover if they're in same component

Relative Power of Queries

Target Classes of Graphs

general graphs

trees

partitions

Results Summary

$\mathrm{n}=$ number of nodes, $|E|=$ number of edges,
$k=$ number of connected components, $d=$ maximum degree

Query	partition	graph	tree
\mathbf{E}	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
ED	$\Theta\left(n^{2}\right)$	$\Theta(\|E\| \lg n), \Theta\left(n^{2}\right)$	$\Theta(n \lg n)$
		$O(n)$	
EC	$O(n \lg n)$	$O(\|E\| \lg n), O\left(\frac{n^{2}}{\lg n}\right), O(d n)$	$\Theta(d n)$
	$\Omega(n)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right), \Theta(d n \lg n)$
$\mathbf{S P}$	$\Theta(n k)$	not possible	not possible
\mathbf{C}	$\Theta(n k)$		

$\mathrm{E}=$ Edge Query, ED = Edge Detection Query, EC = Edge Counting Query, SP = Shortest Path Query, C = Connectedness Query

Learning Partitions with ED

- Upper bound: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ - trivial. query all pairs of vertices.
- Lower bound: $\Omega\left(\mathrm{n}^{2}\right)$

Distinguishing

$\mathrm{K}_{\mathrm{n} / 2}$
$\mathrm{K}_{\mathrm{n} / 2}$

1

requires $\Omega\left(\mathrm{n}^{2}\right)$ by adversarial argument

Results Summary

$\mathrm{n}=$ number of nodes, $|E|=$ number of edges,
$k=$ number of connected components, $d=$ maximum degree

Query	partition	graph	tree
\mathbf{E}	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
ED	$\Theta\left(n^{2}\right)$	$\Theta(\|E\| \lg n), \Theta\left(n^{2}\right)$	$\Theta(n \lg n)$
EC	$O(n \lg n)$	$O(\|E\| \lg n), O\left(\frac{n^{2}}{\lg n}\right), O(d n)$	$\Theta(n)$
	$\Omega(n)$	$\Omega(d n)$	$\Theta\left(n^{2}\right), \Theta(d n \lg n)$
$\mathbf{S P}$	$\Theta(n k)$	$\Theta\left(n^{2}\right)$	not possible
\mathbf{C}	$\Theta(n k)$	not possible	

$\mathrm{E}=$ Edge Query, ED = Edge Detection Query, EC = Edge Counting Query, SP = Shortest Path Query, C = Connectedness Query

Learning Partitions with C

- Upper bound: O(nk)
algorithm
- Step 1: Place v_{1} in its own component
- Step i>1: Query C($\left.\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{w}}\right)$ for items v_{w} from each existing component; if a "yes" is encountered, place v_{i} in the corresponding component and continue to step $\mathrm{i}+1$. Otherwise place v_{i} in its own component.

An Example

Learning Partitions with C

- Upper bound: O(nk)
- correctness: trivial
- running time: For complexity, note that there at most k components at any step (since there are at most k components at phase n and components are never destroyed); hence n vertices take at most nk queries.

Back to Our Table

$\mathrm{n}=$ number of nodes, $|\mathrm{E}|=$ number of edges,
$k=$ number of connected components, $d=$ maximum degree

Query	partition	graph	tree
\mathbf{E}	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
ED	$\Theta\left(n^{2}\right)$	$\Theta(\|E\| \lg n), \Theta\left(n^{2}\right)$	$\Theta(n \lg n)$
$\mathbf{E C}$	$O(n \lg n)$	$O(\|E\| \lg n), O\left(\frac{n^{2}}{\lg n}\right), O(d n)$	$\Theta(n)$
	$\Omega(n)$	$\Omega(d n)$	$\Theta\left(n^{2}\right), \Theta(d n \lg n)$
$\mathbf{S P}$	$\Theta(n k)$	$\Theta\left(n^{2}\right)$	not possible
\mathbf{C}	$\Theta(n k)$	not possible	

$\mathrm{E}=$ Edge Query, ED = Edge Detection Query, EC = Edge Counting Query, SP = Shortest Path Query, C = Connectedness Query

Learning Partitions with EC

- Lower bound: $\Omega(\mathrm{n})$
information theoretic argument:
- The number of partitions of an element set is given by the Bell number B_{n}.
$-\lg \left(B_{n}\right)=n \lg n$ (de Bruijn '81)
- each EC query gives $\lg (C(n, 2))=\lg n$ bits.
- we need $\Omega((n \lg n) /(\lg n))=\Omega(n)$

An Algorithm for the Upper Bound

- Upper bound: O(n log n)
- Phase 1: set $C=\left\{c_{1}\right\}$ with $c_{1}=1$
- Phase i : let $v=\left(v_{i+1}\right)$ query $E C(C+v)$
- if $\mathrm{EC}(\mathrm{C}+\mathrm{v})=\mathrm{EC}(\mathrm{C})$ add a new component $\mathrm{C}=\mathrm{v}$ to C
- else split C into roughly equal halves C_{1} and C_{2} and query $\mathrm{EC}\left(\mathrm{C}_{1}+\mathrm{v}\right), \mathrm{EC}\left(\mathrm{C}_{2}+\mathrm{v}\right)$. Recurse until $\mathrm{EC}\left(\left\{\mathrm{c}_{\mathrm{j}}\right\}+\mathrm{v}\right)>\mathrm{EC}\left(\mathrm{c}_{\mathrm{j}}\right)$ for a single component c_{j}. Call c_{j} a live component. Repeat recursively on $\mathrm{C} / \mathrm{c}_{\mathrm{j}}$ until all live components are found. Merge them and v into 1 component in C .

An Example

Proof Sketch

- Correctness of the algorithm is simple by induction on the phase. C contains the components of $\mathrm{G}[1 \ldots \mathrm{i}]$ at end of phase i
- Running time is bounded by $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ because we do $O(\lg n)$ queries to find each live component. But each time we find a live component, the number of components in our set decreases by 1 . Since we can have at most n partitions, the total running time is bounded by
$\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Back to Our Table

$n=$ number of nodes, $|E|=$ number of edges,
$k=$ number of connected components, $d=$ maximum degree

Query	partition	graph	tree
\mathbf{E}	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
ED	$\Theta\left(n^{2}\right)$	$\Theta(\|E\| \lg n) \Theta\left(n^{2}\right)$	$\Theta(n \lg n)$
EC	$O(n \lg n)$	$O(\|E\| \lg n), O\left(\frac{n^{2}}{\lg n}\right), O(d n)$	$\Theta(n)$
	$\Omega(n)$	$\Omega(d n)$	$\Theta\left(n^{2}\right), \Theta(d n \lg n)$
$\mathbf{S P}$	$\Theta(n k)$	$\Theta\left(n^{2}\right)$	not possible
\mathbf{C}	$\Theta(n k)$	not possible	

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query, SP = Shortest Path Query, C = Connectedness Query

Learning Graphs with ED (Angluin, Chen COLT '04)

- Upper bound: $\mathrm{O}(|\mathrm{E}| \log \mathrm{n})$
- Lemma 1: if S_{1} and S_{2} are two non-empty independent sets of vertices in G. We can find s edges between S_{1} and S_{2} in $O(s \log n)$

Case 2:

Learning Graphs w/ ED - continued (Angluin, Chen COLT '04)

- Upper bound: O(|E| $\log n)$
- Fact: A graph with m edges can be $O(m)^{1 / 2}$ colored
- we can collapse pairs of vertices not joined by an edge, until we get a clique of m edges. It can be $\mathrm{O}(\mathrm{t})$-colored and has $\mathrm{O}\left(\mathrm{t}^{2}\right)$ vertices.
- Lemma 2: if S_{1} and $S_{2}\left(\left|S_{1}\right|<\left|S_{2}\right|\right.$ are two non-empty sets of vertices in G ($\mathrm{w} / \mathrm{s}_{1}$ and s_{2} edges respectively). We can find s edges between S_{1} and S_{2} in $\mathrm{O}\left(\mathrm{s}^{*} \log \left|\mathrm{~S}_{2}\right|+\mathrm{s}_{1}+\mathrm{s}_{2}\right)$
- we color both S_{1} and S_{2} with $\left(s_{1}\right)^{1 / 2}$ and $\left(S_{2}\right)^{1 / 2}$ colors
- for each pair of color classes in S_{1} and S_{2}, we query the union
- recurse

Learning Graphs w/ ED - continued (Angluin, Chen COLT '04)

- Upper bound: $\mathrm{O}(|\mathrm{E}| \log \mathrm{n})$
- The Algorithm:
- 1) If $|\mathrm{V}|=2$, mark pair of vertices as edge andreturn
- 2) Divide V into halves S1 and S2. Ask ED $\left(S_{1}\right)$ and ED $\left(S_{1}\right)$
-3) Recursively solve the problem for S_{i} if $E D\left(S_{i}\right)=1$
- 4) Using lemma 2, find edges between S_{1} and S_{2}

Back to Our Table

$\mathrm{n}=$ number of nodes, $|\mathrm{E}|=$ number of edges,
$k=$ number of connected components, $d=$ maximum degree

Query	partition	graph	tree
\mathbf{E}	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$	$\Theta\left(n^{2}\right)$
ED	$\Theta\left(n^{2}\right)$	$\Theta(\|E\| \lg n), \Theta\left(n^{2}\right)$	$\Theta(n \lg n)$
		$O(n \lg n)$	$O(\|E\| \lg n), O\left(\frac{n^{2}}{\lg n}\right), O(d n)$
EC	$O(n)$	$\Omega(d n)$	$\Theta\left(n^{2}\right)$
$\mathbf{S P}$	$\Theta(n k)$	$\Theta\left(n^{2}\right) \Theta(d n \lg n)$	
\mathbf{C}	$\Theta(n k)$	not possible	not possible

E = Edge Query, ED = Edge Detection Query, EC = Edge Counting Query, SP = Shortest Path Query, C = Connectedness Query

Learning Trees with SP Queries (Hein, '89)

- Upper bound: O(d $n \log n)$
- Proof intuition:

Open Problems and Future Work

Close the gap for partition with EC queries

Consider other queries: traceroute queries, beacon queries,...

Graph Verification. Given a result from a certain class, how hard is it to verify. Very interesting: verifying general graphs with EC queries.

Beacon and Traceroute Queries

Target

Traceroute

Verification

Thank You

Questions?

