# LEARNING CIRCUITS AND NETWORKS BY INJECTING VALUES

Lev Reyzin Yale University

### PAPERS

- Dana Angluin, James Aspnes, Jiang Chen, and Yinghua Wu.
  Learning a Circuit by Injecting Values. In Proceedings of the <u>38th ACM Symposium on Theory of Computing</u> (STOC), May 2006
- Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin. Learning Large-Alphabet and Analog Circuits with Value Injection Queries. In <u>Proceedings of the 20th Annual</u> <u>Conference on Learning Theory</u> (COLT), June 2007
- Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, and Lev Reyzin. Learning Acyclic Probabilistic Circuits Using Test Paths. To appear in <u>Proceedings of the 21st Annual</u> <u>Conference on Learning Theory</u> (COLT), July 2008
- Dana Angluin, James Aspnes, and Lev Reyzin. Optimally Learning Social Networks with Activations and Suppressions. In preparation, February 2008

# THE VALUE INJECTION QUERY MODEL

- Introduced by [AACW '06]
- Experiments on a hidden Circuit.
  - a gate output may be fixed
  - a gate may be left free
- Query
  - given an experiment, we can observe its output
- Example:





## THE LEARNING PROBLEM

• Behavioral equivalence: Two circuits C and C' are behaviorally equivalent if for any experiment s, C(s)=C'(s).

• **The Problem:** Given qeuery access to a hidden circuit C<sup>\*</sup>, find a circuit C behaviorally equivalent to C<sup>\*</sup> by making value-injection queries.



# MOTIVATION FOR THE MODEL

To model gene regulatory networks as boolean networks to represent gene expressions and disruptions

| Previous gene<br>regulatory<br>network model | Fully controllable.             | All gates are observable.      |
|----------------------------------------------|---------------------------------|--------------------------------|
| Existing circuit learning models             | Only inputs can be manipulated. | Only the output is observable. |
| [AACW '06] model                             | Fully controllable.             | Only the output is observable. |

# [AACW '06] RESULTS FOR BOOLEAN CIRCUITS

| Depth     | Fan-in    | Gates      | Learnability              |
|-----------|-----------|------------|---------------------------|
| Unbounded | Unbounded | AND/OR     | $2^{\Omega(N)}$ queries   |
| Unbounded | 2         | AND/OR     | NP-hard                   |
| Constant  | Unbounded | AND/OR/02  | NP-hard                   |
| Log       | Constant  | Arbitrary  | Poly-time<br><b>(NC1)</b> |
| Constant  | Unbounded | AND/OR/NOT | Poly-time<br>(AC0)        |

## LARGE-ALPHABET CIRCUITS

#### Gates in Boolean Circuits



| Input 1 | Input 2 | Output                |
|---------|---------|-----------------------|
| 1       | 1       | <b>O</b> <sub>1</sub> |
| 1       | 0       | $\mathrm{O}_2$        |
| 0       | 1       | $O_3$                 |
| 0       | 0       | $\mathrm{O}_4$        |

#### Gates in Large-Alphabet circuits

| Input 1 | Input 2 | Output         |
|---------|---------|----------------|
| А       | А       | 0 <sub>1</sub> |
| А       | В       | $\mathrm{O}_2$ |
| А       | С       | $O_3$          |
| В       | А       | $\mathrm{O}_4$ |
| В       | В       | $\mathrm{O}_5$ |
| В       | С       | $O_6$          |
| С       | А       | $O_7$          |
| С       | В       | $O_8$          |
| С       | С       | $\mathrm{O}_9$ |

# HARDNESS OF LEARNING LARGE ALPHABET CIRCUITS

- Consider the problem on input (G,k) of telling whether the graph G on n vertices has a clique of size k
- We give a reduction that turns a largealphabet circuit learning algorithm into a clique tester



## REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING



## REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING



## REDUCING THE CLIQUE PROBLEM TO CIRCUIT LEARNING



# HARDNESS OF LEARNING CIRCUITS OF UNRESTRICTED TOPOLOGY

- The clique problem is complete for the parameterized complexity class W[1]
  - There is no known algorithm for the clique problem that runs in time f(k)n<sup>c</sup> (and we believe one doesn't exist)
- <u>Theorem An algorithm for learning circuits</u> polynomial in the number of wires and alphabet size would imply fixed parameter tractability for all problems in W[1]

# TO COMPARE WITH THE BOOLEAN CASE

#### Boolean Circuits [AACW '06]:

| Depth | Fan-in   | Gates     | Learnability |
|-------|----------|-----------|--------------|
| Log   | Constant | Arbitrary | Poly-time    |

#### Large Alphabet Circuits:

| Depth | Fan-in   | Gates     | Learnability |
|-------|----------|-----------|--------------|
| Log   | Constant | Arbitrary | W[1] Hard    |

This motivates looking at classes of largealphabet circuits with restricted topology

## TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying directed graph has no shortcuts. If (u,v) is an edge and there is a path of length  $\geq 2$  from u to v, then (u,v) is a **shortcut edge** 



## PATHS TO THE ROOT



### LARGE ALPHABET CIRCUIT RESULT

<u>Theorem</u> We can learn the class of circuits having n wires, alphabet size s, fan-in bound k, and shortcut width bounded by b, using ns<sup>O(k+b)</sup> value injection queries and time polynomial in the number of queries.

## PROBABILISTIC CIRCUITS



Path-based methods no longer work in the probabilistic case (for large alphabets).

## INDEPENDENT CASCADE SOCIAL NETWORKS



## WHAT THE LEARNER SEES



## **EXACT VALUE INJECTION QUERIES**

0.72 5









## THE LEARNING TASK (A REMINDER)

• Two social networks S and S' are behaviorally equivalent if for any experiment e, S(e) = S'(e)

• Give access to a hidden social network S\*, the learning problem is to find a social network S behaviorally equivalent to S\* using value injection queries.

### THE PERCOLATION MODEL

Given a network S and a VIQ

- All edges entering or leaving a suppressed node are automatically "closed."
- Each remaining edge (u,v) is "open" with probability  $p_{(u,v)}$  and "closed" with probability (1-  $p_{(u,v)})$
- The result of a VIQ is the probability there is a path from a fired node to the output via open edges in S

#### DISCOVERABLE EDGES

- Let S be a social network and S' be another social network that differs from S only in edge (u,v).
- We say edge (u,v) is discoverable if there is an experiment e such that  $S(e) \neq S'(e)$ .
- We can view the learning problem as having to find all discoverable edges.

#### A LOWER BOUND



#### A LOWER BOUND



All queries give 1-bit answers

#### A LOWER BOUND


#### FIRST SOME DEFINITIONS

- The depth of a node is its distance to the root
- An Up edge is an edge from a node of larger depth to a node of smaller depth
- A Level edge is an edge between two nodes of same depth
- A Down edge is an edge from a node at smaller depth to a node at higher depth
- A leveled graph of a social network is the graph of Up edges

## **EXCITATION PATHS**

• An excitation path for a node n is a VIQ in which a subset of the free agents form a simple directed path from n to the output. All agents not on the path with inputs into the path are suppressed.

• We also have a shortest excitation path

## THE LEARNING ALGORITHM FOR NETWORKS WITHOUT 1 EDGES

• First Find-Up-Edges to learn the leveled graph of S

• For each level, Find-Level-Edges

• For each level, bottom-down, Find-Down-Edges



**40** 









## FIND-LEVEL-EDGES



## FIND-LEVEL-EDGES



## FIND-LEVEL-EDGES











 $\mathbf{51}$ 



**52** 



**53** 



#### • For each node u at current level

- Sort each node  $v_i$  in C (complete set) by distance to the root in  $G-\{u\}$
- Let  $v_1 \dots v_k$  be the sorted  $v_i s$
- Let  $pi_1 \hdots pi_k$  be their corresponding shortest paths to the root in  $G-\{u\}$
- For i from 1 to k
  - Do experiment of firing u, leaving pi<sub>i</sub> free, and suppressing the rest of the nodes.

## FOR EXAMPLE



## With ONES - A Problem



## With ONES - A Problem



## WITH ONES

- Algorithm gets more complicated
- Level edges and down edges are found in one subroutine
- In looking for down edges from u, need to avoid not just u, but also all nodes reachable from u by 1 edges
- There always exists some pair of nodes, with source in L (current level) and destination in C + L where you can look for an edge.

## IN THE END

• We do 1 query per each possible edge, giving an O(n<sup>2</sup>) algorithm

• Matches the  $\Omega(n^2)$  lower bound



## LOWER BOUND



Like sorting with comparisons

Gives a  $\Omega(n \log n)$  lower bound

## Algorithm

• Ancestor Test. To test if u has an ancestor in set S, fire u and suppress all nodes in S.

• How to make a Parent Finder using log n Ancestor Tests and other queries? (assume no 1 edges)

## Algorithm

• Ancestor Test. To test if u has an ancestor in set S, fire u and suppress all nodes in S.

• How to make a Parent Finder using log n Ancestor Tests and other queries? (assume no 1 edges)

• Remember, your parent is your deepest ancestor

## TREES

- Using n queries find all distances to the root
- Using log n queries per node find all parents
- Then "sort out" all 1 edges
- Gives a O(n log n) algorithm that meets the lower bound

## FINDING INFLUENTIAL NODES

- Suppose instead of learning the social network, we wanted to find an influential set of nodes quickly.
- A set of nodes is influential if, when activated, activates the output with probability at least p

## FINDING INFLUENTIAL NODES

- Suppose instead of learning the social network, we wanted to find an influential set of nodes quickly.
- A set of nodes is influential if, when activated, activates the output with probability at least p
- NP Hard to Approximate to log n, even if we know the structure of the network

## REDUCTION FROM SET COVER



## AN APPROXIMATION ALGORITHM

- Say the optimal solution has m nodes
- Suppose we wanted to fire the output with probability  $(p \varepsilon)$
- Let I be the set of chosen influential nodes.
- Observation: at any point in the algorithm, greedily adding one more node w to I makes

$$S(e_{I\cup\{w\}}) \ge S(e_I) + \frac{p - S(e_I)}{m}$$

## ANALYZING GREEDY

• Using a greedy algorithm, we let k be the number of rounds the algorithm is run

For

$$p\left(1-\frac{1}{m}\right)^k < \epsilon$$

it suffices that

$$e^{-\frac{k}{m}} < \frac{\epsilon}{p}$$

or

$$k > m \log\left(\frac{p}{\epsilon}\right).$$

70

# RECONCILING GREEDY

- Therefore after m log(p/ε) rounds, we get to within ε of p.
- To reconcile with the set cover reduction, if we set  $\varepsilon = \frac{1}{2}(1/n) \frac{1}{2}(1/(n-1)) = \theta(1/n^2)$ , this forces us to cover all the elements.
- Giving a m log (p n^2) = O(m log (n)) approximation. Matches the set cover lower bound.

# IF WE DON'T HAVE EXACT VIQS



72
## DISCUSSIONS AND OPEN PROBLEMS

• Interesting model to study various hidden structures.

• Linking value injection query model to real-world problems.

• Finding non-path based methods for social networks (and probabilistic networks)

• Reducing Query Size