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THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden 

Circuit. 

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:
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THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are 
behaviorally equivalent if for 
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*, 
find a circuit C behaviorally 
equivalent to C* by making 
value-injection queries.
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[ACCW ’06]
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MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene 

regulatory 

network model

Fully controllable. All gates are 

observable.

Existing circuit 

learning models

Only inputs can be 

manipulated.

Only the output is 

observable.

[AACW ’06] model Fully controllable. Only the output is 

observable.
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[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time 

(NC1)

Constant Unbounded AND/OR/NOT Poly-time 

(AC0)
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LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean 

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4
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HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of 

telling whether the graph G on n vertices 

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a 

clique tester

test test test
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?
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(k) vertices
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING
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REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
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HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the 

parameterized complexity class W[1]

 There is no known algorithm for the clique problem 

that runs in time f(k)nc (and we believe one doesn’t 

exist)

 Theorem An algorithm for learning circuits 

polynomial in the number of wires and 

alphabet size would imply fixed parameter 

tractability for all problems in W[1]
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TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
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TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying 

directed graph has no shortcuts.  If (u,v) is an edge 

and there is a path of length ≥ 2 from u to v, then 

(u,v) is a shortcut edge
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PATHS TO THE ROOT
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LARGE ALPHABET CIRCUIT RESULT

Theorem We can learn the class of circuits 

having n wires, alphabet size s, fan-in 

bound k, and shortcut width bounded by b, 

using nsO(k+b) value injection queries and 

time polynomial in the number of queries.
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PROBABILISTIC CIRCUITS

17

P(0) P(1)

00 .5 .5

01 1 0

10 .8 .2

11 .3 .7

Path-based methods no longer work 

in the probabilistic case (for large 

alphabets).



INDEPENDENT CASCADE SOCIAL

NETWORKS
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WHAT THE LEARNER SEES
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ACTIVATIONS AND SUPPRESSIONS
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EXACT VALUE INJECTION QUERIES
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THE LEARNING TASK (A REMINDER)

 Two social networks S and S’ are behaviorally 

equivalent if for any experiment e, S(e) = S’(e)

 Give access to a hidden social network S*, the learning 

problem is to find a social network S behaviorally 

equivalent to S* using value injection queries.
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THE PERCOLATION MODEL

Given a network S and a VIQ

 All edges entering or leaving a suppressed node are 

automatically “closed.”

 Each remaining edge (u,v) is “open” with probability 

p(u,v) and “closed” with probability (1- p(u,v))

 The result of a VIQ is the probability there is a path 

from a fired node to the output via open edges in S
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DISCOVERABLE EDGES

 Let S be a social network and S’ be another social 

network that differs from S only in edge (u,v).

 We say edge (u,v) is discoverable if there is an 

experiment e such that S(e) ≠ S’(e).

 We can view the learning problem as having to 

find all discoverable edges.
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A LOWER BOUND
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A LOWER BOUND

.  .  . 

.  .  . 

All queries give 1-bit answers

1
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A LOWER BOUND

.  .  . 

.  .  . 

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1
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FIRST SOME DEFINITIONS

 The depth of a node is its distance to the root

 An Up edge is an edge from a node of larger 

depth to a node of smaller depth

 A Level edge is an edge between two nodes of 

same depth

 A Down edge is an edge from a node at smaller 

depth to a node at higher depth

 A leveled graph of a social network is the 

graph of Up edges
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EXCITATION PATHS

An excitation path for a node n is a VIQ in 

which a subset of the free agents form a 

simple directed path from n to the output.  

All agents not on the path with inputs 

into the path are suppressed.

We also have a shortest excitation path
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THE LEARNING ALGORITHM

FOR NETWORKS WITHOUT 1 EDGES

 First Find-Up-Edges to learn the leveled graph of S

 For each level, Find-Level-Edges

 For each level, bottom-down, Find-Down-Edges
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FIND-UP-EDGES

40



FIND-UP-EDGES
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FIND-UP-EDGES
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FIND-UP-EDGES
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FIND-UP-EDGES
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FIND-LEVEL-EDGES
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FIND-LEVEL-EDGES
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FIND-LEVEL-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES
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FIND-DOWN-EDGES

54



FIND-DOWN-EDGES

For each node u at current level

 Sort each node vi in C (complete set) by 

distance to the root in G – {u}

 Let v1 … vk be the sorted vis

 Let pi1 … pik be their corresponding shortest 

paths to the root in G – {u}

 For i from 1 to k

Do experiment of firing u, leaving pii free, 

and suppressing the rest of the nodes.
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FOR EXAMPLE
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WITH ONES – A PROBLEM
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WITH ONES – A PROBLEM
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WITH ONES

 Algorithm gets more complicated

 Level edges and down edges are found in one 

subroutine

 In looking for down edges from u, need to avoid 

not just u, but also all nodes reachable from u by 

1 edges

 There always exists some pair of nodes, with 

source in L (current level) and destination in C + 

L where you can look for an edge.
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IN THE END

 We do 1 query per each possible edge, giving an O(n2) 

algorithm

 Matches the Ω(n2) lower bound
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TREES
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LOWER BOUND

Like sorting with comparisons

Gives a Ω(n log n) lower bound

. . .
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ALGORITHM

 Ancestor Test.  To test if u has an ancestor in set S, 

fire u and suppress all nodes in S.

 How to make a Parent Finder using log n Ancestor 

Tests and other queries? (assume no 1 edges)
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ALGORITHM

 Ancestor Test.  To test if u has an ancestor in set S, fire 

u and suppress all nodes in S.

 How to make a Parent Finder using log n Ancestor 

Tests and other queries? (assume no 1 edges)

 Remember, your parent is your deepest ancestor
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TREES

 Using n queries find all distances to the root

 Using log n queries per node find all parents

 Then “sort out” all 1 edges

 Gives a O(n log n) algorithm that meets the lower 

bound
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FINDING INFLUENTIAL NODES

 Suppose instead of learning the social network, 

we wanted to find an influential set of nodes 

quickly.

 A set of nodes is influential if, when activated, 

activates the output with probability at least p
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FINDING INFLUENTIAL NODES

 Suppose instead of learning the social network, 

we wanted to find an influential set of nodes 

quickly.

 A set of nodes is influential if, when activated, 

activates the output with probability at least p

 NP Hard to Approximate to log n, even if we 

know the structure of the network
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REDUCTION FROM SET COVER

sets k elements

P = ½

Blue edges have 

weight (1- ½ ^(1/k))
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AN APPROXIMATION ALGORITHM

 Say the optimal solution has m nodes

 Suppose we wanted to fire the output with 

probability  (p – ε)

 Let I be the set of chosen influential nodes.

 Observation: at any point in the algorithm, 

greedily adding one more node w to I makes
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ANALYZING GREEDY

 Using a greedy algorithm, we let k be the number 

of rounds the algorithm is run
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RECONCILING GREEDY

 Therefore after m log(p/ε) rounds, we get to within ε of 

p.

 To reconcile with the set cover reduction, if we set ε =  

½^(1/n) - ½^(1/(n-1)) = θ(1/n^2), this forces us to cover 

all the elements.

 Giving a m log (p n^2) = O(m log (n)) approximation.  

Matches the set cover lower bound.
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IF WE DON’T HAVE EXACT VIQS
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DISCUSSIONS AND OPEN PROBLEMS

 Interesting model to study various hidden 

structures.

 Linking value injection query model to real-world 

problems.

 Finding non-path based methods for social 

networks (and probabilistic networks)

 Reducing Query Size
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