
LEARNING CIRCUITS AND

NETWORKS BY INJECTING

VALUES

Lev Reyzin

Yale University

1

PAPERS

 Dana Angluin, James Aspnes, Jiang Chen, and Yinghua Wu.
Learning a Circuit by Injecting Values. In Proceedings of the
38th ACM Symposium on Theory of Computing (STOC), May
2006

 Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin.
Learning Large-Alphabet and Analog Circuits with Value
Injection Queries. In Proceedings of the 20th Annual
Conference on Learning Theory (COLT), June 2007

 Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, and
Lev Reyzin. Learning Acyclic Probabilistic Circuits Using
Test Paths. To appear in Proceedings of the 21st Annual
Conference on Learning Theory (COLT), July 2008

 Dana Angluin, James Aspnes, and Lev Reyzin. Optimally
Learning Social Networks with Activations and
Suppressions. In preparation, February 2008

2

http://www.cs.washington.edu/stoc06/
http://www.cs.washington.edu/stoc06/
http://www.cs.washington.edu/stoc06/
http://www.cs.washington.edu/stoc06/
http://www.cs.washington.edu/stoc06/
http://www.cs.washington.edu/stoc06/
http://www.learningtheory.org/colt2007/
http://www.learningtheory.org/colt2007/
http://colt2008.cs.helsinki.fi/
http://colt2008.cs.helsinki.fi/

THE VALUE INJECTION QUERY MODEL

 Introduced by [AACW ’06]

 Experiments on a hidden

Circuit.

 a gate output may be fixed

 a gate may be left free

 Query

 given an experiment, we

can observe its output

 Example:

? ? ? ? ?

output =

A B C D E

1 0





01

A

CD

B

E

Hidden From the Learner

1

01

1

11

3

THE LEARNING PROBLEM

Behavioral equivalence:
Two circuits C and C’ are
behaviorally equivalent if for
any experiment s, C(s)=C’(s).

The Problem: Given qeuery
access to a hidden circuit C*,
find a circuit C behaviorally
equivalent to C* by making
value-injection queries.

AND OR

AND

G1

I1

G2

I2V

AND OR

AND

G1

I1

G2

I2V

[ACCW ’06]
4

MOTIVATION FOR THE MODEL

 To model gene regulatory networks as boolean networks

 to represent gene expressions and disruptions

Previous gene

regulatory

network model

Fully controllable. All gates are

observable.

Existing circuit

learning models

Only inputs can be

manipulated.

Only the output is

observable.

[AACW ’06] model Fully controllable. Only the output is

observable.

5

[AACW ’06] RESULTS FOR

BOOLEAN CIRCUITS

Depth Fan-in Gates Learnability

Unbounded Unbounded AND/OR 2(N) queries

Unbounded 2 AND/OR NP-hard

Constant Unbounded AND/OR/2 NP-hard

Log Constant Arbitrary Poly-time

(NC1)

Constant Unbounded AND/OR/NOT Poly-time

(AC0)
6

LARGE-ALPHABET CIRCUITS

Input 1 Input 2 Output

A A O1

A B O2

A C O3

B A O4

B B O5

B C O6

C A O7

C B O8

C C O9

Gates in Large-

Alphabet circuits
Gates in Boolean

Circuits

A
N

D

M
A

J

Input 1 Input 2 Output

1 1 O1

1 0 O2

0 1 O3

0 0 O4

7

HARDNESS OF LEARNING LARGE

ALPHABET CIRCUITS

 Consider the problem on input (G,k) of

telling whether the graph G on n vertices

has a clique of size k

 We give a reduction that turns a large-

alphabet circuit learning algorithm into a

clique tester

test test test

a a a

?

(k,2) edges

(k) vertices
8

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
9

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
10

a b f

REDUCING THE CLIQUE PROBLEM TO

CIRCUIT LEARNING

c
e

f

d

a

b

test test test

a a a

?

(k,2) edges

(k) vertices
11

c d f

HARDNESS OF LEARNING CIRCUITS

OF UNRESTRICTED TOPOLOGY

 The clique problem is complete for the

parameterized complexity class W[1]

 There is no known algorithm for the clique problem

that runs in time f(k)nc (and we believe one doesn’t

exist)

 Theorem An algorithm for learning circuits

polynomial in the number of wires and

alphabet size would imply fixed parameter

tractability for all problems in W[1]
12

TO COMPARE WITH THE BOOLEAN CASE

Depth Fan-in Gates Learnability

Log Constant Arbitrary Poly-time

Boolean Circuits [AACW ’06]:

Large Alphabet Circuits:

Depth Fan-in Gates Learnability

Log Constant Arbitrary W[1] Hard

This motivates looking at classes of large-

alphabet circuits with restricted topology
13

TRANSITIVELY REDUCED CIRCUITS

A circuit is transitively reduced if its underlying

directed graph has no shortcuts. If (u,v) is an edge

and there is a path of length ≥ 2 from u to v, then

(u,v) is a shortcut edge

14

PATHS TO THE ROOT

15

LARGE ALPHABET CIRCUIT RESULT

Theorem We can learn the class of circuits

having n wires, alphabet size s, fan-in

bound k, and shortcut width bounded by b,

using nsO(k+b) value injection queries and

time polynomial in the number of queries.

16

PROBABILISTIC CIRCUITS

17

P(0) P(1)

00 .5 .5

01 1 0

10 .8 .2

11 .3 .7

Path-based methods no longer work

in the probabilistic case (for large

alphabets).

INDEPENDENT CASCADE SOCIAL

NETWORKS

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

p(2,1)

Or weight of edge (2,1) 18

WHAT THE LEARNER SEES

2

4

1

3

5

19

ACTIVATIONS AND SUPPRESSIONS

2

4

1

3

5

20

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

21

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

22

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

23

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

24

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

25

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

26

2

4

1

3

5

ACTIVATIONS AND SUPPRESSIONS

27

2

4

1

3

5
1

.5

.5

.3

.3

.5

.8

.2

.8

.8

.5

ACTIVATIONS AND SUPPRESSIONS

28

2

4

1

3

5

ACTIVATIONS AND SUPPRESSIONS

29

EXACT VALUE INJECTION QUERIES

2

4

1

3

5

0.72

30

THE LEARNING TASK (A REMINDER)

 Two social networks S and S’ are behaviorally

equivalent if for any experiment e, S(e) = S’(e)

 Give access to a hidden social network S*, the learning

problem is to find a social network S behaviorally

equivalent to S* using value injection queries.

31

THE PERCOLATION MODEL

Given a network S and a VIQ

 All edges entering or leaving a suppressed node are

automatically “closed.”

 Each remaining edge (u,v) is “open” with probability

p(u,v) and “closed” with probability (1- p(u,v))

 The result of a VIQ is the probability there is a path

from a fired node to the output via open edges in S

32

DISCOVERABLE EDGES

 Let S be a social network and S’ be another social

network that differs from S only in edge (u,v).

 We say edge (u,v) is discoverable if there is an

experiment e such that S(e) ≠ S’(e).

 We can view the learning problem as having to

find all discoverable edges.

33

A LOWER BOUND

. . .

. . .

1
1

1

111

34

A LOWER BOUND

. . .

. . .

All queries give 1-bit answers

1
1

1

111

35

A LOWER BOUND

. . .

. . .

2Ω(n2) such graphs, Ω(n2) l.b.

1
1

1

111

36

FIRST SOME DEFINITIONS

 The depth of a node is its distance to the root

 An Up edge is an edge from a node of larger

depth to a node of smaller depth

 A Level edge is an edge between two nodes of

same depth

 A Down edge is an edge from a node at smaller

depth to a node at higher depth

 A leveled graph of a social network is the

graph of Up edges

37

EXCITATION PATHS

An excitation path for a node n is a VIQ in

which a subset of the free agents form a

simple directed path from n to the output.

All agents not on the path with inputs

into the path are suppressed.

We also have a shortest excitation path

38

THE LEARNING ALGORITHM

FOR NETWORKS WITHOUT 1 EDGES

 First Find-Up-Edges to learn the leveled graph of S

 For each level, Find-Level-Edges

 For each level, bottom-down, Find-Down-Edges

39

FIND-UP-EDGES

40

FIND-UP-EDGES

41

FIND-UP-EDGES

42

FIND-UP-EDGES

43

FIND-UP-EDGES

44

FIND-LEVEL-EDGES

45

FIND-LEVEL-EDGES

46

FIND-LEVEL-EDGES

47

FIND-DOWN-EDGES

48

FIND-DOWN-EDGES

49

FIND-DOWN-EDGES

50

FIND-DOWN-EDGES

51

FIND-DOWN-EDGES

52

FIND-DOWN-EDGES

53

FIND-DOWN-EDGES

54

FIND-DOWN-EDGES

For each node u at current level

 Sort each node vi in C (complete set) by

distance to the root in G – {u}

 Let v1 … vk be the sorted vis

 Let pi1 … pik be their corresponding shortest

paths to the root in G – {u}

 For i from 1 to k

Do experiment of firing u, leaving pii free,

and suppressing the rest of the nodes.

55

FOR EXAMPLE

56

WITH ONES – A PROBLEM

57

WITH ONES – A PROBLEM

58

WITH ONES

 Algorithm gets more complicated

 Level edges and down edges are found in one

subroutine

 In looking for down edges from u, need to avoid

not just u, but also all nodes reachable from u by

1 edges

 There always exists some pair of nodes, with

source in L (current level) and destination in C +

L where you can look for an edge.

59

IN THE END

 We do 1 query per each possible edge, giving an O(n2)

algorithm

 Matches the Ω(n2) lower bound

60

TREES

61

LOWER BOUND

Like sorting with comparisons

Gives a Ω(n log n) lower bound

. . .

62

ALGORITHM

 Ancestor Test. To test if u has an ancestor in set S,

fire u and suppress all nodes in S.

 How to make a Parent Finder using log n Ancestor

Tests and other queries? (assume no 1 edges)

63

ALGORITHM

 Ancestor Test. To test if u has an ancestor in set S, fire

u and suppress all nodes in S.

 How to make a Parent Finder using log n Ancestor

Tests and other queries? (assume no 1 edges)

 Remember, your parent is your deepest ancestor

64

TREES

 Using n queries find all distances to the root

 Using log n queries per node find all parents

 Then “sort out” all 1 edges

 Gives a O(n log n) algorithm that meets the lower

bound

65

FINDING INFLUENTIAL NODES

 Suppose instead of learning the social network,

we wanted to find an influential set of nodes

quickly.

 A set of nodes is influential if, when activated,

activates the output with probability at least p

66

FINDING INFLUENTIAL NODES

 Suppose instead of learning the social network,

we wanted to find an influential set of nodes

quickly.

 A set of nodes is influential if, when activated,

activates the output with probability at least p

 NP Hard to Approximate to log n, even if we

know the structure of the network

67

REDUCTION FROM SET COVER

sets k elements

P = ½

Blue edges have

weight (1- ½ ^(1/k))

68

AN APPROXIMATION ALGORITHM

 Say the optimal solution has m nodes

 Suppose we wanted to fire the output with

probability (p – ε)

 Let I be the set of chosen influential nodes.

 Observation: at any point in the algorithm,

greedily adding one more node w to I makes

69

ANALYZING GREEDY

 Using a greedy algorithm, we let k be the number

of rounds the algorithm is run

70

RECONCILING GREEDY

 Therefore after m log(p/ε) rounds, we get to within ε of

p.

 To reconcile with the set cover reduction, if we set ε =

½^(1/n) - ½^(1/(n-1)) = θ(1/n^2), this forces us to cover

all the elements.

 Giving a m log (p n^2) = O(m log (n)) approximation.

Matches the set cover lower bound.

71

IF WE DON’T HAVE EXACT VIQS

72

DISCUSSIONS AND OPEN PROBLEMS

 Interesting model to study various hidden

structures.

 Linking value injection query model to real-world

problems.

 Finding non-path based methods for social

networks (and probabilistic networks)

 Reducing Query Size

73

