Hardness Results for Learning DNF

Lev Reyzin
Clique Talk, 2007
The Papers this Talk Covers

- Alekhnovich, Braverman, Feldman, Klivans, Pitassi, New Results on Hardness of Proper Learning (FOCS 2004, JCSS 2005) [ABFKP]
 If NP \neq RP, then DNF are not properly PAC learnable

- Feldman, Hardness of Approximate Two-level Logic Minimization and PAC Learning with Membership Queries (STOC 2006) [Feldman]
 [ABFKP] holds true even when the learner has access to membership queries
The Model and Definitions

- **PAC learning [Valiant ’84]**
 - Algorithm A (efficiently) PAC learns class C of functions \(\{0,1\}^n \rightarrow \{0,1\} \) if for every \(\epsilon>0, \delta>0, n, c \) in C, and distribution \(D_n \), A outputs a hypothesis \(h \) from class \(H \) that \(\epsilon \)-approximates \(c \) with probability \(1-\delta \) and runs in time \(\text{poly}(n,1/\epsilon,1/\delta,|c|) \).
 - If \(H=C \), then A is a proper PAC learning algorithm
 - Given an example oracle that upon request returns example \((x,c(x)) \), where \(x \) is chosen randomly w.r.t. \(D \)

- **DNF formulas and Threshold Functions**
 - A DNF formula is equal to ORs of ANDs, ie \((x_1 \land x_2 \land x_4) \lor (x_5 \land x_1) \)
 - A k-term DNF is a DNF formula equal to the OR of k ANDs
 - A threshold function is a function \(f = \text{sign}(\sum (\alpha_i x_i) - \theta) \) where all \(\alpha_i \) and \(\theta \) are integers.
In his seminal paper introducing PAC learning, Valiant ['84] posed the question whether DNF are properly PAC learnable.

Pitt and Valiant ['88] showed that it is NP hard to learn k-term DNF by k-term DNF.

On the other hand we can PAC learn DNF in sub-exponential time. [Bshouty ’96]

This result answers Valiant’s long-open question.
A Quick Warm-Up

- **k–Colorable hypergraphs**
 - A **k–coloring** of a hypergraph means finding a mapping from the vertices to \{1, ..., k\} s.t. no edge has all of its vertices assigned the same color.

- **Theorem [Pitt, Valiant ’88]**
 Coloring a k–colorable hypergraph \(H = (V, E) \) using \(L \) colors reduces to learning k–term DNF formulae by outputting \(L \–term \ DNF \) formulae.
An Illustration of the Reduction

\[t_{\text{blue}} = (x_2 \land x_4 \land x_3 \land x_5) \]
\[t_{\text{red}} = (x_1 \land x_3 \land x_5 \land x_6) \]
\[t_{\text{green}} = (x_1 \land x_2 \land x_4 \land x_6) \]
\[h = t_{\text{blue}} \lor t_{\text{red}} \lor t_{\text{green}} \]

\[h = t_1 \lor t_2 \lor t_3 \]

\[t_1 = (x_2 \land x_3 \land x_4 \land x_5) \]
\[t_2 = (x_1 \land x_4 \land x_5 \land x_6) \]
\[t_3 = (x_1 \land x_2 \land x_3 \land x_6) \]
The Reduction

Proof of Thm [PV] Coloring a k–colorable hypergraph $H=(V,E)$ using L colors reduces to learning k–term DNF by outputting L–term DNF

- let $H(V,E)$ be any k–colorable hypergraph on n vertices
- make set S: for each $v \in V$, $(a(v), +)$ and $e \in E$, $(a(e), -)$
 - $a(v_i) =$ length n vector w/ 0 at position i and 1 elsewhere
 - $a(e) = \Lambda_{v \in e}a(v)$ bitwise
- any k coloring of $H \leftrightarrow$ DNF consistent w/ examples
 - let χ be a k–coloring of H, for every color c, let $t_c = \bigwedge_{\chi(v_i) \neq c} x_i$
 - we set $h = t_1 \lor t_2 \lor \ldots \lor t_k$
 - for each vertex example $a(v_i)$, $t_{\chi(v_i)}(a(v_i)) = 1$, and hence $h(a(v_i)) = 1$
 - for any edge example $a(e)$, h will not satisfy $a(e)$

 \[h = t_1 \lor t_2 \lor \ldots \lor t_L \] be a DNF consistent with the given examples
 - for each vertex, we define $\chi(v_i) = c$ for least c s.t. $a(v)$ is satisfied by t_c
 - this defines a mapping from vertices to colors
 - take $e \in E$, assume that all its vertices are colored in c, $\forall v \in e, t_c(a(v)) = 1$

\[t_c(a(e)) = t_c(\bigwedge_{v \in e} a(v)) = \bigwedge_{v \in e} t_c(a(v)) = 1 \]
Theorem [PV] Coloring a k–colorable hypergraph $H = (V, E)$ using L colors reduces to learning k–term DNF formulae by outputting L–term DNF formulae

Theorem [Dinur, Regev, Smyth ’02] It is NP Hard to k–color a 2–colorable 3–uniform hypergraph for any constant k

Theorem [ABFKP] Assuming NP \neq RP, there is no polynomial–time algorithm for learning 2–term DNF formulae by k–term DNF formulae for any constant k
Make examples from graph

- Have small CNF consistent with examples
 - If CNF is learnable we can approximate chromatic number
 - But we (probably) can’t approximate chromatic number

- No small AND of threshold consistent with examples
 - If DNF is learnable we can approximate chromatic number
 - So unless \(\text{NP} = \text{RP} \) we can’t learn DNF

Small \(X \)

Large \(X \)
For some r, examples from $\{0,1\}^{n \times r} = (\{0,1\}^n)^r$

Let $G(V,E)$ be a graph on n vertices, m edges
define vectors z:

- $z(v_2) = (0,1,0,0,0,0)$
- $z(v_5) = (0,0,0,0,1,0)$
- $z(v_6) = (0,0,0,0,0,1)$
- $z(\varepsilon_{5,6}) = (0,0,0,0,1,1)$

The Distribution D

- for each vector $(v_1, \ldots, v_r) \in V^r$ associate a negative example $(z(v_1), \ldots, z(v_r), -)$. Giving n^r negative examples (S^-)
- for each choice of k_1, k_2 s.t. $1 \leq k_1 \neq k_2 \leq r$, $e \in E$, and $v_i \in V$ for each $i \neq k_1, k_2$ we associate a positive example $(z(v_1), \ldots, z(e), z(v_{k_1+1}), \ldots, 0, z(v_{k_2+1}), \ldots, z(v_r), +)$, giving a total of $r(r-1)|E|n^{r-2}$ positive examples (S^+)
- D sets probability of each negative example to be $1/2n^r$ and of a positive example $1/2r(r-1)|E|n^{r-2}$

$S = S^+ \cap S^-$
Graph Coloring → CNF (Small χ)

- We’ll show $\chi(G)$ is “small” → exists “small” CNF consistent with the examples

Lemma If $\chi(G) \leq n^\gamma$, then \exists a CNF of size $n^{\gamma r}$ consistent with the examples.

- suppose $V = \bigcup_{i=1}^{\chi} I_i$, where I_i are independent sets
- define the CNF formula $f(x_1, ..., x_n) = \bigwedge_{i=1}^{\chi} \bigvee_{j \notin I_i} x_j$
- define a formula on $r \cdot n$ vars, consistent w/ the learning problem: $F((x_1, ..., x_n), ..., (x_1^r, ..., x_n^r)) = \bigvee_{k=1}^{r} f(x_1^k, ..., x_n^k) = \bigvee_{k=1}^{r} \bigwedge_{i=1}^{\chi} \bigvee_{j \notin I_i} x_j^k$
 - each vertex will fail on the independent set it’s a part of
 - each edge has one “foot” in two independent sets
- F is a disjunction of r CNF w/ at most $\chi(G)$ clauses. Expanding the formula yields a CNF with $\chi(G)^r = n^{\gamma r}$ clauses, satisfying the lemma
The Case of Large χ

Theorem [ABFKP] Let G be a graph such that $\chi(G) \geq n^{1-\gamma}$. Let $F = \bigwedge_{i=1}^l h_i$, $l < \frac{1}{2^{2\gamma r}} \left(\frac{\chi-1}{\log n} \right)$. Then F has error at least $1/n^{2\gamma r + 4}$ with respect to D.

- **in other words**, we assume that $\chi(G) \geq n^{1-\gamma}$, and we prove no “small” AND–of–thresh. formula gives a good approximation to the learning problem.

Covering Lemma [Linial, Vazirani ’89; Feige ’95] One needs at least $((\chi-1)/\ln(n))^r$ products of the form $I_1 \times I_2 \times \ldots \times I_r$ to cover $V^r = V \times \ldots \times V$.

- **we will show** that any $h_k \in F$ correctly classifies few negative examples that lie outside a particular product of independent sets.
On Independent Sets

- Remember $F = \bigwedge_{i=1}^{l} h_i$, $l < \frac{1}{2\chi r} \left(\frac{\chi - 1}{\log n} \right)^r$ and fix an $h_k \in F$
- let $h_k = \sum_{i=1}^{r} \sum_{j=1}^{n} \alpha_j x_j \geq \beta$
- for each $i \leq r$ the i-coefficients are α_j for $j \leq n$
- for each $i \leq r$ let I_i be the set of all $j \leq n$ s.t. there is no edge $(k,j) \in E$ with $\alpha_k < \alpha_j$
 - this orders all i-coefficients in nondecreasing order and takes independent coefficients in that order
 - I_i is an independent set in G
- let $S_1^k = V \times I_2 \times I_r$, $S_2^k = I_1 \times V \times I_3 \times I_r$ and so on
- let $S_k = \bigcup_{i=1}^{r} S_i^k$
 - we will show h_k either misclassifies many positive examples or most negative ones outside S^k
Forced Misclassification

- **Error Lemma** Fix $h_k, l_1, ..., l_r$, and S_k as before. Let N be the number of negative examples outside of $\bigcup_{k=1}^{l} S^k$ that h_k classifies correctly. Then the number of positive examples that h_k (and therefore Λh_k) misclassifies is at least $N/2n$.
 - The intuition is that one threshold function cannot classify too many examples correctly. We can produce a mapping from correctly classified examples to incorrectly classified ones.

For each h_k, Let In_k be the correctly classified negative examples in S^k. Let Out_k be the remaining correctly classified negative examples.
Error Lemma Fix h_k, I_1, \ldots, I_r, and S_k as before. Let N be the number of negative examples outside of $\bigcup_{k=1}^r S^k$ that h_k classifies correctly. Then the number of positive examples that h_k misclassifies is at least $N/2n$.

- Let $\alpha = z(j_1), \ldots, z(j_r)$ be a negative example s.t. α is not in S^k.
 - therefore $h_k(\alpha) < \beta$
- Since α is not in S^k, \exists two j_i’s, ie j_1 and j_2 s.t. $j_1 \notin I_1$ and $j_2 \notin I_2$
 - this implies \exists a vertex k_1 in I_1 s.t. edge $(j_1, k_1) \in E_1$ (for k_2 resp.)
- by how we chose I_1, I_2 it follows $\alpha^1_{k_1} \leq \alpha^1_{j_1}$ and $\alpha^2_{k_2} \leq \alpha^2_{j_2}$
 - either a) $\alpha^1_{j_1} \leq \alpha^1_{j_2}$ or b) $\alpha^1_{j_2} < \alpha^1_{j_1}$
- if a) then $\alpha^1_{j_1} + \alpha^1_{k_1} + \alpha^3_{j_3} + \ldots + \alpha^r_{j_r} \leq \beta$
 - the + example $\alpha' = (z(j_1, k_1), 0, z(j_3), \ldots, z(j_r))$ is misclassified by Λh_k
- if b) then h_k (and Λh_k) and + ex. $\alpha' = (0, z(j_2, k_2), z(j_3), \ldots, z(j_r))$
 this gives us a mapping from correctly classified negative ex. to misclassified + ex. Since each + ex. is mapped onto by at most $2n$ negative examples, this finishes the proof of the lemma.
Lemma Let S^k, $k \leq l$ be defined as before. If

$$l \leq \frac{1}{2} \chi r \left(\frac{\chi - 1}{\ln n} \right)^r$$

then

$$n^r - \left| \bigcup_{k=1}^{l} S^k \right| \geq \frac{1}{2} \left(\frac{\chi - 1}{\ln n} \right)^r$$

Proof follows:

◦ Assume to the contrary. We would then have a collection of

$$l \chi r \leq \frac{1}{2} \left(\frac{\chi - 1}{\ln n} \right)^r$$

products of independent sets, which would cover all but

$$m \leq \frac{1}{2} \left(\frac{\chi - 1}{\ln n} \right)^r$$

points of V^r.

◦ By adding m singletons (which are ind sets) we get a cover of V^r by

$$l \chi r + m \leq \left(\frac{\chi - 1}{\ln n} \right)^r$$

independent sets, contradicting the covering lemma.

We can now analyze the overall error wrt D

◦ Let $F = \bigwedge_{i=1}^{l} h_i$, $l < \frac{1}{2} \chi r \left(\frac{\chi - 1}{\log n} \right)^r$ h_i’s are threshold formulas

◦ Let $R = \frac{1}{4} \left(\frac{\chi - 1}{\ln n} \right)^r$ we split into two cases

 • when $\left| \bigcup_{k}^{l} Out_k \right| \geq R$ by the Error Lemma, F misclassifies $\geq R/2n$ positive examples. so the probability of error wrt D is at least $1/n^{2r\gamma + 4}$

 • when $\left| \bigcup_{k}^{l} Out_k \right| < R$ by the Lemma above, F misclassifies at least

$$\frac{1}{2} \left(\frac{\chi - 1}{\ln n} \right)^r - R$$

negative examples. This makes the error wrt D at least $R/2nr$, which is at least $1/n^{2r\gamma + 4}$ for large n. □
The Error Calculation

- Let \(R = \frac{1}{4} \left(\frac{x-1}{\ln n} \right)^r \), we split into two cases:
 - when \(\bigcup_k^{r'} \text{Out}_k \geq R \) by the Error Lemma, \(F \) misclassifies \(\geq R/2n \) positive examples.
 - Thus the probability of error wrt \(D \) is \(R/(4nr(r-1)|E|n^{r-2}) \), which is at least:
 \[
 \frac{R}{n^{r+4}} = \frac{1}{4} \left(\frac{x-1}{\ln n} \right)^r \geq \frac{1}{4} \left(\frac{1-\gamma-1}{\ln n} \right)^r > \frac{1}{n^{r+4}} = n^{-2\gamma-4} = \frac{1}{n^{2\gamma+4}}
 \]
 - so the probability of error wrt \(D \) is at least \(1/n^{2\gamma+4} \)
 - when \(\bigcup_k^{r'} \text{Out}_k < R \) by the Lemma on previous slide, \(F \) misclassifies at least \(\frac{1}{2} \left(\frac{x-1}{\ln n} \right)^r - R = R \) negative examples.
 - This makes the error wrt \(D \) at least \(R/2nr \), which is at least \(1/n^{2\gamma+4} \) for large \(n \).
Approximating χ by Learning CNF

Theorem [ABFKP] If CNF is learnable by ANDs of thresholds in time $O(n^k s^k (1/\epsilon)^k)$ for $k>1$ then there exists a randomized algorithm for approximating χ of a graph within a factor of $n^{1-1/(10k)}$ in time $O(n^{9k})$.

The Algorithm
- Set $\epsilon = 1/(n^6)$ and $r=10k$. Let G be the graph and D be the distribution induced by G.
- Run learning algorithm wrt D. If it does not terminate within n^{9k} steps, say “$\chi > n^{1-1/(10k)}$”
- Else let h be hypothesis and ϵ_h its error wrt D
- If $\epsilon_h < \epsilon$ say “$\chi < n^{1/(10k)}$” else say “$\chi > n^{1-1/(10k)}$”
Why the Algorithm Works

The Algorithm
- Set $\epsilon = 1/(n^6)$ and $r=10k$. Let G be the graph and D be the induced distribution. Run learning algorithm wrt D. If it does not stop within n^{9k+1} steps, say “$\chi \geq n^{1-1/(10k)}$”. Else let ϵ_h be the error of h wrt D. if $\epsilon_h < \epsilon$ say “$\chi \leq n^{1/(10k)}$” else say “$\chi \geq n^{1-1/(10k)}$”

Correctness
- If $\chi \leq n^{1/(10k)}$, by “small χ Lemma,” $s \leq n^{1/10k*10k}$, and the number of variables is $r \cdot n \leq n^2$. So w.p. $\frac{3}{4}$ the running time is $O((10kn)^k(n)^kn^6k) \leq O(n^{8k}) < n^{9k}$ for large n. So the Alg. outputs “$\chi \leq n^{1/(10k)}$” w.p. $\geq \frac{3}{4}$.
- If $\chi \geq n^{1-1/(10k)}$, by “large χ Lemma”, the algorithm must contain at least $1/(2 \chi r)^*((\chi-1)/\ln n)^r$ terms to have error $< \epsilon$. In this case the running time is at least $1/(2 \chi r)^*((\chi-1)/\ln n)^r \geq n^{9k}$ for large n.
Old Theorem If CNF is learnable by ANDs of thresholds in time $O(n^{ks^k(1/\varepsilon)^k})$ for $k>1$ then there exists a randomized algorithm for approximating χ of a graph within a factor of $n^{1-1/(10k)}$ in time $O(n^{9k})$.

New Theorem If DNF is learnable by ORs of thresholds in time $O(n^{ks^k(1/\varepsilon)^k})$ for $k>1$ then there exists a randomized algorithm for approximating χ of a graph within a factor of $n^{1-1/(10)}$ in time $O(n^{9k})$.
From Previous Slide: If DNF is learnable by ORs of thresholds in time $O(n^k s^k (1/\varepsilon)^k)$ for $k > 1$ then there exists a randomized algorithm for approximating χ of a graph within a factor of $n^{1-1/(10k)}$ in time $O(n^{9k})$.

Theorem [Feige and Kilian ’96] Let $\varepsilon > 0$ be a constant. Assume there exits an algorithm that approximates the chromatic number of a graph on n vertices to a factor of $n^{1-\varepsilon}$ in $\text{RPTIME}(t(n))$, then $\text{NP} \subseteq \text{RPTIME}(t(n^\alpha))$ for some $\alpha \geq 1$.

So we get $\text{NP} \subseteq \text{RPTIME}(n^{O(1)}) \subseteq \text{RP}$

So if $\text{NP} \neq \text{RP}$, then DNF are not properly PAC learnable [ABFKP]
In introducing PAC learning, Valiant [’84] also posed the question whether DNF are properly PAC learnable with membership queries.

- monotone DNF are strongly PAC learnable with MQs [Valiant ’84].
- If non-uniform 1-way functions exist, MQs don’t help in PAC learning DNF [Angluin and Kharitonov ’95]
 - can’t combine this with [ABFKP] to get [F]
- this result answers Valiant’s other long open question
Theorem [Feldman] If NP ≠ RP then there is no polynomial-time proper PAC learning algorithm for DNF expressions even when the learning algorithm has access to the membership oracle.

Membership Queries The learner is given access to a membership oracle that, given any point \(x \in X \), returns the value \(c(x) \).

Proof Idea define values on the target function \(f \) on the rest of the hypercube so that in the case of the “small” chromatic number, \(f \) can still be represented by a relatively “small” CNF formula. This allows us to answer queries to the membership oracle without any knowledge of a “small” coloring.
The Distribution D

- for each vector $(v_1, \ldots, v_r) \in V^r$ associate a negative example $(z(v_1), \ldots, z(v_r), -)$.
- for each choice of k_1, k_2 s.t. $1 \leq k_1 \neq k_2 \leq r$, $e \in E$, and $v_i \in V$ for each $i \neq k_1, k_2$ we associate a positive example $(z(v_1), \ldots, z(e), z(v_{k_1}+1), \ldots, 0, z(v_{k_2}+1), \ldots, z(v_r), +)$
- for the rest of the points on the hypercube

On the rest of the hypercube we define f as follows: let $x = (x^1, \ldots, x^r)$ be a point not in $S^+ \cup S^-$ If for all i

- If $\forall i$, $x^i \in \{0\} \cup \{z(v) \mid v \in V\}$ then $f(x)=0$ 0–vertex points
- If $\exists i \leq r$, j_1, j_2 s.t. vertices with indices j_1 and j_2 are not connected by an edge in G and $x^i_{j_1} = x^i_{j_2} = 1$, then $f(x)=0$ non–edge points
- Otherwise, let $f(x)=1$
The Case of Small χ Revisited

- **Lemma** If $\chi(g) \leq n^\lambda$, then there is a CNF formula of size at most $n^{r\lambda} + r|E|$ equal to f.

 - suppose $V = \bigcup_{i=1}^{\chi} I_i$, where I_i are independent sets.
 - define the CNF formula $g(x_1, \ldots, x_n) = \bigwedge_{i=1}^{\chi} \bigvee_{j \notin I_i} x_j$
 - this formula rejects all points in $\{o\} \cup \{z(v) \mid v \in V\}$ and accepts all points in $\{z(e) \mid e \in E\}$
 - F rejects all the points in S^- and the 0–vertex points. $F((x_1^1, \ldots, x_n^1), \ldots, (x_1^r, \ldots, x_n^r)) = \bigvee_{k=1}^{r} f(x_1^k, \ldots, x_n^k) = \bigvee_{k=1}^{r} \bigwedge_{i=1}^{\chi} \bigvee_{j \notin I_i} x_j^k$
 - we can write F in CNF like [ABFKP]
 - Define CNF formula H on $r n$ variables that rejects all non–edge points. $H(x_1^1, \ldots, x_n^r) = \bigwedge_{k \leq r; (u, w) \notin E} (x_i^k \vee \overline{x_i^k})$
 - this has size $r|E|$
 - So $F \land H$ can be written as CNF satisfying the lemma
For the case of large χ we use the analysis in [ABFKP] since our definition of the target function on points of weight 0 does not make the task of finding an AND-of-thresholds formula with small error any easier or harder. (with a small correction)

This proves the Theorem [Feldman] If $\text{NP} \neq \text{RP}$ then there is no polynomial-time proper PAC learning algorithm for DNF expressions even when the learning algorithm has access to the membership oracle.
Open Questions & Future Directions

- Still open: can we (not-properly) PAC learn DNF?
- We know an OR-of-Thresholds cannot learn DNF. Can we prove that about more general classes?
 - this could be done by tweaking the “error lemma”
- This is the first NP hardness result for PAC learning with membership queries. Can we apply these techniques elsewhere?
- This result uses a lot of machinery. Maybe it can be simplified. ie g(n) function.