Mathematics & Computer Science: The World Through an Algorithmic Lens

Lev Reyzin UIC

The Algorithmic Lens

- The Mathematics and Computer Science (MCS) major combines the two disciplines into an exciting program here at UIC.
- A main goal of our MCS major is to teach our students to "think computationally."

What is Computational Thinking?

- Are there any problems we can't ever solve?
- Can two strangers share secrets in the open?
- If I proved the Riemann hypothesis, could I convince my colleagues without revealing anything about the proof?
- If white can always win in chess, can an omnipotent being quickly prove it?

What is Computational Thinking?

- Are there any problems we can't ever solve?
- Can two strangers share secrets in the open?
- If I proved the Riemann hypothesis, could I convince my colleagues without revealing anything about the proof?
- If white can always win in chess, can an omnipotent being quickly prove it?

Hilbert (1928)

Hilbert's Decision Problem

Entscheidungsproblem (decision problem)

"The decision problem is solved if one knows a process which, given a logical expression, permits the determination of its valídíty... we want to make ít clear that for the solution of the decision problem a process would be given by which nonderívabílíty can, ín príncíple, be determíned, even though the difficulties of the process would make practical use illusory... the decision problem [is] designated as the main problem of mathematical logic."

Richard Feynman (1918-1988)

Albert Einstein Award (1954) E. O. Lawrence Award (1962) Nobel Prize in Physics (1965) Oersted Medal (1972) National Medal of Science (1979)

Richard Feynman (1918-1988)

Albert Einstein Award (1954) E. O. Lawrence Award (1962) Nobel Prize in Physics (1965) Oersted Medal (1972) National Medal of Science (1979)

Feynman's Process

Write down the problem.
 Think real hard.
 Write down the solution.
 (according to Gell-Mann)

Hilbert's Decision Problem

Entscheidungsproblem (decision problem)

"The decision problem is solved if one knows a process which, given a logical expression, permits the determination of its validity... we want to make it clear that for the solution of the decision problem a process would be given by which nonderivability can, in principle, be determined, even though the difficulties of the process would make practical use illusory... the decision problem [is] designated as the main problem of mathematical logic."

Alan M. Turing (1936)

Alan M. Turing (1936)

<u>Church-Turing thesis</u>: anything that is "effectively computable" is computable by this machine.

Alan M. Turing (1936)

Can just think about our favorite programming language, or any (even natural) process; it's all the same!

This is what allows for the algorithmic lens!

Turing's Answer to Hilbert

Hilbert's "process" does not exist for all problems!

Turing's Answer

}

Hilbert's "process" does not exist for all problems!

Some programs Halt:

```
program_1(x) {
   print("hello");
   for (i=0 to x){
      print(i);
   }
   exit();
```

Some programs don't:

```
program_2(x) {
  while(x<x+1) {
    print("nom ");
  }
  print("goodbye");
  exit();</pre>
```

Given a program P, how can we tell if it halts
on x?
P(x) {
 int y = 40;

...

}

...

Imagine there exists H(P,x) that given a program P and input x, returns 1 if P(x) halts and 0 if P(x) loops forever.

if such an H exists, we can create these two

programs:

```
stops_on_self(P){
   return H(P,P);
}
```

```
garblygook(P) {
    if (stops_on_self(P))
        while(true) {};
        else
        exit();
}
```

Imagine there exists H(P,x) that given a program P and input x, returns 1 if P(x) halts and 0 if P(x) loops forever.

if such an H exists, we can create these two

programs:

```
stops_on_self(P){
   return H(P,P);
}
```

```
garblygook(P) {
    if (stops_on_self(P))
        while(true) {};
        else
        exit();
}
```

What happens when you run garblygook(garblygook)?

Imagine there exists H(P,x) that given a program P and input x, returns 1 if P(x) halts and 0 if P(x) loops forever.

if such an H exists, we can create these two

programs:

}

stops_on_self(P){
 return H(P,P);

garblygook(P) {
 if (stops_on_self(P))
 while(true) {};
 else

exit();

What happens when you run garblygook(garblygook)?

So What?

Tons of real-life applications: e.g. computer viruses.

🥃 Virus Database Update (28%)		
Q	Please wait while the virus database is being updated. This might take a few minutes	
Downloading: BASE_END_USER_v10233.cav [47.8 MB/82.6 MB]		
? <u>W</u>	hat do these settings do?	Hide

What is Computational Thinking?

- Are there any problems we can't ever solve?
- Can two strangers share secrets in the open?
- If I proved the Riemann hypothesis, could I convince my colleagues without revealing anything about the proof?
- If white can always win in chess, can an omnipotent being quickly prove it?

Computability Theory

What is the Shortest Route Visiting all Major US Cities?

Can we try all routes and take the best?

Produced by the Dept. of Geography he University of Alabam

What is the Shortest Route Visiting all Major US Cities?

Complexity Theory

Complexity Theory

Using Hardness

Imagine Alice, Bob, and Eve all walk into a room. They have never met before. Everything they say to each other is heard by all 3. Can Alice and Bob exchange a secret that Eve doesn't know?

Using Hardness

Imagine Alice, Bob, and Eve all walk into a room. They have never met before. Everything they say to each other is heard by all 3. Can Alice and Bob exchange a secret that Eve doesn't know?

Shockingly, Yes! [Diffie-Hellman '76]

Using Hardness

Diffie-Hellman assumption (variant):

given an integer g a prime p, g^x mod p and g^y mod p, finding g^{xy} mod p cannot be done efficiently

If the Diffie-Hellman assumption true, Eve cannot know the common secret without doing an exponential amount of computation.

Using the Shared Secret

Alice and Bob can then use their shared secret value for symmetric cryptography.

What is Computational Thinking?

- Are there any problems we can't ever solve?
- Can two strangers share secrets in the open?
- If I proved the Riemann hypothesis, could I convince my colleagues without revealing anything about the proof?
- If white can always win in chess, can an omnipotent being quickly prove it?

Zero Knowledge Proofs

Let's say Alice proves the Riemann Hypothesis. Can she convince Bob her proof is correct without revealing anything about her proof?

Zero Knowledge Proofs

Let's say Alice proves the Riemann Hypothesis. Can she convince Bob her proof is correct without revealing anything about her proof?

Yes! (if one-way functions exist) Goldwasser-Micali-Rackof ['85] Goldreich-Micali-Wigderson ['91]

It Turns Out That...

you can turn any proof

into a checkable coloring of a graph

$\frac{\mu_{k}}{(x^{2}-x^{-1})} Ay = (x \cdot \Delta x)^{2} x^{2} g'(x) u_{k}^{2}(x) \lim_{x \to \infty} \phi_{m}(x) \lim_{x \to \infty} \phi_{m}(x) \int_{x} \frac{\mu_{k}}{(x \cdot \Delta x)^{2}} \int_{x} \frac{\mu_{k}}{(x$
$\frac{1}{1} \prod_{i=1}^{n} \left(arct_{0,x} \right) = 2x_{i}$ $\frac{1}{2} \prod_{i=1}^{n} \left(arct_{0,x} \right) = 2x_{i}$
$\begin{array}{c} \text{sing} \\ \end{array} = \begin{array}{c} \begin{array}{c} \text{sing} \\ \text{sing} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \text{sing} \\ \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \text{sing} \\ \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \text{sing} \\ \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \text{sing} \\ \text{sing} \\ \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \text{sing} \\ \text{sing} \\ \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ \end{array} \\ \begin{array}{c} \text{sing} \\ $
= 0
$\frac{\partial f_{sinf}}{\partial x} \int dx \int dy \int f(x,y) = \frac{\partial f(x,y)}{\partial y} \int dx \int dy \int dx \int dx \int dx \int dx \int dx \int dx$
$t_{g,2,y} = y_{3,y} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1$
$\mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x \cdot E \\ x \cdot E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[\begin{array}{c} x - E \\ x \end{array}\right] \xrightarrow{\mathcal{R}} \mathcal{R}^{2}\left[x - E \\ x \end{array}\right]$
$= \frac{d}{d\lambda}, \qquad \qquad$
the start of the s
4. B and the state of the state
$\frac{4\alpha}{1-1} = \frac{4\alpha}{2}$
$\frac{1}{2} \frac{1}{2} \frac{1}$
$\frac{1}{2} O \left(\frac{1}{2} O \right) = \frac{1}{2} O O O O O O O O O O O O O O O O O O O$
$\int \frac{darda}{dx} \frac{dx}{dx} = \int \frac{darda}{dx} \frac{dx}{dx} = \int \frac{darda}{dx} \frac{dx}{dx} = \int \frac{darda}{dx} \frac{dx}{dx} = \int \frac{dx}{dx} \frac{dx}{dx} + \int \frac{dx}{dx} \frac{dx}{dx} = \int \frac{dx}{dx} \frac{dx}{dx} + \int $
$t_{g}\mathcal{I}_{X} = \mathcal{J}_{X} + \mathcal{I}_{X} + \mathcal{I}$
$x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \left[x^{2} \left[x^{2} \right] x^{2} \left[x^{2} \left[x^{2} \left[x^{2} \left[x^{2} \right] x^{2} \left[x$
$= \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}$
$= \frac{1}{2} \left[\frac{1}{2}$
(1, 0) $(1, 0)$ $($

Massachusetts Institute of Technology in Cambridge physicists have proposed a new "zero knowledge" system to check the status of nuclear warheads, meaning inspectors wouldn't have to rely on less direct methods such as counting missiles. © A. T. Willett/Alamy Stock Photo

a 'zero-knowledge' warhead inspection system

What is Computational Thinking?

- Are there any problems we can't ever solve?
- Can two strangers share secrets in the open?
- If I proved the Riemann hypothesis, could I convince my colleagues without revealing anything about the proof?
- If white can always win in chess, can an omnipotent being quickly prove it?

Convincing Mortals

Let's say God wants to prove His omnipotence by quickly convincing us mortals that white can always win at chess. Can he convince us? (phrasing from Rudich and Aaronson)

Problem: way more possible games than atoms in the universe. $(10^{120} \text{ vs } 10^{80})$

Convincing Mortals

Let's say God wants to prove His omnipotence by quickly convincing us mortals that white can always win at chess. Can he convince us? (phrasing from Rudich and Aaronson)

by beating Kasparov? not good enough

by beating best computers? still not good enough

"IP=PSPACE"

By letting us ask Him some random questions! Lund, Fortnow, Karloff, Nisan, and Shamir ['90] Shamir ['91]

This question isn't as much about chess as it is about zeroes of polynomials over finite fields and error correcting codes.

Just the Tip of the Iceberg

At the boundary of math and CS lies an intellectually exciting field that has had tremendous impact on the world.

It's full of beautiful, surprising, and philosophically interesting results.

Computer Science at UIC

Mathematics and Computer Science (LAS)

Computer Science (Engineering)

Computer Engineering (Engineering)

Information & Decision Science (Business)

Mathematics and Computer Science

Mathematics and Computer Science is not a double major in two disparate fields.

MCS is a comprehensive program of study that gives you the skills and training to understand our increasinglyalgorithmic world.

for more info: http://homepages.math.uic.edu/~mcs/

Why MCS?

In MCS, we teach you the programming skills you need to become a software engineer or to go into industry.

But we also focus on developing logical reasoning and on understanding the underpinnings of CS.

Our graduates are well-prepared for exciting industry positions, careers in science, and much else!

Why MSC at UIC?

We are one of the great urban research universities, and MSCS is a very strong, internationally-recognized department.

You have access to the many opportunities and resources of Chicago.

And you get to learn from (and work with) faculty at the forefront of cutting-edge research.

Thank you!

Questions?

email contacts:

Lev Reyzin (me): lreyzin@uic.edu

Florencio Diaz (Director, Advising & Outreach): fdiaz4@uic.edu

Roman Shvydkoy (Director, Undergraduate Services): shvydkoy@uic.edu