
From Queries to Bandits:
Learning by Interacting

Lev Reyzin
Algorithms and Randomness Center

Georgia Institute of Technology

1

Interactive Learning

2

Supervised Learning

Say we want a computer
to learn to recognize
galaxies.

A computer is first trained
on labeled data.

PAC Learning [Valiant ’84]

3

Supervised Learning
PAC Learning [Valiant ’84]

4

Supervised Learning
PAC Learning [Valiant ’84]

5

Supervised Learning
PAC Learning [Valiant ’84]

6

Problem

Producing training data is expensive!

7

Active Learning
[Cohn et al. ’94]

[Lewis and Gale ’94]

8

Active Learning
[Cohn et al. ’94]

[Lewis and Gale ’94]

9

Active Learning
[Cohn et al. ’94]

[Lewis and Gale ’94]

10

Active Learning
[Cohn et al. ’94]

[Lewis and Gale ’94]

11

Active Learning
[Cohn et al. ’94]

[Lewis and Gale ’94]

12

Passive vs. Interactive

query

13

Active Learning of
Interaction Networks

subject of my Ph.D. dissertation

14

Interaction
Networks

An interaction network
is a finite population of
elements whose state
may change as a result
of interacting with other
elements according to
specific rules.

15

Interaction
Networks

e.g.
circuit

16

Interaction
Networks

e.g.
circuit

terrorist organization

17

Interaction
Networks

e.g.
circuit

terrorist organization
protein network

18

Interaction
Networks

e.g.
circuit

terrorist organization
protein network

flock of geese

19

Problem: given different
species, build their
evolutionary tree.

.

Phylogenetic Tree
Reconstruction
[R-Srivastava ’07a]

20

Phylogenetic Tree
Reconstruction
[R-Srivastava ’07a]

Problem: given different species,
build their evolutionary tree.

Query: can test genetic distance
of a pair.

Property: distances are tree-
realizable.

d=0.01

21

Graph Formulation

22

Graph Formulation

23

Graph Formulation

24

Graph Formulation

25

Matrix Formulation

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

0...
...............

...0

...0

...0

3,2,1,

,32,31,3

,23,21,2

,13,12,1

nnn

n

n

n

ddd

ddd
ddd
ddd

experiment

Problem also known as “distance matrix reconstruction.”
26

Tree Reconstruction

u For n species, trivial number of queries is n2.

u [Hein ’89] gave algorithm achieving O(dnlogn).
u Known to be optimal [King et al. ’03].

u Yet a widely used algorithm was Longest-Path
[Culberson-Rudnicki ’89].
u It was believed to also run in time O(dnlogn).

u We [R-Srivasatava ’07] gave the first correct analysis of
Longest-Path.

27

Longest-Path

key insight: a longest path through a tree can be found using 3n queries.

28

Longest-Path

1.  Pick any node a, query all distances from it.

2

3 2

1
3

1

4

key insight: a longest path through a tree can be found using 3n queries.

a

29

Longest-Path

4

3
2

3 1

5

4

key insight: a longest path through a tree can be found using 3n queries.

1.  Pick any node a, query all distances from it.

2.  Query all distances from b, the farthest node from a.

a

b

30

Longest-Path

3

4
3

2 4
5 1

key insight: a longest path through a tree can be found using 3n queries.

1.  Pick any node a, query all distances from it.

2.  Query all distances from b, the farthest node from a.

3.  Query all distances from c, the farthest node from b.

a

b

c

31

Longest-Path

key insight: a longest path through a tree can be found using 3n queries.

1.  Pick any node a, query all distances from it.

2.  Query all distances from b, the farthest node from a.

3.  Query all distances from c, the farthest node from b.

b

c

This is enough to
reconstruct the
longest path from
b to c.

32

Longest-Path

Algorithm
1.  Find longest path.
2. Recurse on sub-trees.

33

bad case [Culberson-Rudnicki ’89]
Longest-Path takes Ω(dnlogn)

34

bad case [Culberson-Rudnicki ‘89]
Longest-Path takes Ω(dnlogn)

even worse case [R-Srivatava ’07a]
Longest-Path takes Ω(n3/2d1/2)

35

bad case [Culberson-Rudnicki ’89]
Longest-Path takes Ω(dnlogn)

even worse case [R-Srivatava ’07a]
Longest-Path takes Ω(n3/2d1/2)

Main Theorem [R-Srivastava ’07a]: Longest-Path runs in
time O(n3/2d1/2) on topological trees.

36

Genome Sequencing
[R-Srivastava ’07b]

Problem: determine relative
placement of “contigs” in a
genome.

Query: Multiplex PCR counts the
number of contiguous pairs of
primers.

37

Genome Sequencing
[R-Srivastava ’07b]

Problem: determine relative
placement of “contigs” in a
genome.

Query: Multiplex PCR counts the
number of contiguous pairs of
primers.

Reformulation: Learn an un-
weighted graph by “edge
counting.” (Additive model in
bioinformatics.)

38

EC model: un-weighted graph hidden from learner
 learner can ask “edge counting queries”
goal: reconstruct graph

Edge counting (EC) query: learner picks subset of vertices and
is told the number of edges on their induced subgraph.

39

ED model: un-weighted graph hidden from learner
 learner can ask “edge detecting queries”
goal: reconstruct graph

Edge counting (ED) query: learner picks subset of vertices and
is told whether their induced subgraph is an independent set.

40

Previous Work

Edge Detecting (ED)

S  Arbitrary Graphs
[Angluin-Chen ’04]

S  Hidden Matchings
[Alon et al. ’04]

S  Hamiltonian Cycles
[Grebinski-Kucherov ’98]

Edge Counting (EC)

S  trees, degree bounded graphs
[Grebinski-Kucherov ’00]

S  optimal algorithm (exp time)
[Choi-Kim ’08]

S  k-degenerate graphs
[Bouvel et al. ’05]

41

Graph tree partition

ED
Query

 Θ(|E| lg n), Θ(n2)
[Angluin-Chen ’04]

 Θ(n lg n)
[from ←]

Θ(n2)
[R-Srivastava ’07b]

EC

Query

O(|E| lg n)
[from ↑]

[R-Srivastava ’07b]
Θ(n2/lg n)
Θ(dn)

[Grebinski-Kucherov ’00]

Θ(n)
[Grebinski-Kucherov ’00]

O(n lg n)
Ω(n)

[R-Srivastava ’07b]

distance
Query

 Θ(n2)
[from →]

 Θ(n2)
[R-Srivastava ’07b]

O(dn lg n)
[Hein ’89]

 Θ(nk)
[R-Srivastava ’07b]

d = degree, k = number of components

Results for Poly-Time Learners

42

Verification
a task easier than learning

Verifier presented with graph H and given EC query access to G.

H G

Verifier needs to answer: does H = G?
43

H G

=?

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

44

H G

=?

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

3 4 ≠

45

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

46

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

H G HrG

47

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

H G HrG

3 4 1 (odd) 48 ≠

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

49

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

50

we choose the random subset as follows:
1.  order the vertices v1 … vn such that (vn-1,vn) is an edge
2.  in order, flip a fair coin for each vertex to decide if it’s

in the subset

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Lemma: A random subset of vertices of a non-empty graph
induces an odd number of edges with probability ≥ ¼.

odd Graph
induced on

selected
subset from

{v1..vn-2}
even

51

vn

vn-1

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Any graph can be verified by a randomized
algorithm with error ε using O(log(1/ε)) EC queries!

52

Theorem [R-Srivastava ’07b]: If H ≠ G, querying a random
subset of vertices on G and simulating the same query on H

will produce different answers with probability ≥ ¼.

Any graph can be verified by a randomized
algorithm with error ε using O(log(1/ε)) EC queries!

Matrix formulation
A: n×n adjacency matrix
x: {0,1}n is query vector

EC query = xTAx

Our result gives an
improved technique for
matrix fingerprinting

[Freivalds ’77] using less
randomness.

53

Gene Regulatory
Networks
[Angluin-Aspnes-Chen-R ’07]
[Angluin-Aspnes-Chen-Eisenstat-R ’08]

54

Problem: A GRN is a collection of
genes interacting according to
unknown rules. The goal is to learn
their topology and function.

Query: The genes can be disrupted
or expressed by the learner. Only
the final phenotype can be observed.

Gene Regulatory
Networks
[Angluin-Aspnes-Chen-R ’07]
[Angluin-Aspnes-Chen-Eisenstat-R ’08]

Problem: A GRN is a collection of
genes interacting according to
unknown rules. The goal is to learn
their topology and function.

Query: The genes can be disrupted
or expressed by the learner. Only
the final phenotype can be observed.

Reformulation: Learning analog/
probabilistic circuits by injecting
values.

55

Two Models of Learning Circuits

?

? ?

?

?

?

?

?

? ?

?

?

?

?

[Akutsu et al. ’98]
[Ideker et al. ’00]

[Valiant ’84]
[Kharitonov ’93]
[Kearns-Valiant ’94]
… 56

learning from
I/O behavior of
circuit

learning from
I/O behavior of
gates

Two Models of Learning Circuits

?

? ?

?

?

?

?

?

? ?

?

?

?

?

HARD EASY

[Akutsu et al. ’98]
[Ideker et al. ’00]

[Valiant ’84]
[Kharitonov ’93]
[Kearns-Valiant ’94]
… 57

learning from
I/O behavior of
circuit

learning from
I/O behavior of
gates

Learning by Injecting Values

?

? ?

?

?

?

?

Value Injection Query Model
[Angluin et al. ’06]

Learner does not know how
the gates are connected or
what the gates compute.

Learner can override the
values on gates and observe
what happens at the output.

58

Learning by Injecting Values

1

? ?

1

1

?

0

Value Injection Query Model
[Angluin et al. ’06]

59

Learning by Injecting Values

a

? ?

c

c

?

b

We considered large-alphabet
and analog circuits.

60

Theorem [Angluin-Aspnes-Chen-R ’07]: An algorithm
for learning bounded fan-in circuits, polynomial in the
number of wires and alphabet size would imply fixed

parameter tractability of all problems in W[1].

61

Main Theorem [Angluin-Aspnes-Chen-R ’07]: The class of
circuits having n wires, alphabet size s, fan-in bound k, and

shortcut width bounded by b, is learnable using nsO(k+b)
value injection queries and time polynomial in the number

of queries.

62

Main Theorem [Angluin-Aspnes-Chen-R ’07]: The class of
circuits having n wires, alphabet size s, fan-in bound k, and

shortcut width bounded by b, is learnable using nsO(k+b)
value injection queries and time polynomial in the number

of queries.

In some sense, this meets the W[1] hardness lower bound.

1 2 3 2 1
shortcut width = 3

63

64

Distinguishing Paths Lemma
[Angluin-Aspnes-Chen-R ’07]:

Suppose σ and τ are
distinguishable for gate g. Then
… there is a distinguishing path
π for gate g and values σ and

τ.

g

σ/ τ

a/ b

Distinguishing Paths Lemma
[Angluin-Aspnes-Chen-R ’07]:

Suppose σ and τ are
distinguishable for gate g. Then
… there is a distinguishing path
π for gate g and values σ and

τ.

65

g

σ/ τ

a/ b

66

Distinguishing Paths Lemma
[Angluin-Aspnes-Chen-R ’07]:

Suppose σ and τ are
distinguishable for gate g. Then
… there is a distinguishing path
π for gate g and values σ and

τ.

g

The Distinguishing Paths Lemma is not true for probabilistic
circuits with alphabet size > 2!

[Angluin-Aspnes-Chen-Eisenstat-R ’09]

00/11→U{00,11}
01/10→U{01,10}

w1=U{00,01}

left bit right bit

XOR

67

Social Networks
[Angluin-Aspnes-R ’08]

Problem: To learn the pairwise
connections in an independent
cascade social network.

Query: Nodes can be activated and
suppressed. This corresponds to
marketing, immunizing, etc.

Results: Θ(n2) queries are needed.

bad news: large for large networks

good news: learn an edge per query.
68

Language Learning
[Angluin-Bonache-Dediu-R ’08]

Problem: Learning a new language
with the help of a teacher.

Query: The learner makes an
utterance in a language and is then
given information from a teacher.

Model: Learning labeled automata
from membership queries.

69

Multiarmed Bandits
My work at Yahoo! Research

70

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

$0
1 2 4 … T 3

71

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

1 2 4 … T

$0.50

3
$0.50

2

72

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

1 2 4 … T

$0.50

3

$0

$0.50

3

73

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

1 2 4 … T

$0.50

3

$0

$0.33

$0.83

2

74

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

1 2 4 … T

$0.50

3

$0

$0.20

$0.90

$0.33

$0.4T

75

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

$0.5T

$0.2T

$0.33T

$0.1T

$0.4T

76

1

2

3

…

k

Multiarmed Bandits
[Robbins ’52]

$0.5T

$0.2T

$0.33T

$0.1T

regret = $0.1T

$0.4T

77

1

2

3

…

k

$0
1 2 4 … T 3

N experts/policies/functions
think of N >> K

context:

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

78

1

2

3

…

k

$0
1 2 4 … T 3

N experts/policies/functions
think of N >> K

5

1

K

1

4

3

context: x1

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

79

1

2

3

…

k

$0.15
1 2 4 … T 3

N experts/policies/functions
think of N >> K

1
$0.15

context: x1

5

1

K

1

4

3

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

80

1

2

3

…

k

$0.2T
1 2 4 … T 3

N experts/policies/functions
think of N >> K

$.12T

$0.15

context: x1 x2 x3 x4 … xT

$0.5

$0.1

$0.2

$0.4

$.1T

$.2T

$.22T

0

$.17T

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

81

1

2

3

…

k

$0.2T
1 2 4 … T 3

N experts/policies/functions
think of N >> K

$.12T

context: x1 x2 x3 x4 … xT

$.1T

$.2T

$.22T

0

$.17T

regret = $0.02T

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

82

1

2

3

…

k

Contextual Bandits
[Auer-CesaBianchi-Freund-Schapire ’02]

$0.2T
1 2 4 … T 3

context: x1 x2 x3 x4 … xT

the rewards can come i.i.d. from a
distribution or be arbitrary
stochastic / adversarial

The experts can be present or not.
contextual / non-contextual

83

u  Interaction
u  The feedback learner receives depends on its choice of arm.

u  Learner doesn’t learn about arms/experts it didn’t choose.

u Applications: “Life is a Bandit Problem”
u  Ad auctions: arms are advertisements, rewards are clicks, context is

user data, policies are classifiers, one time-step is a user visit.

u  Medicine: arms are treatments, rewards are health outcomes, context
is symptoms, policies are treatment plans, time-step is a patient visit.

u  Finance: arms are stocks, rewards are money earned, context is any
news, policies are given by “financial experts,” time-step is, say, a day.

u Exploration/Exploitation
u  Can exploit expert/arm you’ve learned to be good.

u  Can explore expert/arm you’re not sure about.
84

The First Optimal
Contextual Algorithm
[Beygelzimer-Langford-Li-R-Schapire ’11]

Setting: Adversarial contextual bandits.

Result : The first optimal algorithm
that works with high-probability. Also
can have low regret w.r.t. a VC set.

Made Efficient in
the Stochastic Case!
[Dudik-Hsu-Kale-Karampatziakis-

Langford-R-Zhang ’11]

Setting: Stochastic contextual bandits.

Result : The first efficient optimal,
high probability algorithm (assuming
a supervised-learning oracle)!

85

Some Barriers

Ω(kT)1/2 (non-contextual) and ~ Ω(TK ln N)1/2 (contextual) are
known lower bounds [Auer et al. ’02] on regret, even in the
stochastic case.

Any algorithm achieving regret Õ(KT polylog N)1/2 is said
to be optimal.

No algorithm that first explores (acts randomly) and then
exploits (follows the best policy) can be optimal. Any optimal
algorithm must be adaptive.

86

Two Types of Approaches

UCB
[Auer ’02]

EXP3 Exponential Weights
[Littlestone-Warmuth ’94]

[Auer et al. ’02]
1

0.5

0 t=1

t=2

t=3

…

Algorithm: at every time step
1)  pull arm with highest UCB
2)  update confidence bound of the

arm pulled.

Algorithm: at every time step
1)  sample from distribution defined

by weights (mixed w/ uniform)
2)  update weights “exponentially”

87

UCB vs EXP3
A Comparison

UCB
[Auer ’02]

u Pros
u  Optimal for the stochastic

setting.
u  Succeeds with high probability.

u Cons
u  Does not work in the

adversarial setting.
u  Is not optimal in the contextual

setting.

EXP3 & Friends
[Auer-CesaBianchi-Freund-Schapire ’02]

u Pros
u  Optimal for both the adversarial

and stochastic settings.
u  Can be made to work in the

contextual setting

u Cons
u  Does not succeed with high

probability in the contextual
setting (only in expectation).

88

EXP4P
[Beygelzimer-Langford-Li-R-Schapire ’11]

EXP4P combines the advantages of Exponential Weights and UCB.
optimal for both the stochastic and adversarial settings

works for the contextual case (and also the non-contextual case)
a high probability result

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]: For
any δ>0, with probability at least 1-δ, EXP4P has regret at most

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting.

89

EXP4P
[Beygelzimer-Langford-Li-R-Schapire ’11]

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]: For
any δ>0, with probability at least 1-δ, EXP4P has regret at most

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting.

key insights (on top of UCB/ EXP)
1)  exponential weights and upper

confidence bounds “stack”
2)  generalized Bernstein’s

inequality for martingales

t=1

t=2

t=3
90

Hope for an Efficient Algorithm?
[Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]

For EXP4P, the dependence on N in the regret is logarithmic.

this suggests

We could compete with a large, even super-polynomial number
of policies! (e.g. N=K100 becomes 10 log1/2 K in the regret)

however

All known contextual bandit algorithms explicitly “keep track”
of the N policies. Even worse, just reading in the N would take

too long for large N.
91

Idea: Use Supervised Learning

S  “Competing” with a large (even exponentially large) set of
policies is commonplace in supervised learning.
S  Targets: e.g. linear thresholds, CNF, decision trees (in practice only)

S  Methods: e.g. boosting, SVM, neural networks, gradient descent

S  The recommendations of the policies don’t need to be explicitly
read in when the policy class has structure!

x1
x2

x3 x4
x5

x6

…

Supervised
Learning

Oracle
Policy class Π

A good policy
in Π

idea originates with
[Langford-Zhang ’07]

92

1

2

3

…

k

$1.20
1 2 4 … T 3

N experts/policies/functions
think of N >> K

5

1

k

1

4

3

context: x1 x2 x3

Back to Contextual Bandits

$0.50

$0.70

93

1

2

3

…

k

$1.20
1 2 4 … T 3

N experts/policies/functions
think of N >> K

5

1

k

1

4

3

context: x1 x2 x3

$0.50

$0.70

Supervised
Learning

Oracle

made-up
data

Back to Contextual Bandits

94

1

2

3

…

k

$1.20
1 2 4 … T 3

N experts/policies/functions
think of N >> K

5

1

k

1

4

3

context: x1 x2 x3

$0.50

$0.70

Supervised
Learning

Oracle

made-up
data

Back to Contextual Bandits

95

Randomized-UCB

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any δ>0, w.p. at least 1-δ, given access to a supervised learning

oracle, Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/
δ)) in the stochastic contextual bandit setting and runs in time poly(K,T, ln

N).

96

Randomized-UCB

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:
For any δ>0, w.p. at least 1-δ, given access to a supervised learning

oracle, Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/
δ)) in the stochastic contextual bandit setting and runs in time poly(K,T, ln

N).
if arms are chosen among only good policies s.t. all have variance < approx 2K, we win

can prove this exists via a minimax theorem

this condition can be softened to occasionally allow choosing of bad policies
via “randomized” upper confidence bounds

creates an optimization problem of how to choose arms
expressed as convex program

solvable by ellipsoid algorithm
can implement a separation oracle with the supervised learning oracle

97

Bandit Slate Problems
[Kale-R-Schapire ’11]

Problem: Instead of selecting one
arm, we need to select s ≥ 1, arms
(possibly ranked). The motivation
is web ads where a search engine
shows multiple ads at once.

Result: Efficient algorithm with
regret Õ(sKT)1/2 for unranked
slates and Õ(s(KT)1/2) for ranked
slates.

98

Linear Bandits
[Chu-Li-R-Schapire ’11]

Problem: The LinUCB algorithm
[Li-Chu-Langford-Schapire ’10] was
designed to compete with any linear
predictor. It was experimentally
shown to be effective but had no
theoretical analysis.

Result: We proved that a variant
LinUCB was optimal for the linear
setting and by giving an analysis and
an almost matching lower bound.
Afterwards, a direct proof for the
regret of LinUCB was found
[AbbasiYadkori-Pal- Szepesvári ’11]

99

Other Research

100

Margins in Boosting
[R-Schapire ’06]

Setting: The algorithm AdaBoost
[Freund-Schapire ’97] combines the
votes of “weak learners” to produce
a “strong learner.” It was a mystery
why AdaBoost does not overfit. The
margins theory [Schapire et al. ’98]
explained this mystery, but was put
into doubt by arc-gv [Breiman ’99].

Result: We showed that results on
arc-gv actually don’t contradict the
margins theory and discovered a
complex interplay between margins,
weak learner complexity, and
training sample size.

101

Embedding Parity into
Random Structures
[Angluin-Eisenstat-Kontorovich-R ’10]

Setting: Cryptographic hardness
[Kearns-Valiant ’89] results prevent
progress for learning automata.
Hence we considered the case of
learning random automata.

Result: Even random automata
run into a barrier: the parity
function can be embedded into a
random automata (and even
decision trees and DNF) w.h.p.
Hence, no statistical query
algorithm [Kearns ’98] can hope to
learn these targets.

102

Improved Bounds
for Noisy Sparse Parity
[Grigorescu-R-Vempala ’11]

Setting: The parity problem in the
presence of noise is a difficult
problem on the forefront of
theoretical computer science. No
algorithm better than the brute
force O(nr) for r-parities.

Result: We gave the first nontrivial
algorithm for this problem, giving a
~ O(nr/2) bound. This also implies
slightly better bounds for noisy r-
juntas and noiseless s-term DNF
under the uniform distribution.

103

Complexity of
Statistical Algorithms
[Feldman-Grigorescu-R-Vempala ’11]

Setting: For optimization problems
over distributions, most current
algorithms, e.g. local search,
MCMC, gradient descent, etc. can
be seen as “statistical.”

Result: We define a parameter that
gives unconditional lower bounds
on the number of samples a
statistical algorithm requires,
indicating limitations of known
heuristics for many problems. This
generalizes the statistical query
work of [Blum et al ’94]. 104

Feature-Efficient
Prediction
[R ’11]

Setting: The learner has a budget
of how many features it can
examine at test-time.

Application: Medical testing,
where in diagnosing a patient, tests
can be harmful and/or expensive.

Result: Properly sampling from
any ensemble of feature-efficient
predictors allows the learner’s error
bound to converge to the margin
bound of a full ensemble.

105

Stability Assumptions
in Clustering
[R ’11]

Setting: Clustering has recently been
studied [Awasthi-Blum-Sheffet ’11]
under the perturbation resilience
assumption [Bilu-Linial ’10] -- that
small changes to pair-wise distances
ought not affect the optimal
clustering.

Result: Our analysis reveals that for
the k-median and min-sum
objectives, for only a small range of
stability parameters is the problem
interesting. Outside that range, the
clustering problem either remains
NP-hard or becomes trivial. 106

Future Work

107

Learning Networks

S  My research has addressed problems in evolutionary tree
reconstruction, gene sequencing, protein networks, social
networks, and language learning.

S  Has immediate applications to learning computer networks,
chemical networks, spreads of disease, etc.
S  Can we find more applications?
S  New applications will perhaps lead to new models and new

problems!
S  Some general questions remain open: for example, taking

query costs into account.

108

Bandit Problems

S  “Life is a bandit problem” – so we have many applications!

S  Open problem: making the reduction to supervised learning
more practical and able to handle the adversarial case.

S  Open problem: develop more general theory for the
reinforcement learning problem.
S  Multiarmed bandits are just a special case!

S  More experiments!

109

Other Directions
a small sampling

S  Fast prediction with strong guarantees.
S  Can we capture prediction accuracy and prediction time in one

optimization?

S  Understanding the true complexity of statistical algorithms.

S  Better models for learning social interactions / networks.
S  What are the most robust (ie. to disease) networks?

S  What networks are we currently building?

S  Many others…

110

Thank You!
Questions?

111

