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Interactive Learning 
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Supervised Learning 

Say we want a computer 
to learn to recognize 
galaxies. 
 
A computer is first trained 
on labeled data. 

PAC Learning [Valiant ’84] 
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Supervised Learning 
PAC Learning [Valiant ’84] 

4 



Supervised Learning 
PAC Learning [Valiant ’84] 
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Supervised Learning 
PAC Learning [Valiant ’84] 
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Problem 

Producing training data is expensive! 
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Active Learning 
[Cohn et al. ’94] 

[Lewis and Gale ’94] 
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Active Learning 
[Cohn et al. ’94] 

[Lewis and Gale ’94] 
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Active Learning 
[Cohn et al. ’94] 

[Lewis and Gale ’94] 
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Active Learning 
[Cohn et al. ’94] 

[Lewis and Gale ’94] 
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Active Learning 
[Cohn et al. ’94] 

[Lewis and Gale ’94] 
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Passive           vs.            Interactive 

query 
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Active Learning of  
Interaction Networks 

subject of  my Ph.D. dissertation 
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Interaction 
Networks 

An interaction network 
is a finite population of  
elements whose state 
may change as a result 
of  interacting with other 
elements according to 
specific rules. 
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Interaction 
Networks 

e.g. 
circuit 
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Interaction 
Networks 

e.g. 
circuit 

terrorist organization 
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Interaction 
Networks 

e.g. 
circuit 

terrorist organization 
protein network 
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Interaction 
Networks 

e.g. 
circuit 

terrorist organization 
protein network 

flock of  geese 
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Problem: given different 
species, build their 
evolutionary tree. 
 

 

 
 

 
. 

Phylogenetic Tree 
Reconstruction 
[R-Srivastava ’07a] 
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Phylogenetic Tree 
Reconstruction 
[R-Srivastava ’07a] 

Problem: given different species, 
build their evolutionary tree. 

 

Query: can test genetic distance 
of  a pair. 

 
Property: distances are tree-
realizable. 

d=0.01 
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Graph Formulation 
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Graph Formulation 
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Graph Formulation 
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Graph Formulation 
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Matrix Formulation 
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Problem also known as “distance matrix reconstruction.” 
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Tree Reconstruction 

u For n species, trivial number of  queries is n2. 

u [Hein ’89] gave algorithm achieving O(dnlogn). 
u Known to be optimal [King et al. ’03]. 

u Yet a widely used algorithm was Longest-Path 
[Culberson-Rudnicki ’89]. 
u It was believed to also run in time O(dnlogn). 

u We [R-Srivasatava ’07] gave the first correct analysis of  
Longest-Path. 
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Longest-Path 

key insight: a longest path through a tree can be found using 3n queries. 
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Longest-Path 

1.  Pick any node a, query all distances from it. 

2 

3 2 

1 
3 

1 

4 

key insight: a longest path through a tree can be found using 3n queries. 

a
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Longest-Path 

4 

3 
2 
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5 

4 

key insight: a longest path through a tree can be found using 3n queries. 

1.  Pick any node a, query all distances from it. 

2.  Query all distances from b, the farthest node from a. 

 

a

b
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Longest-Path 

3 

4 
3 

2 4 
5 1 

key insight: a longest path through a tree can be found using 3n queries. 

1.  Pick any node a, query all distances from it. 

2.  Query all distances from b, the farthest node from a. 

3.  Query all distances from c, the farthest node from b. 

a

b

c
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Longest-Path 

key insight: a longest path through a tree can be found using 3n queries. 

1.  Pick any node a, query all distances from it. 

2.  Query all distances from b, the farthest node from a. 

3.  Query all distances from c, the farthest node from b. 

b

c

This is enough to 
reconstruct  the 
longest path from 
b to c. 
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Longest-Path 

Algorithm 
1.  Find longest path. 
2. Recurse on sub-trees. 
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bad case [Culberson-Rudnicki ’89] 
Longest-Path takes Ω(dnlogn) 
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bad case [Culberson-Rudnicki ‘89] 
Longest-Path takes Ω(dnlogn) 

even worse case [R-Srivatava ’07a] 
Longest-Path takes Ω(n3/2d1/2) 
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bad case [Culberson-Rudnicki ’89] 
Longest-Path takes Ω(dnlogn) 

even worse case [R-Srivatava ’07a] 
Longest-Path takes Ω(n3/2d1/2) 

Main Theorem [R-Srivastava ’07a]: Longest-Path runs in 
time O(n3/2d1/2) on topological trees. 
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Genome Sequencing 
[R-Srivastava ’07b] 

Problem: determine relative 
placement of  “contigs” in a 
genome. 

 

Query: Multiplex PCR counts the 
number of  contiguous pairs of  
primers. 
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Genome Sequencing 
[R-Srivastava ’07b] 

Problem: determine relative 
placement of  “contigs” in a 
genome. 

 

Query: Multiplex PCR counts the 
number of  contiguous pairs of  
primers. 

 

Reformulation: Learn an un-
weighted graph by “edge 
counting.”  (Additive model in 
bioinformatics.) 
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EC model:  un-weighted graph hidden from learner 
                    learner can ask “edge counting queries” 
goal:            reconstruct graph 

Edge counting (EC) query: learner picks subset of  vertices and 
is told the number of  edges on their induced subgraph. 
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ED model:  un-weighted graph hidden from learner 
                    learner can ask “edge detecting queries” 
goal:            reconstruct graph 

Edge counting (ED) query: learner picks subset of  vertices and 
is told whether their induced subgraph is an independent set. 
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Previous Work 

Edge Detecting (ED) 

S  Arbitrary Graphs 
[Angluin-Chen ’04] 

S  Hidden Matchings 
[Alon et al. ’04] 

S  Hamiltonian Cycles 
[Grebinski-Kucherov ’98] 

Edge Counting (EC) 

S  trees, degree bounded graphs 
[Grebinski-Kucherov ’00] 

S  optimal algorithm (exp time) 
[Choi-Kim ’08] 

S  k-degenerate graphs 
[Bouvel et al. ’05] 
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Graph tree partition 

ED 
Query 

 Θ(|E| lg n), Θ(n2) 
[Angluin-Chen ’04] 

 Θ(n lg n) 
[from ←] 

Θ(n2) 
[R-Srivastava ’07b] 

 
EC 

Query 

O(|E| lg n) 
[from ↑] 

[R-Srivastava ’07b] 
Θ(n2/lg n) 
Θ(dn) 

[Grebinski-Kucherov ’00] 

Θ(n) 
[Grebinski-Kucherov ’00] 

 

O(n lg n) 
Ω(n) 

[R-Srivastava ’07b] 

 

distance 
Query 

 Θ(n2) 
[from →] 

 

 Θ(n2) 
[R-Srivastava ’07b] 

O(dn lg n) 
[Hein ’89] 

 Θ(nk) 
[R-Srivastava ’07b] 

d = degree, k = number of  components 

Results for Poly-Time Learners 
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Verification 
a task easier than learning 

Verifier presented with graph H and given EC query access to G. 

H G 

Verifier needs to answer: does H = G? 
43 



H G 

=? 

Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 
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H G 

=? 

Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

3 4 ≠
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Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   
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Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   

H G HrG 
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Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   

H G HrG 

3 4 1 (odd) 48 ≠



Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   
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Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   

50 

we choose the random subset as follows: 
1.  order the vertices v1 … vn such that (vn-1,vn) is an edge 
2.  in order, flip a fair coin for each vertex to decide if  it’s 

in the subset 
 



Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Lemma: A random subset of  vertices of  a non-empty graph 
induces an odd number of  edges with probability ≥ ¼.   

odd Graph 
induced on 

selected 
subset from 

{v1..vn-2} 
even 

51 

vn 

vn-1 



Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Any graph can be verified by a randomized 
algorithm with error ε using O(log(1/ε)) EC queries! 
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Theorem [R-Srivastava ’07b]: If  H ≠ G, querying a random 
subset of  vertices on G and simulating the same query on H 

will produce different answers with probability ≥ ¼. 

Any graph can be verified by a randomized 
algorithm with error ε using O(log(1/ε)) EC queries! 

Matrix formulation 
A: n×n adjacency matrix 
x: {0,1}n is query vector 

 
EC query = xTAx 

Our result gives an 
improved technique for 
matrix fingerprinting 

[Freivalds ’77] using less 
randomness. 
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Gene Regulatory 
Networks 
[Angluin-Aspnes-Chen-R ’07] 
[Angluin-Aspnes-Chen-Eisenstat-R ’08] 

54 

Problem: A GRN is a collection of  
genes interacting according to 
unknown rules.  The goal is to learn 
their topology and function. 

 

Query: The genes can be disrupted 
or expressed by the learner.  Only 
the final phenotype can be observed. 

 

 



Gene Regulatory 
Networks 
[Angluin-Aspnes-Chen-R ’07] 
[Angluin-Aspnes-Chen-Eisenstat-R ’08] 

Problem: A GRN is a collection of  
genes interacting according to 
unknown rules.  The goal is to learn 
their topology and function. 

 

Query: The genes can be disrupted 
or expressed by the learner.  Only 
the final phenotype can be observed. 

 

Reformulation: Learning analog/
probabilistic circuits by injecting 
values. 
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Two Models of  Learning Circuits 

?

? ?

?

?

?

?

?

? ?

?

?

?

?

[Akutsu et al. ’98]  
[Ideker et al. ’00] 

[Valiant ’84] 
[Kharitonov ’93] 
[Kearns-Valiant ’94] 
… 56 

learning from 
I/O behavior of  
circuit 

learning from 
I/O behavior of  
gates 



Two Models of  Learning Circuits 

?

? ?

?

?

?

?

?

? ?

?

?

?

?

HARD EASY 

[Akutsu et al. ’98]  
[Ideker et al. ’00] 

[Valiant ’84] 
[Kharitonov ’93] 
[Kearns-Valiant ’94] 
… 57 

learning from 
I/O behavior of  
circuit 

learning from 
I/O behavior of  
gates 



Learning by Injecting Values 

?

? ?

?

?

?

?

Value Injection Query Model 
[Angluin et al. ’06] 
 
Learner does not know how 
the gates are connected or 
what the gates compute. 
 
Learner can override the 
values on gates and observe 
what happens at the output. 
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Learning by Injecting Values 

1

? ?

1

1

?

0

Value Injection Query Model 
[Angluin et al. ’06] 
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Learning by Injecting Values 

a

? ?

c

c

?

b

We considered large-alphabet 
and analog circuits. 
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Theorem [Angluin-Aspnes-Chen-R ’07]: An algorithm 
for learning bounded fan-in circuits, polynomial in the 
number of  wires and alphabet size would imply fixed 

parameter tractability of  all problems in W[1]. 
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Main Theorem [Angluin-Aspnes-Chen-R ’07]: The class of  
circuits having n wires, alphabet size s, fan-in bound k, and 

shortcut width bounded by b, is learnable using nsO(k+b) 
value injection queries and time polynomial in the number 

of  queries.  
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Main Theorem [Angluin-Aspnes-Chen-R ’07]: The class of  
circuits having n wires, alphabet size s, fan-in bound k, and 

shortcut width bounded by b, is learnable using nsO(k+b) 
value injection queries and time polynomial in the number 

of  queries.  

In some sense, this meets the W[1] hardness lower bound. 

1 2 3 2 1 
shortcut width = 3 
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Distinguishing Paths Lemma  
[Angluin-Aspnes-Chen-R ’07]: 

Suppose σ and τ are 
distinguishable for gate g. Then 
… there is a distinguishing path 
π for gate g and values σ and 

τ. 

g 



σ/ τ 

a/ b 

Distinguishing Paths Lemma  
[Angluin-Aspnes-Chen-R ’07]: 

Suppose σ and τ are 
distinguishable for gate g. Then 
… there is a distinguishing path 
π for gate g and values σ and 

τ. 

65 

g 



σ/ τ 

a/ b 

66 

Distinguishing Paths Lemma  
[Angluin-Aspnes-Chen-R ’07]: 

Suppose σ and τ are 
distinguishable for gate g. Then 
… there is a distinguishing path 
π for gate g and values σ and 

τ. 

g 



The Distinguishing Paths Lemma is not true for probabilistic 
circuits with alphabet size > 2!  

[Angluin-Aspnes-Chen-Eisenstat-R ’09] 

00/11→U{00,11} 
01/10→U{01,10} 

w1=U{00,01} 

left bit right bit 

XOR 
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Social Networks 
[Angluin-Aspnes-R ’08] 

Problem: To learn the pairwise 
connections in an independent 
cascade social network. 

 

Query: Nodes can be activated and 
suppressed. This corresponds to 
marketing, immunizing, etc. 

 

Results: Θ(n2) queries are needed. 

bad news: large for large networks 

good news: learn an edge per query. 
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Language Learning 
[Angluin-Bonache-Dediu-R ’08] 

Problem: Learning a new language 
with the help of  a teacher. 

 

Query: The learner makes an 
utterance in a language and is then 
given information from a teacher. 

 

Model: Learning labeled automata 
from membership queries. 
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Multiarmed Bandits 
My work at Yahoo! Research 
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

$0 
1 2 4 … T 3 
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

1 2 4 … T 

$0.50 

3 
$0.50 

2
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

1 2 4 … T 

$0.50 

3 

$0 

$0.50 

3
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

1 2 4 … T 

$0.50 

3 

$0 

$0.33 

$0.83 

2
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

1 2 4 … T 

$0.50 

3 

$0 

$0.20 

$0.90 

$0.33 

$0.4T 
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

$0.5T 

$0.2T 

$0.33T 

$0.1T 

$0.4T 
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1 

2 

3 

…
 

k 

Multiarmed Bandits 
[Robbins ’52] 

$0.5T 

$0.2T 

$0.33T 

$0.1T 

regret = $0.1T 

$0.4T 
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1 

2 

3 

…
 

k 

$0 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

context: 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 
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1 

2 

3 

…
 

k 

$0 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

5 

1 

K 

1 

4 

3 

context:    x1 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 
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1 

2 

3 

…
 

k 

$0.15 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

1
$0.15 

context:    x1 

5 

1 

K 

1 

4 

3 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 
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1 

2 

3 

…
 

k 

$0.2T 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

$.12T 

$0.15 

context:    x1            x2           x3          x4          …            xT  

$0.5 

$0.1 

$0.2 

$0.4 

$.1T 

$.2T 

$.22T 

0 

$.17T 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 
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1 

2 

3 

…
 

k 

$0.2T 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

$.12T 

context:    x1            x2           x3          x4          …            xT  

$.1T 

$.2T 

$.22T 

0 

$.17T 

regret = $0.02T 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 
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1 

2 

3 

…
 

k 

Contextual Bandits 
[Auer-CesaBianchi-Freund-Schapire ’02] 

$0.2T 
1 2 4 … T 3 

context:    x1            x2           x3          x4          …            xT  

the rewards can come i.i.d. from a 
distribution or be arbitrary 
stochastic / adversarial 
 
The experts can be present or not. 
contextual / non-contextual 
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u  Interaction 
u  The feedback learner receives depends on its choice of  arm. 

u  Learner doesn’t learn about arms/experts it didn’t choose. 

u Applications: “Life is a Bandit Problem” 
u  Ad auctions: arms are advertisements, rewards are clicks, context is 

user data, policies are classifiers, one time-step is a user visit. 

u  Medicine: arms are treatments, rewards are health outcomes, context 
is symptoms, policies are treatment plans, time-step is a patient visit. 

u  Finance: arms are stocks, rewards are money earned, context is any 
news, policies are given by “financial experts,” time-step is, say, a day. 

u Exploration/Exploitation 
u  Can exploit expert/arm you’ve learned to be good. 

u  Can explore expert/arm you’re not sure about. 
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The First Optimal 
Contextual Algorithm 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

Setting: Adversarial contextual bandits. 

Result : The first optimal algorithm 
that works with high-probability. Also 
can have low regret w.r.t. a VC set. 

Made Efficient in 
the Stochastic Case! 
[Dudik-Hsu-Kale-Karampatziakis-

Langford-R-Zhang ’11] 

Setting: Stochastic contextual bandits. 

Result : The first efficient optimal, 
high probability algorithm (assuming 
a supervised-learning oracle)! 
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Some Barriers 

Ω(kT)1/2 (non-contextual) and ~ Ω(TK ln N)1/2  (contextual) are 
known lower bounds [Auer et al. ’02] on regret, even in the 
stochastic case.   

Any algorithm achieving regret Õ(KT polylog N)1/2 is said 
to be optimal. 

No algorithm that first explores (acts randomly) and then 
exploits (follows the best policy) can be optimal.  Any optimal 
algorithm must be adaptive. 
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Two Types of  Approaches 

UCB  
[Auer ’02] 

EXP3 Exponential Weights 
[Littlestone-Warmuth ’94] 

[Auer et al. ’02] 
1 

0.5 

0 t=1 

t=2 

t=3 

… 

Algorithm: at every time step 
1)  pull arm with highest UCB 
2)  update confidence bound of  the 

arm pulled. 

Algorithm: at every time step 
1)  sample from distribution defined 

by weights (mixed w/ uniform) 
2)  update weights “exponentially” 
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UCB vs EXP3 
A Comparison 

UCB 
[Auer ’02] 

u Pros 
u  Optimal for the stochastic 

setting.  
u  Succeeds with high probability. 

u Cons 
u  Does not work in the 

adversarial setting. 
u  Is not optimal in the contextual 

setting. 

EXP3 & Friends 
[Auer-CesaBianchi-Freund-Schapire ’02] 

u Pros 
u  Optimal for both the adversarial 

and stochastic settings. 
u  Can be made to work in the 

contextual setting 

u Cons 
u  Does not succeed with high 

probability in the contextual 
setting (only in expectation). 
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EXP4P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

EXP4P combines the advantages of  Exponential Weights and UCB. 
optimal for both the stochastic and adversarial settings 

works for the contextual case (and also the non-contextual case) 
a high probability result 

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]:  For 
any δ>0, with probability at least 1-δ, EXP4P has regret at most 

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting. 
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EXP4P 
[Beygelzimer-Langford-Li-R-Schapire ’11] 

Main Theorem [Beygelzimer-Langford-Li-R-Schapire ’11]:  For 
any δ>0, with probability at least 1-δ, EXP4P has regret at most 

O(KT ln (N/δ))1/2 in the adversarial contextual bandit setting. 

key insights (on top of  UCB/ EXP) 
1)  exponential weights and upper 

confidence bounds “stack” 
2)  generalized Bernstein’s 

inequality for martingales 

t=1 

t=2 

t=3 
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Hope for an Efficient Algorithm? 
[Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11] 

For EXP4P, the dependence on N in the regret is logarithmic. 
 

this suggests 
 

We could compete with a large, even super-polynomial number 
of  policies! (e.g. N=K100  becomes 10 log1/2 K in the regret) 

 
however 

 
All known contextual bandit algorithms explicitly “keep track” 
of  the N policies.  Even worse, just reading in the N would take 

too long for large N. 
91 



Idea: Use Supervised Learning 

S  “Competing” with a large (even exponentially large) set of  
policies is commonplace in supervised learning. 
S  Targets: e.g. linear thresholds, CNF, decision trees (in practice only) 

S  Methods: e.g. boosting, SVM, neural networks, gradient descent 

S  The recommendations of  the policies don’t need to be explicitly 
read in when the policy class has structure! 

x1 
x2 

x3 x4 
x5 

x6 

… 

Supervised 
Learning 

Oracle 
Policy class Π 

A good policy 
in Π 

idea originates with 
[Langford-Zhang ’07] 
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k 

$1.20 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

5 

1 

k 

1 

4 

3 

context:    x1           x2            x3 
 

Back to Contextual Bandits 

$0.50 

$0.70 
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k 

$1.20 
1 2 4 … T 3 

N experts/policies/functions 
think of  N >> K 

5 

1 

k 

1 

4 

3 

context:    x1           x2            x3 
 

$0.50 

$0.70 
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Randomized-UCB 

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a supervised learning 

oracle, Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/
δ))  in the stochastic contextual bandit setting and runs in time poly(K,T, ln 

N). 
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Randomized-UCB 

Main Theorem [Dudik-Hsu-Kale-Karampatziakis-Langford-R-Zhang ’11]:  
For any δ>0, w.p. at least 1-δ, given access to a supervised learning 

oracle, Randomized-UCB has regret at most O((KT ln (NT/δ))1/2+K ln(NK/
δ))  in the stochastic contextual bandit setting and runs in time poly(K,T, ln 

N). 
if  arms are chosen among only good policies s.t. all have variance < approx 2K, we win 

can prove this exists via a minimax theorem 

this condition can be softened to occasionally allow choosing of  bad policies 
via “randomized” upper confidence bounds 

creates an optimization problem of  how to choose arms 
expressed as convex program 

solvable by ellipsoid algorithm 
can implement a separation oracle with the supervised learning oracle 
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Bandit Slate Problems 
[Kale-R-Schapire ’11] 

Problem: Instead of  selecting one 
arm, we need to select s ≥ 1, arms 
(possibly ranked).  The motivation 
is web ads where a search engine 
shows multiple ads at once. 

 

Result: Efficient algorithm with 
regret Õ(sKT)1/2 for unranked 
slates and Õ(s(KT)1/2) for ranked 
slates. 
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Linear Bandits 
[Chu-Li-R-Schapire ’11] 

Problem: The LinUCB algorithm 
[Li-Chu-Langford-Schapire ’10] was 
designed to compete with any linear 
predictor.  It was experimentally 
shown to be effective but had no 
theoretical analysis. 

 

Result: We proved that a variant 
LinUCB was optimal for the linear 
setting and by giving an analysis and 
an almost matching lower bound.  
Afterwards, a direct proof  for the 
regret of  LinUCB was found 
[ AbbasiYadkori-Pal- Szepesvári ’11] 
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Other Research 
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Margins in Boosting 
[R-Schapire ’06] 

Setting: The algorithm AdaBoost 
[Freund-Schapire ’97] combines the 
votes of  “weak learners” to produce 
a “strong learner.”  It was a mystery 
why AdaBoost does not overfit.  The 
margins theory [Schapire et al. ’98] 
explained this mystery, but was put 
into doubt by arc-gv [Breiman ’99]. 

 

Result: We showed that results on 
arc-gv actually don’t contradict the 
margins theory and discovered a 
complex interplay between margins, 
weak learner complexity, and 
training sample size. 

 
101 



Embedding Parity into 
Random Structures 
[Angluin-Eisenstat-Kontorovich-R ’10] 

Setting: Cryptographic hardness 
[Kearns-Valiant ’89] results prevent 
progress for learning automata.  
Hence we considered the case of  
learning random automata. 

 

Result: Even random automata 
run into a barrier: the parity 
function can be embedded into a 
random automata (and even 
decision trees and DNF) w.h.p.  
Hence, no statistical query 
algorithm [Kearns ’98] can hope to 
learn these targets. 
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Improved Bounds  
for Noisy Sparse Parity 
[Grigorescu-R-Vempala ’11] 

Setting: The parity problem in the 
presence of  noise is a difficult 
problem on the forefront of  
theoretical computer science.  No 
algorithm better than the brute 
force O(nr) for r-parities.  

 

Result: We gave the first nontrivial 
algorithm for this problem, giving a 
~ O(nr/2) bound.  This also implies 
slightly better bounds for noisy r-
juntas and noiseless s-term DNF 
under the uniform distribution.  
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Complexity of   
Statistical Algorithms 
[Feldman-Grigorescu-R-Vempala ’11] 

Setting: For optimization problems 
over distributions, most current 
algorithms, e.g. local search, 
MCMC, gradient descent, etc. can 
be seen as “statistical.” 

 

Result: We define a parameter that 
gives unconditional lower bounds 
on the number of  samples a 
statistical algorithm requires, 
indicating limitations of  known 
heuristics for many problems. This 
generalizes the statistical query 
work of  [Blum et al ’94]. 104 



Feature-Efficient 
Prediction 
[R ’11] 

Setting: The learner has a budget 
of  how many features it can 
examine at test-time. 

 

Application: Medical testing, 
where in diagnosing a patient, tests 
can be harmful and/or expensive. 

 

Result: Properly sampling from 
any ensemble of  feature-efficient 
predictors allows the learner’s error 
bound to converge to the margin 
bound of  a full ensemble. 
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Stability Assumptions  
in Clustering 
[R ’11] 

Setting: Clustering has recently been 
studied [Awasthi-Blum-Sheffet ’11] 
under the perturbation resilience 
assumption [Bilu-Linial ’10] -- that 
small changes to pair-wise distances 
ought not affect the optimal 
clustering. 

 

Result: Our analysis reveals that for 
the k-median and min-sum 
objectives, for only a small range of  
stability parameters is the problem 
interesting.  Outside that range, the 
clustering problem either remains 
NP-hard or becomes trivial. 106 



Future Work 
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Learning Networks 

S  My research has addressed problems in evolutionary tree 
reconstruction, gene sequencing, protein networks, social 
networks, and language learning. 

S  Has immediate applications to learning computer networks, 
chemical networks, spreads of  disease, etc. 
S  Can we find more applications? 
S  New applications will perhaps lead to new models and new 

problems! 
S  Some general questions remain open: for example, taking 

query costs into account. 
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Bandit Problems 

S  “Life is a bandit problem” – so we have many applications! 

S  Open problem: making the reduction to supervised learning 
more practical and able to handle the adversarial case. 

S  Open problem: develop more general theory for the 
reinforcement learning problem. 
S  Multiarmed bandits are just a special case! 

S  More experiments! 
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Other Directions 
a small sampling 

S  Fast prediction with strong guarantees. 
S  Can we capture prediction accuracy and prediction time in one 

optimization? 

S  Understanding the true complexity of  statistical algorithms. 

S  Better models for learning social interactions / networks. 
S  What are the most robust (ie. to disease) networks? 

S  What networks are we currently building? 

S  Many others… 
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Thank You! 
Questions? 
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